
Department of Computer Science & Engineering

Practical File

Subject: Data Analysis And Algorithims
Lab (BTCS405-18)

B.Tech – 4th Semester

[Batch 2019 – 23]

Chandigarh Group of Colleges
College of Engineering, Landran, Mohali-140307

Submitted To : Submitted By :
Mr. Kapil Mehta

INDEX

Sr. No. Title Pg. No.
i Objective of the Lab 3
ii List of Experiments 4
1. Code and analyze to compute the greatest common divisor (GCD) of

two numbers
5-6

2. Code and analyze to find the median element in an array of integers. 7-8
3. Code and analyze to find the majority element in an array of integers. 9-11
4. Code and analyze to sort an array of integers using Heap sort. 12-14
5. Code and analyze to sort an array of integers using Merge sort. 15-17
6. Code and analyze to sort an array of integers using Quick sort. 18-20
7. Code and analyze to find the edit distance between two character

strings using dynamic programming.
21-23

8. Code and analyze to find an optimal solution to matrix chain
multiplication using dynamic programming.

24-27

9. Code and analyze to do a depth first search (DFS) on an undirected
graph. Implementing an application of DFS such as (i) to find the
topological sort of a directed acyclic graph.

28-32

10. Code and analyze to do a breadth first search (BFS) on an undirected
graph. Implementing an application of BFS such as (i) to find
connected components of an undirected graph.

33-37

11. Code and analyze to find shortest paths in a graph with positive edge
weights using Dijkstra’s algorithm.

38-39

12. Code and analyze to find shortest paths in a graph with arbitrary edge
weights using Bellman Ford algorithm.

40-42

13. Code and analyze to find the minimum spanning tree in a weighted,
undirected graph.

43-47

14. Code and analyze to find all occurrences of a pattern P in a given string
S.

48-50

15. Code and analyze to multiply two large integers using Karatsuba
algorithm.

51-53

16. Code and analyze to compute the convex hull of a set of points in the
plane.

54-57

17. Code and analyze to multiply two polynomials using Fast Fourier
Transform.

58-60

Experiments Beyond Syllabus
18. Write a program to convert the infix expression into postfix expression. 62-67
19. Write a program to evaluate postfix expression using stack. 68-69

LIST OF EXPERIMENTS

1. Code and analyze to compute the greatest common divisor (GCD) of two numbers
2. Code and analyze to find the median element in an array of integers.
3. Code and analyze to find the majority element in an array of integers.
4. Code and analyze to sort an array of integers using Heap sort.
5. Code and analyze to sort an array of integers using Merge sort.
6. Code and analyze to sort an array of integers using Quick sort.

7. Code and analyze to find the edit distance between two character strings using dynamic
programming.

8. Code and analyze to find an optimal solution to matrix chain multiplication using dynamic
programming.

9. Code and analyze to do a depth first search (DFS) on an undirected graph. Implementing an
application of DFS such as (i) to find the topological sort of a directed acyclic graph.

10. Code and analyze to do a breadth first search (BFS) on an undirected graph. Implementing
an application of BFS such as (i) to find connected components of an undirected graph.

11. Code and analyze to find shortest paths in a graph with positive edge weights using
Dijkstra’s algorithm.

12. Code and analyze to find shortest paths in a graph with arbitrary edge weights using
Bellman Ford algorithm.

13. Code and analyze to find the minimum spanning tree in a weighted, undirected graph.

14. Code and analyze to find all occurrences of a pattern P in a given string S.

15. Code and analyze to multiply two large integers using Karatsuba algorithm.

16. Code and analyze to compute the convex hull of a set of points in the plane.

17. Code and analyze to multiply two polynomials using Fast Fourier Transform.

Experiments Beyond Syllabus
18. Write a program to convert the infix expression into postfix expression.

19. Write a program to evaluate postfix expression using stack.

EXPERIMENT NO. 1

Aim:Write a program to compute the greatest common divisor (GCD) of two numbers

Objective: To compute the greatest common divisor (GCD) of two numbers.

