
Learnability (2/2)

Consistency

Consistency

●​ Similar things should look and act the same
●​ Different things should look different

○​ also called the principle of “least surprise”
●​ Consistency allows the user to transfer their existing knowledge easily to a

new UI

There’s a general principle of learnability: consistency. This rule is often given the
hifalutin’ name the Principle of Least Surprise, which basically means that you shouldn’t
surprise the user with the way a command or interface object works.

Similar things should look, and act, in similar ways. Conversely, different things should
be visibly different.

Kinds of Consistency

There are three kinds of consistency you need to worry about:

1.​ Internal consistency within your application
2.​ External consistency with other applications on the same platform
3.​ Metaphorical consistency with your interface metaphor or similar real-world

objects

Metaphors

Metaphors are one way you can bring the real world into your interface. A well-chosen,
well-executed metaphor can be quite effective and appealing, but be aware that
metaphors can also mislead.

A computer interface must deviate from the metaphor at some point – otherwise, why
aren’t you just using the physical object instead? At those deviation points, the
metaphor may do more harm than good. For example, it’s easy to say “a word processor
is like a typewriter,” but you shouldn’t really use it like a typewriter. Pressing Enter every
time the cursor gets close to the right margin, as a typewriter demands, would wreak
havoc with the word processor’s automatic word-wrapping.

The advantage of metaphor is that you’re borrowing a conceptual model that the user
already has experience with. A metaphor can convey a lot of knowledge about the
interface model all at once. It’s a notebook. It’s a CD case. It’s a desktop. It’s a trashcan.

Each of these metaphors carries along with it a lot of knowledge about the parts, their
purposes, and their interactions, which the user can draw on to make guesses about
how the interface will work.

Some interface metaphors are famous and largely successful. The desktop metaphor –
documents, folders, and overlapping paperlike windows on a desk-like surface – is
widely used and copied. The trashcan, a place for discarding things but also for digging
around and bringing them back, is another effective metaphor – so much so that Apple
defended its trash can with a lawsuit, and imitators are forced to use a different look.
(Recycle Bin, anyone?)

The basic rule for metaphors is: use it if you have one, but don’t stretch for one if you
don’t.

Appropriate metaphors can be very hard to find, particularly with real-world objects.
Metaphors can also be deceptive, leading users to infer behavior that your interface
doesn’t provide. Sure, it looks like a book, but can I write in the margin? Can I rip out a
page?

Metaphors can also be constraining. Strict adherence to the desktop metaphor wouldn’t
scale, because documents would always be full-size like they are in the real world, and
folders wouldn’t be able to have arbitrarily deep nesting.

The biggest problem with the metaphorical design is that your interface is presumably
more capable than the real-world object, so at some point, you have to break the
metaphor. Nobody would use a word processor if it really behaved like a typewriter.
Features like automatic word-wrapping break the typewriter metaphor, by creating a
distinction between hard carriage returns and soft returns.

Most of all, using a metaphor doesn’t save an interface that does a bad job of
communicating itself to the user.

Natural Mapping: Consistency of Layout

●​ When possible, the physical arrangement of controls should match
arrangement of function

●​ Best mapping is direct, but natural mappings don’t have to be direct if they
have an easy mental model

Another important principle of learnability is good mapping of functions to controls.

Consider the spatial arrangement of a light switch panel. How does each switch
correspond to the light it controls? If the switches are arranged in the same fashion as
the lights themselves, it is much easier to learn which switch controls which light.

A direct mapping means that the physical layout of the controls matches the physical
arrangement of their functions. In a direct mapping, control A is to the left of control B if
and only if function A (e.g. the light that’s turned on or off) is to the left of function B.

Direct mappings are not always easy to achieve, since a control may be oriented
differently from the function it controls. Light switches are mounted vertically, on a wall;
the lights themselves are mounted horizontally, on a ceiling. So the switch arrangement
may not correspond directly to a light arrangement.

