

Predictive Text Model for Recipes

CSCI 49900 - 03 (Advanced Applications: A Capstone for Majors)

Group Four: Naima Mamataz, Panchita Lopez-Li, Orione Brown, Sol Cruz

June 03 - August 17, 2022

GITHUB LINK

https://github.com/panchitalopez/predictive-recipes

INTRODUCTION

Our group set out to write a predictive text model for recipes that would combine our knowledge
of computer science principles into an application that would predict the instructions of a typed
recipe. The overarching topics that we focused on for our model were Machine Learning and
Artificial Intelligence as well as some focus on Data Science. Focusing on ML/AI, we
particularly honed into Natural Language Processing (NLP), where we looked into Recurrent
Neural Networks (RNNs). Through the exploration of different RNN architectures, we came
across the Long Short-Term Memory (LSTM) architecture that performs the predictive text using
a sequence of words as inputs and processing the output as a matrix of probability from each
word. In this paper, we will discuss our research, website application, data configuration, and our
two predictive text models- including the LSTM model and NodeJS model.

RESEARCH

Focusing on the research we did, we provided a general overview of the overarching topics we
focused on within Machine Learning and Artificial Intelligence.

Natural Language Processing (NLP) is a component of AI, where it has the ability of a computer
program to understand human language as it is written or spoken. Recurrent Neural Networks
(RNNs) are neural network architectures that are heavily used within NLP. They are upgraded
neural networks where connections between nodes are treated as sequential signals. It heavily
relies on sequence modeling. With RNNs, it is the same concept as when a person speaks, words
take meaning based on previous words, and sentences take meaning based on previous sentences.
A specific RNN architecture we used throughout our project is called LSTM which is an
acronym for Long Short-Term Memory. LSTMs can handle long-term dependencies and retain
long-term information in the network. This neural network is used within text prediction as it can
take a sequence of words as the input and output and convert it as a matrix probability of each
word from the dictionary to be the next of the given sequence. This concept will be unfolded on
a more technical level throughout this paper.

Since Panchita was dedicated to the web design layout for the first month, she used the next
couple of weeks to catch up on the backend implementation and did research on Natural
Language Processing and forecasting which is a technique used in data science, as well as the
Tensorflow and Keras library. The Tensorflow and Keras documentation were very dense and it
was challenging to distinguish which aspects would be relevant to our project since there were
many different options, most being a case to determine if they were applicable via trial and error.
Relevant examples of this were the choice of optimizers, models, activation layers, a
consideration of what to monitor such as loss or gain, and several loss functions. She also found
several APIs that we could use to scrap recipe data to simplify the pre-processing, since most
recipes are quite short if taken from an official recipe website. Some of the APIs being:

1

https://github.com/panchitalopez/predictive-recipes

Spoonacular, Tasty, My Cookbook.io, Recipe Search, and Diet. We had contemplated using the
Kaggle dataset we originally found, however, it contained over two million values - most being
cooking jargon, which was irrelevant to our project - even after it had gone through
preprocessing and filtering, it was still at 1.5+ million values. Panchita also considered using
Google Cloud APIs to train our model but realized how potentially large our dataset could be
since it was still undecided at the time. Another factor to consider was how quickly we could
exhaust the free $300 credit upon signup, thus she decided it was not a viable resource to move
forward with.

While the group was still figuring out our dataset situation, Naima decided to focus on how we
can tokenize our future dataset to have an idea of how we can go about configuring it once we
did have our dataset confirmed. Through research, she learned that with tokenization although it
can be fulfilled through the Keras library, there are other components to it that needed to be
considered such as saving the updated tokenized file using pickle, how each unique word needs a
numeric expression, how we have to account for each token ID being incrementally passed, and
how we have to append the input and output words to prepare for the actual predictive algorithm.
Naima did more research on the LSTM architecture beyond its documentation scope where she
obtained an understanding of how the LSTM architecture actually works from the logical gates it
uses.

From research, we learned that the LSTM architecture has three main gates: the forget gate, the
input gate, and the output gate. The forget gate is one of the main properties where it is
responsible for memorizing and recognizing the information coming inside the network and also
discarding the information which is not required for the network to learn the data and
predictions. It helps in deciding whether the information can pass through the layers of the
network. There are also two types of input it expects from the network, one of them being the
information from the previous layers and the other being the information from the presentation
layer. The input gate helps in deciding the importance of the information by updating the cell
state and helps the forget function in eliminating the unimportant information and instead take in
other layers to learn the information from that are actually considered important for making
predictions. The output gate is basically the last gate of the circuit that helps in deciding the next
hidden state of the network.