Procedure:
In mathematics, the Euclidean algorithm, or Euclid’s algorithm, is a method for computing the
greatest common divisor (GCD) of two (usually positive) integers, also known as the greatest
common factor (GCF) or highest common factor (HCF). It is named after the Greek
mathematician Euclid. The GCD of two positive integers is the largest integer that divides both
of them without leaving a remainder (the GCD of two integers in general is defined in a more
subtle way).

In its simplest form, Euclid’s algorithm starts with a pair of positive integers, and forms a new
pair that consists of the smaller number and the difference between the larger and smaller
numbers. The process repeats until the numbers in the pair are equal. That number then is the
greatest common divisor of the original pair of integers.

The main principle is that the GCD does not change if the smaller number is subtracted from the
larger number. For example, the GCD of 252 and 105 is exactly the GCD of 147 (= 252 – 105)
and 105. Since the larger of the two numbers is reduced, repeating this process gives
successively smaller numbers, so this repetition will necessarily stop sooner or later — when the
numbers are equal (if the process is attempted once more, one of the numbers will become 0).

Algorithm:

This can be done in following two ways:
Euclid’s algorithm

● Get m, n.
● If n=0, return the value of m as the answer and stop; otherwise, proceed to step 3.
● Divide m by n and assign the value of the remainder to r.
● Assign the value of n to m and the value of r to n. Go to step 2.

Consecutive Integer Checking Algorithm

● Assign the value of min (m, n) to t.
● Divide m by t. If the remainder of this division is 0, go to step 3; otherwise, go to step 4.

● Divide n by t. If the remainder of this division is 0, return the value of t as the answer
and stop; otherwise, go to step 4.

● Decrease the value of t by 1. Go to step 2.

Flowchart:

Fig 1.1

Outcome: - After performing this experiment, students will be able to tell what the GCD of two
numbers actually is, and how it can be calculated using recursion as a computer science problem.

EXPERIMENT NO. 2

Aim:Write a program to find the median element in an array of integers.

Objective: To compute the median element in an array of integers.

Algorithm:
Step1: Start
Step2: Take N input for DATA array
Step3: Print: ‘Sort the DATA array in ascending order’
Step4: Repeat for i := 1 to N by 1
Repeat for j := i + 1 to N by
1 If DATA[i] > DATA[j]
then: temp = DATA[i]
DATA[i] = DATA[j]
DATA[j] = temp
[End of If structure]
[End of inner loop]
[End of outer loop]
Step5: If N%2 ≠ 0
Median := (N +
1)/2
Print: ‘Median is Median.’
Else
P := N/2
Q := N/2 + 1
Median := (DATA[P] + DATA[Q])/2
Print: ‘Median is
Median.’ [End of If
structure] Step6: Stop

Flowchart:

Fig 2.1

Outcome: - After performing this experiment, students will be able to tell what the median of a
set of element is, and how it can be calculated.

EXPERIMENT NO. 3

Aim:Write a program to find the majority element in an array of integers.

Objective: To compute the majority element in an array of integers.

Procedure:

Given a large array of non-negative integer numbers, write a function which determines
whether or not there is a number that appears in the array more times than all other numbers
combined. If such element exists, function should return its value; otherwise, it should return
a negative value to indicate that there is no majority element in the array.

Example: Suppose that array consists of values 2, 6, 1, 2, 2, 4, 7, 2, 2, 2, 1, 2. Majority
element in this array is number 2, which appears seven times while all other values combined
occupy five places in the array.

Keywords: Array, searching, majority, vote.
Algorithm:
The majority element is the element that occurs more than half of the size of the array.

Algorithm below loops through each element and maintains a count of a[maj_index], If next element
is same then increments the count, if next element is not same then decrements the count, and if the
count reaches 0 then changes the maj_index to the current element and sets count to 1. First Phase
algorithm gives us a candidate element. In second phase we need to check if the candidate is really a
majority element.

Second phase is simple and can be easily done in O(n). We just need to check if count of the
candidate element is greater than n/2.

Moore’s Majority Algorithm:
c = particular candidate
Step 0: Initialize count to be zero
Step 1: Go through the vote
i. Check if the count is zero
if so then assign the c to this vote’s candidate and then set count=1
if not then check if this vote’s candidate is equal to c
if yes then set
count+=1 if no then set
count-=1
Step 2: Continue until the end
Step 3: For that c,Check once again by going through the votes if it is really the majority.