So sometimes the best that can be done is a natural mapping: the physical layouts are
not identical, but a simple mental model can transform the controls to the functions and
vice versa. The turn signal switch in most cars is a stalk that moves up and down
(vertically), but the function it controls is a signal for turning left or right, horizontally.
But the mapping is natural, because the turn signal stalk sits on the steering column,
and the user can mentally map it to moving the stalk in the direction that the steering
wheel will be turned, rather than the direction the car will move.

Other good examples of mapping include:

●​ Stove burners. Many stoves have four burners arranged in a square, and four
control knobs arranged in a row. Which knobs control which burners? Most
stoves don’t make any attempt to provide even a natural mapping.

●​ An audio mixer for DJs (proposed by Max Van Kleek for the Hall of Fame) has
two sets of identical controls, one for each turntable being mixed. The mixer is
designed to sit in between the turntables, so that the left controls affect the
turntable to the left of the mixer, and the right controls affect the turntable to the
right. The mapping here is direct.

●​ The controls on the RealCD interface don’t have a natural mapping. Why not?
●​ The Segway’s controls have a direct mapping. Why?
●​ Here’s a meta question about these readings. What’s wrong with the mapping of

this bulleted list with respect to the slide above?

Internal Consistency in Wording

Another important kind of consistency, often overlooked, is in wording. Use the same
terms throughout your user interface. If your interface says “share price” in one place,
“stock price” in another, and “stock quote” in a third, users will wonder whether these are
three different things you’re talking about.

Don’t get creative when you’re writing text for a user interface; keep it simple and
uniform, just like all technical writing.

Here are some examples from MIT’s Course VI Underground Guide website – confusion
about what’s a “review” and what’s an “evaluation”.

External Consistency in Wording: Speak the User’s Language

●​ Use common words, not techie jargon
○​ But use domain-specific terms where appropriate

●​ Allow aliases/synonyms in command languages

External consistency in wording is important too – in other words, speak the user’s
language as much as possible, rather than forcing them to learn a new one. If the user
speaks English, then the interface should also speak English, not Geekish. Technical
jargon should be avoided. Use of jargon reflects aspects of the system model creeping
up into the interface model, unnecessarily. How might a user interpret the dialog box
shown here? One poor user actually read type as a verb, and dutifully typed
M-I-S-M-A-T-C-H every time this dialog appeared. The user’s reaction makes perfect
sense when you remember that most computer users do just that, type, all day. But
most programmers wouldn’t even think of reading the message that way. Yet another
example showing that you are not the user.

Technical jargon should only be used when it is specific to the application domain and
the expected users are domain experts. An interface designed for doctors shouldn’t
dumb down medical terms.

When designing an interface that requires the user to type in commands or search
keywords, support as many aliases or synonyms as you can. Different users rarely agree
on the same name for an object or command. One study found that the probability that
two users would mention the same name was only 7-18%. (Furnas et al, “The vocabulary
problem in human-system communication,” CACM v30 n11, Nov. 1987).

Incidentally, there seems to be a contradiction between these guidelines. Speaking the
User’s Language argues for synonyms and aliases, so a command language should
include not only delete but erase and remove too. But consistency in wording argued for
only one command name, lest the user wonder whether these are three different
commands that do different things. One way around the impasse is to look at the
context in which you’re applying the heuristic. When the user is talking, the interface
should make a maximum effort to understand the user, allowing synonyms and aliases.
When the interface is speaking, it should be consistent, always using the same name to
describe the same command or object. What if the interface is smart enough to adapt
to the user – should it then favor matching its output to the user’s vocabulary (and
possibly the user’s inconsistency) rather than enforcing its own consistency? Perhaps,
but adaptive interfaces are still an active area of research, and not much is known.

http://dl.acm.org/citation.cfm?id=32212
http://dl.acm.org/citation.cfm?id=32212

Affordances

Affordances

●​ Perceived and actual properties of a thing that determine how the thing
could be used

●​ Perceived vs. actual

Affordance refers to “the perceived and actual properties of a thing”, primarily the
properties that determine how the thing could be operated. Chairs have properties that
make them suitable for sitting; doorknobs are the right size and shape for a hand to
grasp and turn. A button’s properties say “push me with your finger.”

