

Getting up to Speed
Some useful links for learning all the terminology that we might be using:

Sampling
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Audio_concepts (up until “Psychoacoustics”)

Linux’s ALSA Architecture

https://jackaudio.org/faq/multiple_devices.html (The method we have tried was number 3 on this list. Currently I am
looking into trying the first option, since it is supposed to handle drift correction for us)
https://www.volkerschatz.com/noise/alsa.html (up until “Advanced configuration file features”)
https://alsa.opensrc.org/Udev#Identify_two_identical_audio_devices (NOTE: I have rewritten this page specifically
for our hardware. Scroll down to read “Mapping Identical Sound Cards”
https://www.alsa-project.org/main/index.php/Asoundrc#Virtual_multi_channel_devices (Read “Virtual multi channel
devices” if you would like to understand how I tied all of the sound cards together through ALSA. This is method
number 3 listed on the jackaudio page)

https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Audio_concepts
https://jackaudio.org/faq/multiple_devices.html
https://www.volkerschatz.com/noise/alsa.html
https://alsa.opensrc.org/Udev#Identify_two_identical_audio_devices
https://www.alsa-project.org/main/index.php/Asoundrc#Virtual_multi_channel_devices

RPi Storage
The free storage space on the RPi can be checked with the command,

df -Bh

Then, the following table (with equations) can be used to calculate the number of days
of recordings that the pi can record. Note that this assumes 4 microphones are used,
each recording at 48000 Hz with a bit depth of 16.

USER INPUTS OUTPUTS

Recording length [s] 60 Storage per hour [bytes] 46080000

Recordings per knock cycle 3 Storage per hour [GB] 0.04608

Number of microphones 4 Max deployment [hours] 434.0277778

Average interknock time [hour] 1.5 Max deployment [days] 18.08449074

RPi storage [GB] 20

Common Commands

Linux:
File management commands

Alsa:

aplay -L

This command lists all of the current alsa devices. The non-indented text is the name of
an audio device, and the indented text is information about that device.

aplay [path to audio file]

This command plays the content of an audio file through an output device (such as
speakers you plug in). There is a flag for if you want to manually set the output device,
but by default the pi will use the headphone jack (which we usually plug speakers into).

arecord -f S16_LE -r 48000 -c 1 -d [number of seconds to record] -D [alsa
device name] [recording name]

This command will record audio for a given duration from a given audio card. The alsa
device name must match the naming of cards given by the aplay -L command. The -f,
-r, and -c flags specify format, sampling rate, and channels respectively. Our current
microphones require the flags to be the values shown above.

Jack:

jack_lsp

This command lists all known ports associated with a JACK server.

jack_capture

This command runs a cli program for recording any audio signal from jack to audio
formats supported by the libsndfile library (wav, aiff, ogg, flac, wavex, au, etc.)

SSH:
To copy a file or folder from the pi to the local machine, use

scp [-r] pi@raspberrypi.local:/home/pi/[path to file or folder on pi]
/Users/[path to destination folder on local machine]

Where the flag -r is included if the path is to a folder.

https://www.codingninjas.com/studio/library/basic-file-management-commands-in-linux
https://alsa.opensrc.org/Aplay
https://alsa.opensrc.org/Aplay
https://alsa.opensrc.org/Arecord
https://manpages.ubuntu.com/manpages/focal/man1/jack_lsp.1.html
https://manpages.ubuntu.com/manpages/focal/man1/jack_capture.1.html

Screen
To open a new screen session for remote access:

screen

To list all active screen sessions:

screen -list

To rejoin a screen session:

screen -d -r [session #]

To leave a screen session after joining:

Ctrl + A + D

To kill a session:

screen -X -S [session # you want to kill] quit

To scroll through the terminal:

Ctrl + A + [and esc to exit

Mapping Identical Sound Cards
With identical sound cards, whenever one is plugged in it is assigned to a random
software port, which on the pi is accessible as “hw:?,?”. Whenever one is plugged in,
this mapping may change, meaning that there is no good way to identify and
distinguish between cards. Luckily, the cards can be mapped based on their hardware
port. Specific physical USB ports can be called upon, and as long as a card is always
plugged into a certain port, it will always be tied to that port and we can identify it.

To see the current mappings, handled by ALSA:

cat /proc/asound/cards
 4 [UA1A]: USB-Audio - EDIROL UA-1A
 Roland EDIROL UA-1A at usb-0000:00:13.2-6.3, full speed
 5 [UA1A_1]: USB-Audio - EDIROL UA-1A
 Roland EDIROL UA-1A at usb-0000:00:13.2-6.2, full speed

This is from a device with two identical sound cards plugged into it, labeled UA1A and
UA1A_1.

Run the udevadm tool to output information about devices that are being plugged in /
unplugged. Plug a USB sound card into the USB port you want to map. Find the
DEVPATH argument:

udevadm monitor --kernel --property --subsystem-match=sound
...
KERNEL[1305470077.926550] add /devices/pci0000:00/0000:00:13.2/usb2/2-6/2-6.3/2-6.3:1.0/sound/card4 (sound)
UDEV_LOG=3
ACTION=add
DEVPATH=/devices/pci0000:00/0000:00:13.2/usb2/2-6/2-6.3/2-6.3:1.0/sound/card4
SUBSYSTEM=sound
SEQNUM=1434