Function provided below returns -1 if there is no majority element otherwise that element.

int findMajorityElement(int * arr, int size)
{

int count = 0, i, majorityElement;
for (i = 0 ; i < size ; i++)

{
if (count == 0) {

majorityElement = arr[i];
count = 1;

}
else

{
if(arr[i] == majorityElement)

count++;
else

count--;
}

}
count = 0;

for (i = 0; i < size; i++) {
if (arr[i] == majorityElement) {

count++;
}

if (count > size/2) {
return majorityElement;

}
else return -1;

}

Flowchart:

Fig 3.1

Outcome:- After performing this experiment, Students will be able to check whether an element
is the majority element or not in an array.

EXPERIMENT NO. 4

Aim:Write a program to Code and analyze to sort an array of integers using Heap sort.

Objective: To sort an array of integers using Heap sort.

Procedure

Heap Sort Algorithm

Heap Sort is one of the best sorting methods being in-place and with no quadratic worst-case
scenarios. Heap sort algorithm is divided into two basic parts:

● Creating a Heap of the unsorted list.

● Then a sorted array is created by repeatedly removing the largest/smallest element
from the heap, and inserting it into the array. The heap is reconstructed after each
removal.

Heap is a special tree-based data structure that satisfies the following special heap properties:

1. Shape Property: Heap data structure is always a Complete Binary Tree, which means
all levels of the tree are fully filled.

Heap Property: All nodes are either [greater than or equal to] or [less than or equal to] each of
its children. If the parent nodes are greater than their children, heap is called aMax-Heap, and if
the parent nodes are smaller than their child nodes, heap is calledMin-Heap.

Initially on receiving an unsorted list, the first step in heap sort is to create a Heap data structure
(Max-Heap or Min-Heap). Once heap is built, the first element of the Heap is either largest or
smallest (depending upon Max-Heap or Min-Heap), so we put the first element of the heap in our
array. Then we again make heap using the remaining elements, to again pick the first element of
the heap and put it into the array. We keep on doing the same repeatedly until we have the
complete sorted list in our array.

Algorithm:

1. l← left [i]
2. r← right [i]
3. if l ≤ heap-size [A] and A[l] > A[i]
4. then largest ← l
5. else largest ← i
6. if r ≤ heap-size [A] and A[i] > A[largest]
7. then largest ← r
8. if largest ≠ i
9. then exchange A[i] ↔ A[largest]
10. Heapify (A, largest)

Flowchart:

Fig 4.1
Outcome:
Students will be having knowledge of what a heap as a data structure actually means and how it
can be used to sort an array of elements through heap sort.

EXPERIMENT NO. 5

Aim:Write a program to sort an array of integers using Merge sort.

Objective: To sort an array of integers using Merge sort.

Procedure:
Merge sort is a sorting technique based on divide and conquer technique. With worst-case time
complexity being Ο(n log n), it is one of the most respected algorithms. Merge sort first divides
the array into equal halves and then combines them in a sorted manner.

How merge sort works
To understand merge sort, we take an unsorted array as depicted below −

We know that merge sort first divides the whole array iteratively into equal halves unless the
atomic values are achieved. We see here that an array of 8 items is divided into two arrays of
size 4.

This does not change the sequence of appearance of items in the original. Now we divide these
two arrays into halves.

We further divide these arrays and we achieve atomic value which can no more be divided.

Now, we combine them in exactly same manner they were broken down. Please note the color
codes given to these lists.

We first compare the element for each list and then combine them into another list in sorted
manner. We see that 14 and 33 are in sorted positions. We compare 27 and 10 and in the target
list of 2 values we put 10 first, followed by 27. We change the order 19 and 35. 42 and 44 are
placed sequentially.

In next iteration of combining phase, we compare lists of two data values, and merge them into
a list of found data values placing all in sorted order.