WEBSITE APPLICATION

Since we decided to create a website application that would showcase our predictive model,
Naima initiated creating the basic layout of the React app. Although she had previous experience
in React, she wanted to familiarize herself again with the basic documentation to recollect how
the structure is created within React and learned about specifics like props, components, and
hooks. She then passed on the front-end configuration to Panchita.

Initially, Panchita used the first month to visualize and research what libraries we could use
throughout the course of the project. She also created the web application of the predictive text
model. The languages used were React, HTML, and CSS. Ideally, the website would contain
three aspects: a header, a section to put the list of ingredients, and a section where the recipe
steps from the predictive text model could be inputted. She started a basic React App from

2

scratch and implemented the header and the ingredient list form with a button that added new
ingredients to the submitted ingredient list. There are various ways to do this, the most common
being a class or a useState hook. The useState hook allows the use of certain features of a class
instead of writing classes, thus being the more efficient option and it was also created to simplify
the process of classes. She included a sample JSON file with mock data values to ensure the list
was able to handle new submissions and compute them to the list. After trying to implement the
recipe step box in a text editor format and using classes to configure it differently, she decided to
leave it while she caught up to work on the backend and later passed it off to Orion to add to it
and connect it to the backend.

PRE-PROCESSING DATA

After our first week of research, our group found it necessary to focus on data, specifically the
data being fed into the model. When Orion joined this group it was already decided that we
would be using the “RecipeNLG cooking recipe dataset”. After doing some research, he found
documentation on a similar predictive text model, detailing the steps and precautions taken for a
successful and accurate model. Many of the findings were related to data manipulation which he
took an interest in. From the documentation, he found that before anything was done to the data
it needed to be “pre-processed” in order for it to flow into the model smoothly. This included
removing unwanted non-ascii characters, punctuation, and converting abbreviations in the text to
the actual text. For example, many recipes that had fractional measurements which are fed into
the model would gain their own tokenized value and associations within the model. This would
confuse the model so from this research he took precautions in our own dataset. First, he
removed all non-ascii characters and converted fractions back into plain text form. An obstacle
unique to our dataset was that many of the data entries were pulled from a variety of websites
which resulted in a large range of data. After manually going through some entries Orion
identified some words or phrases that might be problematic for the model, much like the
documentation he read. Instructions such as “mix-all ingredients together” and “follow box
instructions” he deemed problematic because (1) the sheer number of these instructions would
skew the model to almost always choose this instruction over a better fit, due to the high
coefficient of relation (2) instructions like this were vague and would confuse our model’s
“understanding” of the English language. After removing these phrases, he found that many
recipes also had characters such as asterisks to denote alternative ingredients. He removed these
too since our computing power was relatively low compared to a predictive text model like
Google’s so it was in our best interest to skew the data as much as possible to give a favorable
result. After identifying possible problems with the dataset he began manually picking out a
subset of the data to feed into our model.

While the group initially decided to create our own dataset using TensorFlow, we realized that it
wasn’t the right step to go about it because of how overwhelming it was to account for each word
that our model would require. During this time, our group had a mindset that the dataset was the
most important thing to get us started on building our model, which we, later on, realized that it
was not necessary. Prior to that realization, Naima researched specific pre-existing datasets and
came across a specific recipe-based dataset from Kaggle. It seemed to be a well-rounded dataset
at the time, as it included all the ingredient jargon that we thought was required for our predictive
model. However, the dataset had over two million entries that Orion initiated to condense and

3

Naima tried to preprocess a bit further but it was still too vast for the model that we wanted to
create.

At this point, our model was still in the testing stages so Orion reviewed the data and tried to find
any improvements he could make. Towards the middle of the summer session, however, with the
acceptance of API usage, our team pivoted to use more APIs to lighten the load. Although this
was a setback, he was still able to utilize the knowledge he gained from processing the first
dataset. The API we decided to use to replace our dataset was the “Spoonacular” API which had
several useful endpoints and many optional parameters for API calls. He focused on the complex
search endpoint which had many useful parameters such as a plain English search query and an
option for included ingredients as well as the analyzed instructions endpoint which took in a
unique ID related to a recipe and returned an array of steps. This API combined many of the
features that he wanted to implement and combined them into a single API. After calling the
complex search API endpoint, he extracted the ID related to each recipe in the response and
passed it to the analyzed instructions endpoint, looping through the response to get all the steps
for that recipe. Orion made it so the number of recipes returned was variable so that we could
test the models’ performance with different sizes as well as varying datasets. He then
incorporated these calls into our front-end because he figured it would be more organized to get
user input, convert it into usable data, and feed it into our model.