KERNEL[1305470077.958511] add /devices/pci0000:00/0000:00:13.2/usb2/2-6/2-6.3/2-6.3:1.0/sound/card4/pcmC4D0p
(sound)
...
KERNEL[1305470078.005760] add /devices/pci0000:00/0000:00:13.2/usb2/2-6/2-6.3/2-6.3:1.0/sound/card4/pcmC4D0c
(sound)
...
KERNEL[1305470078.055299] add /devices/pci0000:00/0000:00:13.2/usb2/2-6/2-6.3/2-6.3:1.0/sound/card4/controlC4
(sound)
...
KERNEL[1305470078.104122] change /devices/pci0000:00/0000:00:13.2/usb2/2-6/2-6.3/2-6.3:1.0/sound/card4 (sound)
...
^C

https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture

Now, create a file like /etc/udev/rules.d/85-my-usb-audio.rules and use the following
contents (this will require root permission):

SUBSYSTEM!="sound", GOTO="my_usb_audio_end"
ACTION!="add", GOTO="my_usb_audio_end"

DEVPATH=="/devices/pci0000:00/0000:00:13.2/usb2/2-6/2-6.3/2-6.3:1.0/sound/card
?", ATTR{id}="MY_AUDIO_CARD_1"

LABEL="my_usb_audio_end"

But replace the DEVPATH with the one gathered earlier from udevadm. Like done
above, replace the card number with a “?”. Replace the ATTR{id} with a name of your
choice.

Unplug and plug the sound card back into its original port, and udev should take care
of the rest:

cat /proc/asound/cards
 4 [MY_AUDIO_CARD_1]: USB-Audio - EDIROL UA-1A
 Roland EDIROL UA-1A at usb-0000:00:13.2-6.3, full speed

Use the command aplay -L to check the audio devices currently plugged in. The
format for calling upon a card to record looks like:

arecord -f S16_LE -r 48000 -c 1 -d 5 -D front:CARD=MY_AUDIO_CARD_1, DEV=0
testRecording.wav

Where the flags being used are for format, sample rate, number of channels, duration
of recording, and device, respectively. These are the flags I have found that enable the
Fifine audio cards we have to work properly.

https://en.wikipedia.org/wiki/Udev

alsa_in

It turns out that using a USB splitter with audio cards is problematic. When doing this
bits of data are lost and the resulting audio is distorted, and it turns out it makes the
audio higher pitched and garbled. We need to check if using a proper USB hub would
work, or if we need to be using discrete USB ports.
Update 11/30: after using a proper usb hub (Anker 4-Port Ultra Slim), it seems like
everything is working. However, not only is jack working for capture, but alsa is now
working too. The audio recorded is good and is synced well. We need to do new
metronome tests to determine how well each solution works.

Using discrete ports, I was able to get jack to record from multiple devices at once
using the alsa_in and jack_capture interfaces:

alsa_in -d "hw:CARD=Device,DEV=0" -q 0 -r 48000 -c 1 -v

One terminal needed for each device to execute this command

jack_capture --port "*"

In another terminal

Note that I have not tested using udev to rename cards, and then feeding the new
name into alsa_in. This should be tested to make sure there are no issues with sample
rate or format.

We also need to test the auto-syncing capabilities of alsa_in with a long-term test, such
as another metronome test.

https://www.newegg.com/monoprice-n-a-usb-lightning-cables-black/p/181-007D-000B7

Current Status of the pi
OS

-​ Currently I am running a new distribution on the pi that runs headless. We are
using ssh to access the pi. We still have the old SD card that had the GUI OS on
it, and it still has all of the work we did on it.

-​ Use of the pi’s serial port is disabled through two measures - first, with the
following command:

-​
-​

As well as by removing the following text from the beginning of
/boot/cmdline.txt:

​ This was done to allow communication with an accelerometer.

On the pi 3, the following lines must be added to /boot/config.txt for serial
communication to work properly:

GPIO

-​ There are easy commands which can be run from the command line to change
the state of GPIO pins. With the setup shown below (purple signal, black
ground) the commands would be

​ where dl would drive the pin to low, and dh would drive the pin high.

sudo systemctl disable serial-getty@ttyAMA0.service

console=serial0,115200

dtoverlay=pi3-disable-bt

enable_uart=1

 raspi-gpio set 21 op
 raspi-gpio set 21 [dl/dh]

https://embeddedcomputing.com/technology/processing/interface-io/quick-start-raspberry-pi-gpio-terminal-interface

Auto Record Script
-​ As of 3/5/24, the script works. We can change how long we want each sample

to be and the interval between samples we take. By editing the /etc/rc.local
bash script, we can set the pi to start recording on boot. There is a line
commented out currently that we can uncomment to get the recording to work.
An important thing to note is that inside the script, there is an absolute path to
the location for our recordings to be stored. If we ever want to change this we
will need to edit the script.

Alsa
-​ Currently there are udev rules to assign the names ‘HUB_MIC_1,’ ‘HUB_MIC_2’,

‘HUB_MIC_3’ and ‘HUB_MIC_4’ to 4 mics plugged into the same USB hub.
These rules work for when the USB hub is plugged into the top right USB port.

Jack

-​ Currently I am trying to dive into how ports work with jack. Stay tuned for now

RPi Storage Capacity

-​ Each microphone is recording 16 bit samples and 48000 samples per second
-​ With 4 microphones recording simultaneously, we have a bit rate of 3072

kbit/s
-​ With ~20Gb of free memory we can only record around 14 hours of sound

-​ Working on using hard drive adapter as external memory
-​ 3/7 added a line to /etc/fstab to try and support automatically mounting

the hdd adapter to /media/hdd, had to use the ‘nowait’ option so that
booting continues in the absence of the drive

-​ The UUID of each hard drive is different, which means that /etc/fstab
must be edited accordingly

-​ To check the UUID of a hard drive, use

lsblk -fs