After final merging, the list should look like this −

Algorithm:

MERGE (A, p, q, r)

1. n1← q − p + 1
2. n2← r − q
3. Create arrays L[1 . . n1+ 1] and R[1 . . n2+ 1]
4. FOR i← 1 TO n1
5. DO L[i] ← A[p + i − 1]
6. FOR j← 1 TO n2
7. DO R[j] ← A[q + j]
8. L[n1+ 1] ← ∞
9. R[n2+ 1] ← ∞
10. i← 1
11. j← 1
12. FOR k← p TO r
13. DO IF L[i] ≤ R[j]
14. THEN A[k] ← L[i]
15. i← i + 1
16. ELSE A[k] ← R[j]
17. j← j + 1

Flowchart:

Fig 5.1

Outcome: - After performing this experiment, students will be able to sort an array of elements
using Merge sort and be able to have an exact idea of Divide and Conquer strategy.

EXPERIMENT NO. 6

Aim:Write a program to sort an array of integers using Quick sort.

Objective: To sort an array of integers using Quick sort.

Procedure:
Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of data
into smaller arrays. A large array is partitioned into two arrays one of which holds values
smaller than specified value say pivot based on which the partition is made and another array
holds values greater than pivot value.

The quick sort partitions an array and then calls itself recursively twice to sort the resulting two
subarray. This algorithm is quite efficient for large sized data sets as its average and worst case
complexity are of O(nlogn) where n are no. of items.

Partition in Quicksort
The pivot value divides the list in to two parts. And recursively we find pivot for each sub-lists
until all lists contains only one element. We initialize i and j pointers at the start and end of the
array indices initially. We increment i pointer until we find the greater element than pivot and
decrement j pointer until we find the smaller element than pivot simultaneously. In due course if
i<j, we swap a[i] and a[j] else if i>j, we swap a[j] with pivot element and thus the pivot element
is set at its own position after one recursive definition of Quicksort. Recursively applying the
above strategy (known as Quick Sort) on smaller arrays i.e. left part and right part, we will
eventually get the final sorted array.

Algorithm:

First call: QuickSort (Data, 0, Count-1)
Left
Check if at least two values have to be sorted

PivotIndex := Partition (Data, Left, Right)
The right element will be used as pivot element. The function reorders the list so that all
elements which are less than the pivot element come before the pivot element and so that all
elements greater than the pivot element come after it (equal values can go either way). After this
partitioning, the pivot is in its final position. The return value is the new position of the pivot
element.
QuickSort (Data, Left, PivotIndex - 1)
Sort all Data left of the pivot element.

QuickSort (Data, PivotIndex + 1, Right)
Sort all Data right of the pivot element
i := Left
Counter from the left hand side
j := Right - 1
Counter from the right hand side
Pivot := Data [Right]
Value of the pivot element. After sorting has finished, all values less than the pivot element are on
his left hand side and all values greater than the pivot element are on his right hand side.
Data [i] <= Pivot and i < Right
Search a wrong sorted value on the left hand side of the pivot element
Data [j] >= Pivot and j > Left
Search a wrong sorted value on the right hand side of the pivot element
i < j
Are there any values remaining which have to be sorted
Swap Data [i] and Data [j]
Swap the wrong sorted values
Swap Data [i] and Data [Right]
Copy the pivot element on his correct position

End Return value: i

Flowchart:

Fig 6.1

Outcome: - After performing this experiment, students will be able to sort an array of elements
using Quicksort.

EXPERIMENT NO. 7

Aim:Write a program to find the edit distance between two character strings using dynamic
programming.

Objective: To find the edit distance between two character strings using dynamic programming.

Procedure:
Edit Distance is quite a interesting and popular problem. Here I present an efficient bottom up
C++ program to solve it.
Problem – We are given 2 strings. We have to find the “edit distance” or the cost of converting
one string to other. We are allowed 3 operations – Insert, Delete, Replace. All 3 have equal cost
that is 1 unit.
Example – Edit distance between “abc” and “abd” is 1. We replaced “c” with “d”. You can also
see this as “Delete c”, then “Insert d” which would give a edit distance of 2. But since we try to
minimize edit distance, we consider it as single operation that is Replace. Few more examples-
EditDistance(“ab”, “bc”) = 2
EditDistance(“man”, “woman”) = 2
EditDistance(“c”, “java”) = 4
EditDistance(“abcd”, “acd”) = 2
One of the above 4 examples has wrong answer! Tell me in comments which one is wrong, and
what is the correct answer.
We will use bottom up version of dynamic programming, as it is much cleaner and efficient (than
top down). If the strings have length N and M, we will need a table of size (N+1)*(M+1). First
we need to initialize the top row i.e TABLE[0][i] = i and first column i.e TABLE[i][0] = i. These
are the base cases in which one of the string is empty. Now filling the rest of the TABLE column
wise is simple-
TABLE[i][j] = min(TABLE[i][j-1]+1,TABLE[i-1][j]+1,TABLE[i-1][j-1]+cost,)
Here cost = 0 if STR1[i] = STR2[j], 1 if unequal.