━━━━━━━━━ LSTM MODEL ━━━━━━━━━

After deciding that none of the datasets including the APIs that deploy dataset values were
suitable, Panchita and Naima decided to build the predictive model using a single recipe online
with just the steps and made it into a text file so that we could just use it temporarily for our first
trial run and to get a sense if any results are deliverable. We briefly pre-processed the small
dataset where we used the nltk library that is used to tokenize the sentences into separate words.
After that, the built-in maketrans, split(), lower(), and string.punctuation from Python made
quick work of the preprocessing. The separated words were mapped to strings, split by
whitespace, punctuation was removed, and all words were lowercase.

TOKENIZING

Initially, we wanted to form an algorithm without the use of any libraries; however, we were
running into too many errors to debug. Without the use of a library, we nearly had to write all of
the functions on our own which took too much time. So using what Naima learned from her
previous research, she utilized the same logic with this dataset using Keras libraries. The specific
methodology she used was implementing the Keras Tokenizer function to tokenize each word
character, which basically separates each word individually. Then we implemented the
fit_on_text tokenizer class function to update the vocabulary index where we had to use the
pickle library, to save the updated tokenized file. We also had to include the text_to_sequences
and word_index from the Keras Library to convert the text to a sequence of integers and
incrementally account for the token IDs. We, later on, classified our independent and dependent
values, appended them, then converted them into array and class vectors to construct the binary
class matrix.

4

BUILDING LSTM MODEL LAYERS

There are three types of models in Tensorflow: the sequential model, the functional model, and a
customizable model. For our purposes, we decided on the sequential model because the layers in
our data set did not contain multiple inputs and outputs but rather a single input and output
tensor. As for the layers, there are different categories of layers that can be built upon each other:
the dense layer, the LSTM layer, and the embedding layer. Each layer has a different function --
the dense layer is the most common layer and it is a deeply connected neural network. Preceding
the dense layer is the LSTM layer which learns long-term dependencies between the time steps
in the time series and sequence data. Lastly, the embedding layer helps to convert each word into
a fixed vector of defined size. This helps to represent the words in a better way with reduced
dimensions. Altogether, these layers will aid the information through flow states, where it can
selectively remember and forget certain words and aid in improving our future predictions.

TRAINING THE MODEL

After building the layers of our model, we then focused on training it. The methodology we used
to train our data was saving the model file using the Keras library for the model checkpoint. We
also compiled the model by passing it through the loss and optimizer function where our choice
of optimizer was important to determine as it would affect the loss reduction rate and also
determined how quickly we would get results. We decided to go with the Adam optimizer
because it updated the data iteratively based on the training data. For fitting the model, we passed
over the independent and dependent variables over an epoch size and batch size determined by
the user. The results we got from the epochs reflected the full pass over our training dataset. The
epochs indicated the number of iterations over the input and output values of the text. When one
epoch ends or finishes, our model runs the training data through all the nodes in the network and
updates the optimal loss value. The loss value is the mean squared error for regression and the
log loss for classification, which we intended to minimize during the course of training our
model because the lower our loss was, the more accurate our predictions would be. If there was a
case within the course of running through our epochs where it resulted in a higher loss value than
the previous epoch result then it will call back the previous best model (seen in our script as
“predicting_next.h5”) and forget the unimproved one and start from there again to continue
training our model towards more accuracy. We also implemented how long it takes for each
epoch to iterate over the course of completion.

PREDICTION FOR THE MODEL

After the model and tokenizer are loaded in and opened, the model is ready for the prediction
stage. However, we must first obtain the words the user wants to be for the basis of the next word
prediction. The user is asked to input after how many words they would want the prediction to
occur. This is crucial to the predictive algorithm because it determines the number of words the
function should take into consideration. For example, if the user wants the sixth word to be the
prediction and enters 15 words as the cooking step input, it will only take into account the last
five words of the input. After the step is entered, it is split by whitespace which allows the phrase
to become individual words. The predictive model is then called on with the three parameters:

5

the model (the “predicting_next.h5” file), the tokenizer, and the words that would be inputted by
the user to set up the prediction. Starting from the first position of the words, the word is
tokenized and transformed from text to a series of sequences. Then, the beginning of the
sequence is padded to guarantee that all sequences are of equivalent length, along with a
maximum size being set to the number of words that the user initially had inputted into the
program. We then used the model from earlier that had gone through the process of being fitted
and trained for this moment: to make a prediction. The indices from the maximum value of the
specified axis are found and then returned. The reasoning for this is that the highest matching
value of the axis is the highest likelihood to be the next predicted word. The index position from
the dictionary that correlates with the word of that index from the dataset is then found and
tokenized. This is the next predicted word. The words that were initially input by the user are
then printed out with the predicted word.