Scrollbars say that they continuously scroll or pan something that you can’t entirely see.
Affordances are how an interface communicates nonverbally, telling you how to operate
it.

Affordances are rarely innate – they are learned from experience. We recognize
properties suitable for sitting on the basis of our long experience with chairs. We
recognize that listboxes allow you to make a selection because we’ve seen and used
many listboxes, and that’s what they do.

Note that perceived affordance is not the same as actual affordance. A facsimile of a
chair made of papier-mâché (a material, made from paper pulp or shreds of paper
mixed with glue or paste) has a perceived affordance for sitting, but it doesn’t actually
afford sitting: it collapses under your weight. Conversely, a fire hydrant has no perceived
affordance for sitting, since it lacks a flat, human-width horizontal surface, but it actually
does afford sitting, albeit uncomfortably.

Look at the door handle on the left, whose nonverbal message (perceived affordance)
clearly says “pull me” but whose label says “push” (which is presumably what it actually
affords). Or the textbox on the right, whose perceived affordance (type a time here)
disagrees with what it can actually do (you can’t type, you have to push the Set Time
button to change it). The parts of a user interface should agree in perceived and actual
affordances.

The original definition of affordance (from psychology) referred only to actual
properties, but when it was imported into human computer interaction, perceived
properties became important too. Actual ability without any perceivable ability is an
undesirable situation. We wouldn’t call that an affordance. Suppose you’re in a room
with completely blank walls. No sign of any exit – it’s missing all the usual cues for a
door, like an upright rectangle at floor level, with a knob, and cracks around it, and
hinges where it can pivot. (These kinds of “cues” are called “signifiers”) Completely
blank walls. But there is actually an exit, cleverly hidden so that it’s seamless with the

wall, and if you press at just the right spot it will pivot open. Does the room have an
“affordance” for exiting? To a user interface designer, no, it doesn’t, because we care
about how the room communicates what should be done with it. To a psychologist (and
perhaps an architect and a structural engineer), yes, it does, because the actual
properties of the room allow you to exit, if you know how.

Technology affordances, William W. Gaver, 1991
https://dl.acm.org/citation.cfm?id=108856

Use Appropriate Affordances

Here are some more examples of commonly-seen affordances in graphical user
interfaces. Buttons and hyperlinks are the simplest form of affordance for actions.
Buttons are typically metaphorical of real-world buttons, but the underlined hyperlink
has become an affordance all on its own, without reference to any physical metaphor.

Downward-pointing arrows, for example, indicate that you can see more choices if you
click on the arrow. The arrow actually does double-duty – it makes visible the fact that

https://dl.acm.org/citation.cfm?id=108856

more choices are available, and it serves as a hotspot for clicking to actually make it
happen.

Texture suggests that something can be clicked and dragged – relying on the physical
metaphor, that physical switches and handles often have a ridged or bumpy surface for
fingers to more easily grasp or push.

Mouse cursor changes are another kind of affordance – a visible property of a graphical
object that suggests how you operate it. When you move the mouse over a hyperlink, for
example, you get a finger cursor. When you move over the corner of a window, you often
get a resize cursor; when you move over a textbox, you get a text cursor (the “I-bar”).

Finally, the visible highlighting that you get when you move the mouse over a menu item
or a button is another kind of affordance. Because the object visibly responds to the
presence of the mouse, it suggests that you can interact with it by clicking.

Evolution of Hyperlinks and Buttons

Hyperlinks and buttons have evolved and changed significantly. The top row shows how
hyperlinks and buttons looked circa 1995 (on NCSA Mosaic, the first widely-used web

browser, which used the Motif graphical user interface toolkit). What properties did they
have that distinguished them and made them clickable? Which of those properties have
been lost over time, presumably as users become more familiar with these objects? The
drive toward simplicity is a constant force in aesthetics and user interface design, so
affordances tend to diminish rather than increase.