The TABLE for “money” and “monkey” looks like->

Fig 7.1
1 is the final answer.
Algorithm:

Function for Edit_Distance between two strings is given below:-

int EditDistance(string word1, string word2)
{
int i, j, l1, l2, m;
l1 =
word1.length(); l2
= word2.length();
vector< vector<int> > t(l1 + 1, vector<int>(l2 + 1));

for (i = 0; i <= l1;
i++) t[i][0] = i;

for (i = 1; i <= l2;
i++) t[0][i] = i;

for (i = 1; i <= l1; i++)
{
for (j = 1; j <= l2; j++)
{
m = min(t[i-1][j], t[i][j-1]) + 1;
t[i][j] = min(m, t[i-1][j-1] + (word1[i-1] == word2[j-1] ? 0 : 1));

}
}
return t[l1][l2];

}

Flowchart:

Fig 7.2

Outcome: - After performing this experiment, students will be able to use the concept of Dynamic
Programming in solving the famous Edit Distance problem.

EXPERIMENT NO. 8

Aim:Write a program to find an optimal solution to matrix chain multiplication using dynamic
programming.

Objective: To an optimal solution to matrix chain multiplication using dynamic programming.

Procedure:

Given a sequence of matrices, find the most efficient way to multiply these matrices together. The
problem is not actually to perform the multiplications, but merely to decide in which order to perform the
multiplications.

We have many options to multiply a chain of matrices because matrix multiplication is associative. In
other words, no matter how we parenthesize the product, the result will be the same. For example, if we
had four matrices A, B, C, and D, we would have:

However, the order in which we parenthesize the product affects the number of simple arithmetic
operations needed to compute the product, or the efficiency. For example, suppose A is a 10 × 30 matrix,
B is a 30 × 5 matrix, and C is a 5 × 60 matrix. Then,

Clearly the first parenthesization requires less number of operations.

Given an array p[] which represents the chain of matrices such that the ith matrix Ai is of dimension p[i-
1] x p[i]. We need to write a function MatrixChainOrder() that should return the minimum number of
multiplications needed to multiply the chain.

Optimal Substructure:

A simple solution is to place parenthesis at all possible places, calculate the cost for each placement and
return the minimum value. In a chain of matrices of size n, we can place the first set of parenthesis in n-1
ways. For example, if the given chain is of 4 matrices. Let the chain be ABCD, then there are 3 way to
place first set of parenthesis: A(BCD), (AB)CD and (ABC)D. So when we place a set of parenthesis, we
divide the problem into subproblems of smaller size. Therefore, the problem has optimal substructure
property and can be easily solved using recursion.

Minimum number of multiplication needed to multiply a chain of size n = Minimum of all n-1 placements
(these placements create subproblems of smaller size)

Overlapping Subproblems
Following is a recursive implementation that simply follows the above optimal substructure property.

// Matrix Ai has dimension p[i-1] x p[i] for i =

1..n int MatrixChainOrder(int p[], int i, int j)

{

if(i == j)
return 0;

int k;
int min =
INT_MAX; int
count;

// place parenthesis at different places between first
// and last matrix, recursively calculate count of
// multiplications for each parenthesis placement and
// return the minimum
count for (k = i; k <j; k++)
{
count = MatrixChainOrder(p, i, k) +

MatrixChainOrder(p, k+1, j) +
p[i-1]*p[k]*p[j];

if (count <
min) min =
count;

}
// Return minimum
count return min;

}
Algorithm:

MATRIX-MULTIPLY (A,B)
Matrix-Chain-Order (p)

1. n←length[p] − 1
2. for I ←1to n
3. do m[i, i]←0
4. For l←2 to n l is the chain length.
5. do for i←1 to n−l+ 1
6. do j←i+l−1
7. m[i, j]←∞
8. for k←i to j−1
9. do q←m[i, k] +m[k+ 1,j] +pi−1pkpj
10. if q < m[i, j]
11. then m[i, j]←q
12. s[i, j]←k
13. return m and s

Flowchart:

Fig 8.1
Outcome: - After performing this experiment, students will have knowledge of Matrix chain
Multiplication – Optimization Problem – Best Parenthesization finding problem; when a chain of
matrices is given.