━━━━━━━━ NODE JS MODEL ━━━━━━━━

BUILDING THE ML MODEL

Processing data: The Data file should not have any punctuations. During the scrapping stage the
data is removed of all punctuations and redundant white spaces. So the primary data is just a
sequence of words.

We read the sequence of words from the data file and convert it into a list of words in python.
The tokenizer class helps us convert the words into number. It maps each distinct words to a
distinct number. We will later feed these numbers to the AI model and use it predict the next
word. That’s why we need to save the mapping (the tokenizer object) locally.

Buiding the model: Next we need to build the training data set. We take two consecutive word as
input and the third word as the result. We will first use the tokenizer to convert our whole list of
words (“data”) into numbers that we mapped earlier. Then from this list of numbers we take
every 2 number to the list X and the third number to list Y.

The list Y , which represent the output for our input X has to be converted into a binary matrix to
work with our model. so if the Y was [1,3] and we had only 4 distinct word in our data set then it
would be converted into- [[0,1,0,0],[0,0,0,1]] matrix.

The function to_categorical() performs this task. The input and output data building process is
illustrated below:-

DATA: this is a cat and this is a dog
converted to number: 0 1 2 3 4 0 1 2 5

X = [[0,1], [1,2], [2,3], [3,4], [4,0], [0,1], [1,2]]
Y =[2 , 3 , 4, , 0 , 1 , 2 , 5]

Then Y would be converted into categorical matrix.

6

Then we build a sequential model in keras. We add multiple layers one by one in our model. The
first layer is the Embedding layer.This layer is used to do the task of word embedding. In an
embedding, words are represented by dense vectors where a vector represents the projection of
the word into a continuous vector space.The position of a word within the vector space is learned
from text and is based on the words that surround the word when it is used.

We added a LSTM layer to our architecture. It has 1000 units, of dimensionality of the output
space and we made sure that it return the sequences as true. This is to ensure that we can pass it
through another LSTM layer. For the next LSTM layer, we also pass it through another 1000
units but we don’t need to specify return sequence as it is false by default. We will pass this
through a hidden layer with 1000 node units using the dense layer function with relu set as the
activation. The rectified linear activation (“relu”)function is a simple calculation that returns the
value provided as input directly, or the value 0.0 if the input is 0.0 or less.

Finally, we pass it through an output layer with the specified vocab size and a softmax activation.
The softmax activation ensures that we receive a bunch of probabilities for the outputs equal to
the vocabulary size. So it will output a vector of floating point number for all the distinct words
in our dataset. That number represents the probability of a word as our prediction. Next we build
and save the model.

Predicting the next word: We take 2 words as input and remove all redundant whitespaces. Then
using the saved tokenizer from the building phase we convert the words into number
(sequences). If we feed this input to our trained model it will produce a vector of length
vocabulary_size of the tokenizer. From this vector of probabilities we take the highest 5
probabilities and check their index number. The index number is actually the number
representation of the words. So using the index and tokenizer we get the actual words. The model
can not produce a word that it has not seen before.

BUILDING THE APIs

We used node-express to build our APIs. The APIs use nodeJs’ built in “child_process” module
to create a new process and run the python predictor program . The spawn() method runs the
prediction python script and communicates with it via stdout and stdin. When the predictor.py
first loads the trained model from disk. This takes approximately 1 hour minimum. The API
function only creates the predictor.py process once in its lifetime. So when the first call to the
prediction API is made it takes a while to get the prediction because the scripts takes time to load
the model.

Once the model is loaded the next prediction APIs can use the already created process to get the
prediction. We also have a queue system of the requests. When the requests comes we queue
them in an array because the communication between the predictor process and nodeJS is
asynchronous.

Using this API we can create a frontend that predicts the next words as we type. Also, we have a
scrapper API that adds data to our data bank from a given URL.