The bottom row shows a hyperlink which has been simplified too far, and an HTML
button that has been not only simplified but also lost its mouse cursor affordance. This
goes too far.

What’s Wrong With This?

The story of affordances isn’t purely reductionist. Sometimes you can’t boil the
affordance down to a single property like its color or a 3D border. This thing here is a
button; but it’s so large, and has such a disproportionate relationship between the area
and the label, that it loses its sense of clickability.

What Can You Do With This Page?

Here is the Campus Preview Weekend 2011 website. If the user wants an overview of all
the events happening that weekend, the user may end up just clicking through the days
individually, because those links (at the bottom) are the most salient affordances for
interaction.

But it turns out that the graphic in the center page is actually a link to a nifty search
interface that lets the user look at all the event listings in addition to other cool
functionalities. Unfortunately the graphic doesn’t have strong affordances for
interaction. It’s mostly a big logo, so what does a typical user do? Glance at it and then
ignore it, scanning the page instead for things that look like actions, such as the clearly
marked hyperlinks at the bottom. The “click here to search” text in the logo doesn’t
work. (example and explanation due to Dina Betser)

Feedback

Actions Should Have Immediately Visible Effects

●​ Low-level feedback
○​ e.g., push button

●​ High-level feedback
○​ model state changes
○​ new web page starts loading

Hand-in-hand with affordances is feedback: how the system changes visibly when you
perform an action.

When the user invokes a part of the interface, it should appear to respond. Push buttons
should depress and release. Scrollbar thumbs and dragged objects should move with
the mouse cursor. Pressing a key should make a character appear in a textbox.

Low-level feedback is provided by a view object itself, like push-button feedback. This
kind of feedback shows that the interface at least took notice of the user’s input, and is
responding to it. (It also distinguishes between disabled widgets, which don’t respond at
all.)

High-level feedback is the actual result of the user’s action, like changing the state of the
model.

Visible Navigation State

Let’s turn now to visualizing the state of the system.

Navigation is one important kind of state to visualize – i.e., where am I now? On the
Web, in particular, users are in danger of getting lost as they move around in deep,
information-rich sites. We’ve already seen in previous readings a couple of patterns for
preventing this by visualizing the user’s location. Breadcrumb trails show where you are
as a path through the site’s hierarchy (e.g., Travel > Guides > North America), in a very
compact form. Showing the hierarchy in a tree widget with the current node highlighted
is another way to do it, but costs more screen space and complexity. Pagination and
highlighted tabs are similar patterns that show the user where they are, along with some
context of where else they could go.

Visible Model State

●​ Continuous visual representation of model
○​ What to visualize should be guided by the user’s tasks

It hardly seems necessary to say that the system model should be visualized in an
interface. That’s one of the essential properties of a direct manipulation interface: a
continuous visual representation of the state of the application.

The hard design issues in model visibility tend to lie in what to make visible (i.e., which
aspects of the model), and how to display it (i.e., in what representation). We’ll discuss the
how, the visual representation, in much greater detail in a future reading on graphic
design.

There is a tension between visibility and simplicity; visibility argues for showing more,
but simplicity argues for showing less. Understanding the users and their tasks (a
technique called task analysis which we’ll discuss in a future class) helps resolve the
tension. For example, Microsoft Word displays a word count continuously in the status
bar, since counting words is an important subtask for many users of Word (such as
students, journalists, and book authors). Making it always visible saves the need to
invoke a word-count command.

Visible View State

●​ Selection highlight

●​ Selection handles

●​ Drag & drop mouse cursor

 dragging

 can’t drop

●​ Keyboard focus

The “view state” is the current state of the user’s interaction with the interface.

Selections are particularly important. When the user selects an object to operate on,
highlight the object somehow. Don’t just leave the selection invisible and implicit.
Selection highlighting provides important feedback that the selection operation was
successful; it also shows the current state of the selection if the user has forgotten
what was previously selected.

