Public: etcd livez and readyz probes

https://tinyurl.com/livez-readyz-design-doc

Visibility: Public

Status: Implementing ~

Authors: chaochn47, siyuanfoundation

Issue: https://github.com/etcd-io/etcd/issues/16007

Tracking spreadsheet: & Public: etcd livez/readyz PR tracking

Last updated: Sep 22,2023

Github handle R Review Status

ole
serathius

ahrtr Approver ~ lgtm

logicalhan (api-machinery) lgtm

lavacat Reviewer -~ lgtm

wenjiaswe Reviewer ~ lgtm

<add your name>

Background

The current etcd implementation has a single /health probe that is used to determine both the
liveness and readiness of a node.

What does it do?

e check if local node has leader (detects network partition)

e check if local node has any alarm activated

e check if local node is capable of serving a linearizable read request within hard-coded
timeout (5s + 2 * election-timeout) (default 7s)

Problem

https://docs.google.com/spreadsheets/d/1ItZkRcnwsre4HETZ9kpkVLnLSMuLVKLivvjhPBk_3dA/edit#gid=0
https://tinyurl.com/livez-readyz-design-doc
https://github.com/etcd-io/etcd/issues/16007
https://github.com/etcd-io/etcd/blob/main/server/etcdserver/api/etcdhttp/health.go#L48-L58

Current etcd health probe is not Kubernetes APl compliant. It does not differentiate whether
etcd needs to restart or stop taking traffic. etcd liveness and readiness probe configured with
kubeadm using the same health probe is insufficient.

Proposal

Add two separate probes

1. Liveness: the liveness probe would check that the local individual node is up and

running, or else restart the node.
2. Readiness: the readiness probe would check that the cluster is ready to serve traffic.

The existing health probe stays unchanged except bug fixes.

Tenet

Adding the above two probes should be backward compatible.

Definition for livez and readyz

/livez

/readyz

Definition

Refer to k8s, properly reflect the
fact whether the process is alive or
not hence if it needs a restart.

Being alive means all the internal
processes and resources are running
properly, regardless of external
dependencies of the peers or clients.

Refer to k8s, properly reflect the
fact that process is ready to serve
traffic

Being ready means the process is able
to serve as a good access point to
perform strongly consistent KV and
watch operations on the underlying
distributed key value store.

It is an indicator suggesting the client
should not send KV and watch
requests to this server, but it does not
mean the server is actively blocking
the requests.

Readiness is not an indicator of
performance. Slow response is not
covered by readiness.

Readiness does not cover admin
functions. Administrators should
connect directly to members to do

https://github.com/etcd-io/etcd/blob/main/server/etcdserver/api/etcdhttp/health.go#L48-L58
https://kubernetes.io/docs/reference/using-api/health-checks/
https://github.com/kubernetes/kubernetes/blob/master/cmd/kubeadm/app/phases/etcd/local.go#L225-L226
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

maintenance.

Expected
behavior

1. Return true if defrag is active

2. Catch deadlock in the raft loop

3. Catch deadlock in writing to
and reading from db

—_

Return false if defrag is active

2. Return false if corruption alarm
is activated

3. Return false if etcd does not
have leader

4. Validate linearizable read can

be processed

Examples
of no
failures

Data corruption: restarting the server
alone would not make it better.

Out of quota: the server is still able to
take read/delete requests, and still
able forward write requests to the
leader to write successfully in the
cluster.

Linearizable read timeout: the timeout
could be due to multiple different
reasons such as slow follower,
readiness does not cover
performance issues.

Consumer

Supervisor running close to the
process (like Kubelet in Kubernetes)
that can restart the process.

Supervisor running close to the
process (like Kubelet in Kubernetes)
that sets the ready status.

L7 Loadbalancer running as gateway

Client-side loadbalancer (like grpc
client, proposal)

Expected
execution

Every 5 seconds, after 3 failures the
process is restarted.

Every 1 second, after X failure traffic is
no longer sent to the process.

API Design

There will be 2 main http endpoints installed on “listen-client-http-urls” if the user opts in and
falls back to default on “listen-client-urls’.

1. llivez

2. /readyz

The APl would return OK if all of the checks within that check group listed in “Desired behavior”

are OK.

https://github.com/etcd-io/etcd/blob/aa97484166d2b3fb6afeb4390344e68b02afb566/server/etcdserver/raft.go#L170-L328
https://docs.google.com/document/u/0/d/1x7guECGQI1wdAh2fBzPBRTva-sqGGLR8Bp0lrrmmDk0/edit

The API also supports excluding specific checks from that health check group with query
parameters. For example

curl -k 'https://localhost:2379/readyz?exclude=defragmentation’
curl -k "https://localhost:2379/1ivez?exclude=serializable read'

Each individual health check exposes an HTTP endpoint and can be checked individually. The
schema for the individual health checks is /livez/<healthcheck-name> or
/readyz/<healthcheck-name>.

curl -k 'https://localhost:2379/readyz/defragmentation’

Failure Modes and Detection Methods

Below are the process execution paths for different critical functions of the server:

Intemal depandancy

Exiernal dependency

Serializable Read

Range Request MVCC W

Ve — T T Ty
_ Raft Leader }
S

Linearializable Read ~ /4 Raft Loop |
| linearizableReadLoop),’r P -
/L
| Gat Readindex —
Range Request 1 MVCC

Wait for Applsdindex L

by bk ugs vl ——

Readindax

Watch

syncWatchersLoop

Watcher

.