EXPERIMENT NO. 9

Aim:Write a program to do a depth first search (DFS) on an undirected graph. Implement an application
of DFS to find the topological sort of a directed acyclic graph.

Objective: To do a depth first search (DFS) on an undirected graph and implement an
application of DFS to find the topological sort of a DAG.

Procedure:
Depth First Search algorithm(DFS) traverses a graph in a depthward motion and uses a stack to
remember to get the next vertex to start a search when a dead end occurs in any iteration.

Fig 9.1

As in example given above, DFS algorithm traverses from A to B to C to D first then to E, then
to F and lastly to G. It employs following rules.

● Rule 1 − Visit adjacent unvisited vertex. Mark it visited. Display it. Push it in a stack.
● Rule 2 − If no adjacent vertex found, pop up a vertex from stack. (It will pop up all the

vertices from the stack which do not have adjacent vertices.)
● Rule 3 − Repeat Rule 1 and Rule 2 until stack is empty.

Step Traversal Description

1. Initialize the stack

2. Mark S as visited and put it onto the stack.
Explore any unvisited adjacent node
from S. We have three nodes and we can
pick any of them. For this example, we
shall take the node in alphabetical order.

3. Mark A as visited and put it onto the stack.
Explore any unvisited adjacent node from
A. Both Sand D are adjacent to A but we
are concerned for unvisited nodes only.

4. Visit D and mark it visited and put onto the
stack. Here we have B and C nodes which
are adjacent to D and both are unvisited.
But we shall again choose in
alphabetical order.

5. We choose B, mark it visited and put onto
stack. Here B does not have any unvisited
adjacent node. So we pop B from the stack.

6. We check stack top for return to previous
node and check if it has any unvisited
nodes. Here, we find D to be on the top of
stack.

7. Only unvisited adjacent node is
from D is C now. So we visit C, mark it
visited and put it onto the stack.

Fig 9.2

As C does not have any unvisited adjacent node so we keep popping the stack until we find a
node which has unvisited adjacent node. In this case, there's none and we keep popping until
stack is empty.
Algorithm:

Algorithm DFS(G)

1. for each vertex u € V(G)
2. color[u] <-white
3. π[u] <-nil
4. time <- 0
5. for each vertex u € V(G)
6. if color[u] ==white
7. DFS-visit(u)

DFS-visit(u)
1. color[u] <- gray {white vertex u has just been discovered}
2. d[u] <-time <- time + 1
3. for each vertex v € Adj[u] {explore edge(u;v) }
4. if color[v]
==white 5. π[v] <- u
6. DFS-visit(v)
7. color[u] <- black {Blacken u ; it is finished}
8. f[u] <-time <-time+ 1

TOPOLOGICAL-SORT(G)
1. call DFS(G) to compute finishing times v.f for each vertex v.

2. as each vertex is finished, insert it onto the front of a linked list.
3. return the linked list of vertices.

Flowchart:

Fig 9.3

Outcome: - After performing this experiment, students will be able to have a good insight to
Depth first search (Graph traversal) and its application Topological sort.

EXPERIMENT NO. 10

Aim: Write a program to do a breadth first search (BFS) on an undirected graph. Implement an
application of BFS to find connected components of an undirected graph.

Objective: To do a breadth first search (BFS) on an undirected graph and implement an
application of BFS to find the connected components of an undirected graph.

Procedure:
Breadth First Search algorithm(BFS) traverses a graph in a breadthwards motion and uses a
queue to remember to get the next vertex to start a search when a dead end occurs in any
iteration.

Fig 10.1

As in example given above, BFS algorithm traverses from A to B to E to F first then to C and G
lastly to D. It employs following rules.