A common technique for showing a selection highlight in text is reverse video (white
text on dark colored background). For shapes and objects, the selection highlight may
be done by selection handles, or by a dotted or animated border around the object
(“crawling ants”). Selection handles are appealing because they do double-duty – both
indicating the selection, and providing visible affordances for resizing the object.

When the user selects objects or text and then operates on the selection with a
command, keep it selected, especially if it changes appearance drastically or moves
somewhere else. If the selected thing is offscreen when the user finally invokes a
command on it, scroll it back into view. That allows the user to follow what happened to
the object, so they can easily evaluate its final state. Similarly, if the user makes a
selection and then invokes an unrelated command (like scrolling or sorting or filtering,
none of which actually use the selection), preserve the selection, even if it means you
have to remember it and regenerate it. User selections, like user data, are precious, and
contribute to the visibility of what the system is doing.

Another form of view state is the state of an input controller, like a drag & drop
operation. Drag & drop is often indicated by a cursor change.

Useless Feedback vs. Useful Feedback

https://en.wikipedia.org/wiki/Reverse_video

Feedback is important, but don’t overdo it. This dialog box demands a click from the
user. Why? Does the interface need a pat on the back for finishing the conversion? It
would be better to just skip on and show the resulting documentation.

Information Scent

Information Scent

●​ Information foraging theory
○​ Humans gathering information can be modeled like animals

gathering food
○​ Constantly evaluating and making decisions to maximize

information collected against cost of obtaining it
●​ Information scent

○​ Cues on a link that indicate how profitable it will be to follow the link
to its destination

Users depend on visible cues to figure out how to achieve their goals with the least
effort. For information gathering tasks, like searching for information on the web, it
turns out that this behavior can be modeled much like animals foraging for food. An
animal feeding in a natural environment asks questions like: Where should I feed? What
should I try to eat (the big rabbit that’s hard to catch, or the little rabbit that’s less
filling)? Has this location been exhausted of food that’s easy to obtain, and should I try
to move on to a more profitable location? Information foraging theory claims that we
ask similar questions when we’re collecting information: Where should I search? Which
articles or paragraphs are worth reading? Have I exhausted this source, should I move
on to the next search result or a different search? (Pirolli & Card, “Information Foraging
in Information Access Environments,” CHI ‘95.)

An important part of information foraging is the decision about whether a hyperlink is
worth following – i.e., does this smell good enough to eat? Users make this decision
with relatively little information – sometimes only the words in the hyperlink itself,
sometimes with some context around it (e.g., a Google search result also includes a
snippet of text from the page, the site’s domain name, the length of the page, etc.)
These cues are information scent – the visible properties of a link that indicate how
profitable it will be to follow the link. (Chi et al, “Using Information Scent to Model User
Information Needs and Actions on the Web“, CHI 2001.)

Give Good Information Scent

●​ A link should smell like the content it leads to

http://dl.acm.org/citation.cfm?id=223911
http://dl.acm.org/citation.cfm?id=223911
http://dl.acm.org/citation.cfm?id=365325
http://dl.acm.org/citation.cfm?id=365325

Hyperlinks in your interface – or in general, any kind of feature, including menu
commands and toolbar buttons – should provide good, appropriate information scent.

Examples of bad scent include misleading terms, incomprehensible jargon (like “Set
Program Access and Defaults” on the Windows XP Start menu), too-general labels
(“Tools”), and overlapping categories (“Customize” and “Options” found in old versions
of Microsoft Word).

Examples of good scent can be seen in the (XP-style) Windows Control Panel on the
left, which was carefully designed. Look, for example, at “Printers and Other Hardware.”
Why do you think printers were singled out?

Presumably because task analysis (and collected data) indicated that printer
configuration was a very common reason for visiting the Control Panel. Including it in
the label improves the scent of that link for users looking for printers. (Look also at the
icon – what does that add to the scent of Printers & Other Hardware?)

Date, Time, Language, and Regional Options is another example. It might be tempting to
find a single word to describe this category – say, Localization – but its scent for a user
trying to reset the time would be much worse.