7

RESULTS

We were successful in producing two predictive text models with accurate results, one in
Javascript and Python and the other as a Python script. The Python script allows the user to input
the number of words the prediction should be, the size of the LSTM layer, the number of epochs,
and batch size. The user can experiment to see what inputs perform the strongest due to the
accuracy of the prediction returned. This is also largely dependent on the parameters that are
inputted by the user and the size of the dataset. When a larger dataset of around 608 words with
ten recipes from different websites was used, the prediction was less accurate due to the wider
variety of vocabulary and words. When a small dataset of one recipe with around 30 words was
put through, the predictive word returned was almost completely accurate. Thus, with the
appropriate parameters of epochs, batch size, and LSTM size, a more accurate prediction was
able to be produced. If enough epochs were run with an ideal batch size, the loss reduction would
be greater and result in a significantly smaller loss rate. This results in a significantly more
accurate result for the word that is returned.

CONCLUSION

The subjects of Natural Language Processing and Recurrent Neural Networks were fascinating
yet challenging for us to apply to our predictive text model. Overall, our scope on this project
was too open-ended, as we had to consider the best options to use with our models and weigh
how and where the dataset would be incorporated in our project, depending on the dimensions
we wanted the dataset to be. This, along with the timespan of the course, resulted in more general
research rather than specific implementations that we could have tried out and applied to our
project. Throughout the twelve weeks, we encountered many hurdles, learned new information,
and resulted in two successful models.

FUTURE WORK

Orion found a lot of the findings relating to data science to be really interesting as previously
when researching machine learning and artificial intelligence, it was something he either
overlooked or paid no attention to at all. Throughout the length of this project, he was able to
pre-process and sanitize data as well as skew the data for more desirable results. Normally
skewing data is frowned upon so working with data in this context was a very new and fun
perspective.

For future work, Naima would still like to work on implementing the LSTM algorithm without
the help of libraries to gain a better scope of how the algorithm is constructed without them. She
learned an immense amount throughout the timeline of our project on Machine Learning and
Artificial Intelligence and how complicated it is to configure into a functioning product. Panchita
also would like to continue with the backend by allowing the user to type in the name of the file
that will serve as the user’s data set. She’d also like to connect the frontend and backend together
using Django. The front-end could be improved as well with an image for recipes, a title, and an

8

ordering system to add your recipes in one place. One final aspect she wanted to improve on was
to add to the preprocessing in order to return precise results, since the predictive model may take
fractions or other words that pertained to a specific recipe into consideration. With the frontend
and backend connected along with some tweaks made, an interactive predictive model will be
fully developed.

9

Bibliography

Alec Radford, Jeff Wu, Rewon Child, David Luan,Dario Amodei, and Ilya Sutskever. 2019.

Languagemodels are unsupervised multitask learners.

Atienza, Rowel. Advanced Deep Learning with Keras: Apply Deep Learning Techniques,
Autoencoders, GANs, Variational Autoencoders, Deep Reinforcement Learning, Policy
Gradients, and More. Packt Publishing, 2018.

Bie ́n Michał. “RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation.”

Https://Www.kaggle.com/Datasets/Paultimothymooney/Recipenlg?Select=RecipeNLG_p
aper.Pdf

Faizan Khalid, Muhammad. Text Prediction Using Machine Learning. Linköping University,

2021, https://www.diva-portal.org/smash/get/diva2:1632760/FULLTEXT02.

“Getting Started | Create React App.” Create React App,

https://create-react-app.dev/docs/getting-started. Accessed 17 Aug. 2022.

“Keras API reference.” Keras, https://keras.io/api/

“Keras Tokenizer Tutorial with Examples for Beginners - MLK - Machine Learning

Knowledge.” MLK - Machine Learning Knowledge, 1 Jan. 2021,
https://machinelearningknowledge.ai/keras-tokenizer-tutorial-with-examples-for-fit_on_t
exts-texts_to_sequences-texts_to_matrix-sequences_to_matrix/.

“Keras-Preprocessing/Text.Py at Master · Keras-Team/Keras-Preprocessing · GitHub.” GitHub,
https://github.com/keras-team/keras-preprocessing/blob/master/keras_preprocessing/text.
py. Accessed 17 Aug. 2022.

“Overview.” Tensorflow, https://www.tensorflow.org/text

“Text Generation with an RNN | TensorFlow.” TensorFlow,

https://www.tensorflow.org/text/tutorials/text_generation. Accessed 17 Aug. 2022.

“Tf.Keras.Utils.To_categorical | TensorFlow Core v2.9.1.” TensorFlow,

https://www.tensorflow.org/api_docs/python/tf/keras/utils/to_categorical. Accessed 17
Aug. 2022.

“Writing Custom Datasets | TensorFlow Datasets.” TensorFlow,

https://www.tensorflow.org/datasets/add_dataset. Accessed 17 Aug. 2022.

“Using the State Hook.” Reactjs, https://reactjs.org/docs/hooks-state.html.

10