● Rule 1 − Visit adjacent unvisited vertex. Mark it visited. Display it. Insert it in a queue.
● Rule 2 − If no adjacent vertex found, remove the first vertex from queue.
● Rule 3 − Repeat Rule 1 and Rule 2 until queue is empty.

Step Traversal Description

1. Initialize the
queue.

2. We start from
visiting
S(starting node),
and mark it
visited.

3. We then see
unvisited
adjacent node
from S. In this
example, we
have three nodes
but
alphabetically we
choose A mark it
visited and
enqueue it.

4. Next unvisited
adjacent node
from S is B. We
mark it visited
and enqueue it.

5. Next unvisited
adjacent node
from S is C. We
mark it visited
and enqueue it.

6. Now S is left
with no
unvisited
adjacent nodes.
So we dequeue
and find A.

7. From A we
have D as
unvisited
adjacent node.
We mark it
visited and
enqueue it.

Fig 10.2
At this stage we are left with no unmarked (unvisited) nodes. But as per algorithm we keep on
dequeuing in order to get all unvisited nodes. When the queue gets emptied the program is

over.

Algorithm:
BFS(G, s)
1 for each vertex u _ V [G] - {s}
2 do color[u] ← WHITE
3 d[u] ← ∞
4 π[u] ← NIL
5 color[s] ←
GRAY 6 d[s] ← 0
7 π[s] ← NIL
8 Q←Ø
9 ENQUEUE(Q, s)
10 while Q ≠ Ø
11 do u←DEQUEUE(Q)
12 for each v _ Adj[u]
13 do if color[v] =
WHITE 14 then color[v]
← GRAY 15 d[v] ← d[u]
+ 1
16 π[v] ← u
17 ENQUEUE(Q, v)
18 color[u] ←
BLACK
PRINT-PATH(G, s, v)
1 if v = s
2 then print s
3 else if π[v] = NIL
4 then print "no path from" s "to" v
"exists" 5 else PRINT-PATH(G, s, π[v])
6 print v

Flowchart:

Fig 10.3

Outcome: - After performing this experiment, students will be able to have a good insight to
Breadth first search (Graph traversal) and its application to find the connected components of a
given graph.

EXPERIMENT NO. 11

Aim: Code and analyze to find shortest paths in a graph with positive edge weights using Dijkstra’s
algorithm.

Objective: To find Single Source Shortest Path in a directed graph that does not have any negative cost
edges.

Procedure:
The idea of the algorithm is very simple.
1. It maintains a list of unvisited vertices.
2. It chooses a vertex (the source) and assigns a maximum possible cost (i.e. infinity) to every

other vertex.
3. The cost of the source remains zero as it actually takes nothing to reach from the source

vertex to itself.
4. In every subsequent step of the algorithm it tries to improve(minimize) the cost for each

vertex. Here the cost can be distance, money or time taken to reach that vertex from the
source vertex. The minimization of cost is a multi-step process.

a) For each unvisited neighbor (vertex 2, vertex 3, vertex 4) of the current vertex
(vertex 1) calculate the new cost from the vertex (vertex 1).

b) For e.g. the new cost of vertex 2 is calculated as the minimum of the two (
(existing cost of vertex 2) or (sum of cost of vertex 1 + the cost of edge from
vertex 1 to vertex 2))

5. When all the neighbors of the current node are considered, it marks the current node as
visited and is removed from the unvisited list.

6. Select a vertex from the list of unvisited nodes (which has the smallest cost) and repeat step
4.

7. At the end there will be no possibilities to improve it further and then the algorithm ends

Algorithm:-

DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S←Ø
3 Q← V[G]
4 while Q ≠ Ø
5 do u← EXTRACT-MIN(Q)
6 S← S _{u}
7 for each vertex v _ Adj[u]
8 do RELAX(u, v, w)

Flowchart:-

Fig 11.1

Outcome: - After performing this experiment, students will be able to have a good insight to
Dijkstra’s Algorithm and they will know Single Source Shortest path as an application of Greedy
Method Strategy to design algorithms.

EXPERIMENT NO. 12

Aim:-Code and analyze to find shortest paths in a graph with arbitrary edge weights using Bellman Ford
algorithm.

Objective: To find Single Source Shortest Path in a directed graph that does have any arbitrary
weight / cost edges.