"

WVCC

{run every 100ms) o
. »

Mabch Keys o
Wiatchers arid Send

Write
.J/. -
S

Propose

White Request

Py

" Raft Loop

m/ Commit & Apply

e e -\'--._

]
D

-

—

Raft Leader

-

/g’ WAL Storage

Siep Local Raft

A, s ’}/
%74;}/

Raft Proposal fj
I:l\l'\.‘\"-\.__
__5:}

A —
rd ll"--.__ _
Handia Raady Stata LéL

MWCC

For each function, we are listing some potential failure modes for it below:

Function Potential Failure Modes

Serializable | disk read failure, data corruption alarm, defrag

Read

Linearizable | disk read failure, data corruption alarm, linearizable read loop

Read deadlock, no raft leader, raft loop deadlock, no raft quorum, defrag

Watch disk read failure, data corruption alarm, watch loop deadlock,
defrag

Write raft loop deadlock, stalled disk write, no raft quorum, defrag

*(failure to write to stable or memory storage would result in FATAL
or panic already)

In this initial iteration of the probes, we will only focus on the functions of Serializable Read and
Linearizable Read. The probing of Watch and Write would merit their own dedicated discussions
in the future.

Detection

The table below shows the checks we plan to implement to detect the aforementioned failure
modes. This list just reflects the initial implementation, and is not supposed to be exhaustive.
We will make the checks to be easily extensible for more checks to be added in the future.

Health Check Health Check | Related Failure | Health Check Method*
Name Group Modes
data_corruption | /readyz data corruption | check for active alarm of
alarm AlarmType CORRUPT.
read_index** /readyz no raft leader, check if the server can get
raft loop Readlndex.
deadlock
ogress toopdeadiock; | make-a-dummyproposatinthe
lod diskows heatth-cheek—eheekit .
‘ 4 e
compared-with-thetasthealth-cheek
serializable read | /readyz mvcc read check if a serializable range (limit 1)
llivez failure request returns error, precondition
on: defrag is not active.

*We expect to execute the readyz check every 1s, and livez check every 5s. Any health check
within that group should be able to finish below that time scale under normal circumstances.

**Current health check checks if a linearizable read could finish. We prefer just checking the
read index instead of doing a full linearizable read because we expect to execute the ready
check every 1s, and a full linearizable read could timeout while the local server is trying to catch
up with the applied entries, which is not covered under readiness.

Implementation Plan

The following steps would be required to implement this change:

1. Add two new probes to etcd: a liveness probe and a readiness probe.

2. Add http handlers that could detect the above failure modes.

3. Integration and E2E tests the changes with failure mode simulation to ensure that
probers work as expected.

4.
5.

Back port the changes to supported versions (3.4 and 3.5).
Update the etcd documentation to reflect the changes.

Future Discussions/Improvements

There are several remaining topics that are worth more discussion or more work in the future to
improve livez/readyz:

1.

2.
3.
4.

Should readyz check include checking writes?

Should readyz check cover performance issues?

What checks can we do to make sure watch is working properly?

In order to catch deadlock in raft loop in livez prober, is there a way to do this without
involving external dependencies in multi-node scenario?

Reference

5.

6.

ahrtr’'s B etcd livez and readyz

Public Design Doc: etcd livez and readyz probes
Monitoring disk stall in Go

a. Design Doc: Terminate etcd on stalled storage writes

b. Proof of Concept: https://qithub.com/etcd-io/etcd/pull/15440
Deadlocks in Go [The strategy is to prevent this from happening, to enable monitoring,
you have to turn on profiling which may has a performance degradation]

a. https://yourbasic.org/golang/detect-deadlock/

b. https://www.craig-wood.com/nick/articles/deadlocks-in-go/

c. Go deadlock is a practical tool for finding violations of total lock ordering and has

been used to find deadlocks in Cockroach DB for example.

i. It comes up with error messages that look rather like those from the race
detector, but unlike the race detector it detects potential deadlocks before
they happen so you can run this on your code which hasn’t deadlocked
yet.

ii. Go deadlock only works for Mutex deadlocks, not channel deadlocks.
This is probably 90% of the deadlocks so it is an excellent start.

iii. When | want to use go deadlock with rclone | run this little script. It
searches and replaces all the sync Mutex and sync RWMutex with their
deadlock detector versions. Unfortunately | find you can’t leave Go
deadlock in production code as it has too much of a performance impact.

iv. https://github.com/sasha-s/go-deadlock/issues/25
https://k rnetes.j task nfiqure- -container/configure-liven

artup-probes/#configure-probes
https://kubernetes.io/docs/reference/using-api/health-checks/

https://docs.google.com/document/d/1nM1MqZQM114NrNPi8YYIM3GhtXN8zyJ3LpM5gX74jl8/edit?usp=sharing
https://docs.google.com/document/d/1109lUxD326yRwmMVX-tkJMpm8pTbOw7MD1XsSIo37MU/
https://docs.google.com/document/d/1U9hAcZQp3Y36q_JFiw2VBJXVAo2dK2a-8Rsbqv3GgDo/edit
https://github.com/etcd-io/etcd/pull/15440
https://yourbasic.org/golang/detect-deadlock/
https://www.craig-wood.com/nick/articles/deadlocks-in-go/
https://github.com/sasha-s/go-deadlock
https://github.com/sasha-s/go-deadlock/issues/25
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes

	Public: etcd livez and readyz probes
	Background
	Problem
	Proposal
	Tenet
	Definition for livez and readyz
	API Design
	Failure Modes and Detection Methods
	Detection

	Implementation Plan
	Future Discussions/Improvements
	Reference