Good & Bad Information Scent

Here are some examples from the web. Poor information scent is on the left; much
better is on the right.

The first example shows an unfortunately common pathology in web design: the “click
here” link. Hyperlinks tend to be highly visible, highly salient, easy to pick out at a glance
from the web page – so they should convey specific scent about the action that the link
will perform. “Click here” says nothing. Your users won’t read the page, they’ll scan it.

Notice that the quality of information scent depends on the user’s particular goal. A
design with good scent for one set of goals might fail for another set. For example, if a
shopping site has categories for Music and Movies, then where would you look for a
movie soundtrack? One solution to this is to put it in both categories, or to provide “See
Also” links in each category that direct the user sideways in the hierarchy.

Hierarchy of Exploration Costs

●​ Glance
○​ affordances, icons, short salient words

●​ Read
○​ description, keywords

●​ Hover or press
○​ cursor change, highlight, tooltip, submenu, preview

●​ Click through
○​ target page, dialog box, or mode

●​ Invoke
○​ feedback effect on the model state

For the user, collecting information scent cues is done progressively, with steadily
increasing cost.

Some properties can be observed very quickly, with a glance over the interface:
detecting affordances (like buttons or hyperlinks, if they’re well designed), recognizing
icons (like a magnifying glass), or short and very visible words (like Search in big bold
text).

With more effort, the user can read: long labels, help text, or search result snippets.
Reading is clearly more expensive than glancing, because it requires focusing and
thinking.

Still more time and effort is required to hover the mouse or press down, because your
hands have to move, not just your eyes. We inspect menubars and tooltips this way.
Note that tooltips are even more costly, because you often have to wait a time for the
tooltip to appear.

Clicking through a link or bringing up a dialog box is next, and actually invoking a
command to see its effect is the costliest way to explore.

Exploration is important to learning. But much of this reading has been about
techniques for reducing the costs of exploration, and making the right feature more
obvious right away. An interface with very poor affordances will be very expensive to

explore. Imagine a webpage whose links aren’t distinguished by underlining or color –
you’ve just taken away the Glance, and forced the user to Read or Hover to discover
what’s likely to be clickable. Now imagine it in a foreign language – you’ve just taken
away Read. Now get rid of the mouse cursor feedback – no more Hover, and the user is
forced to Click all over the place to explore. Your job as a designer is to make the user’s
goal as easy to recognize the affordances of your user interface as possible.

Lots of Scent but Hard to Scan

Here’s an example of going overboard with information scent. There is so much text in
the main links of this page (Search listings…, Advertise…, See…, Browse…) that it
interferes with your ability to Glance over the page. A better approach would be to make
the links themselves short and simple, and use the smaller text below each link to
provide supporting scent.

This material is a derivative of MIT's 6.813/6.831 reading material, used under CC
BY-SA 4.0. Collaboratively authored with contributions from: Elena Glassman, Philip
Guo, Daniel Jackson, David Karger, Juho Kim, Uichin Lee, Rob Miller, Stephanie
Mueller, Joseph Seering, Clayton Sims, and Haoqi Zhang. This work is licensed under
CC BY-SA 4.0.

http://web.mit.edu/6.813/www/sp18/

	Learnability (2/2)
	Consistency
	Consistency
	Kinds of Consistency
	Metaphors
	Natural Mapping: Consistency of Layout
	Internal Consistency in Wording
	External Consistency in Wording: Speak the User’s Language
	

	Affordances
	Affordances
	Use Appropriate Affordances
	Evolution of Hyperlinks and Buttons
	What’s Wrong With This?
	What Can You Do With This Page?

	Feedback
	Actions Should Have Immediately Visible Effects
	Visible Navigation State
	Visible Model State
	Visible View State
	Useless Feedback vs. Useful Feedback

	Information Scent
	Information Scent
	Give Good Information Scent
	Good & Bad Information Scent
	Hierarchy of Exploration Costs
	Lots of Scent but Hard to Scan