Procedure:
Given the following graph, calculate the length of the shortest path from node 1 to node 2.

Fig 12.1

It’s obvious that there’s a direct route of length 6, but take a look at path: 1 -> 4 -> 3 -> 2. The
length of the path is 7 – 3 – 2 = 2, which is less than 6. BTW, you don’t need negative edge
weights to get such a situation, but they do clarify the problem.

This also suggests a property of shortest path algorithms: to find the shortest path form x to y,
you need to know, beforehand, the shortest paths to y‘s neighbours. For this, you need to know
the paths to y‘s neighbours’ neighbours. In the end, you must calculate the shortest path to the
connected of the graph in which x and y are found.

The Bellman-Ford algorithm is one of the classic solutions to this problem. It calculates the
shortest path to all nodes in the graph from a single source.

The basic idea is simple:

Start by considering that the shortest path to all nodes, less the source, is infinity. Mark the
length of the path to the source as 0:

Take every edge and try to relax it:

Fig 12.2

Relaxing an edge means checking to see if the path to the node the edge is pointing to can’t be
shortened, and if so, doing it. In the above graph, by checking the edge 1 -> 2 of length 6, you
find that the length of the shortest path to node 1 plus the length of the edge 1 -> 2 is less then
infinity. So, you replace infinity in node 2 with 6. The same can be said for edge 1 -> 4 of length
7. It’s also worth noting that, practically, you can’t relax the edges whose start has the shortest
path of length infinity to it.

Now, you apply the previous step n – 1 times, where n is the number of nodes in the graph. In
this example, you have to apply it 4 times (that’s 3 more times).

Fig 12.3

That’s it, here’s the algorithm in a condensed form:

Algorithm:-

BELLMAN-FORD (G, w, s)
1 INITIALIZE-SINGLE-SOURCE (G, s)
2 for i← 1 to |V[G]| - 1
3 do for each edge (u, v) _
E [G] 4 do RELAX (u, v, w)
5 for each edge (u, v) _ E [G]
6 do if d[v] > d[u] + w (u, v)
7 then return FALSE
8 return TRUE

Outcome: - Students will be able to find the shortest path in a graph from source to all other
vertices even when the edges may have negative weights on their edges.

EXPERIMENT NO. 13

Aim:- Code and analyze to find the minimum spanning tree in a weighted, undirected graph.

Objective:- To study and implement MST using Prim’s Algorithm.

Procedure:-
Like Kruskal’s algorithm, Prim’s algorithm is also a Greedy algorithm. It starts with an empty
spanning tree. The idea is to maintain two sets of vertices. The first set contains the vertices
already included in the MST; the other set contains the vertices not yet included. At every step, it
considers all the edges that connect the two sets, and picks the minimum weight edge from these
edges. After picking the edge, it moves the other endpoint of the edge to the set containing MST.

A group of edges that connects two set of vertices in a graph is called cut in graph theory.

So, at every step of Prim’s algorithm, we find a cut (of two sets, one contains the vertices already
included in MST and other contains rest of the verices), pick the minimum weight edge from the
cut and include this vertex to MST Set (the set that contains already included vertices).

How does Prim’s Algorithm Work? The idea behind Prim’s algorithm is simple, a spanning tree
means all vertices must be connected. So the two disjoint subsets (discussed above) of vertices
must be connected to make a Spanning Tree. And they must be connected with the minimum
weight edge to make it a Minimum Spanning Tree.

Let us understand with the following example:

Fig. 13.1

The set mstSet is initially empty and keys assigned to vertices are {0, INF, INF, INF, INF, INF,
INF, INF} where INF indicates infinite. Now pick the vertex with minimum key value. The
vertex 0 is picked, include it in mstSet. So mstSet becomes {0}. After including to mstSet, update
key values of adjacent vertices. Adjacent vertices of 0 are 1 and 7. The key values of 1 and 7 are
updated as 4 and 8. Following subgraph shows vertices and their key values, only the vertices
with finite key values are shown. The vertices included in MST are shown in green color.

Fig. 13.2
Pick the vertex with minimum key value and not already included in MST (not in mstSET). The
vertex 1 is picked and added to mstSet. So mstSet now becomes {0, 1}. Update the key values of
adjacent vertices of 1. The key value of vertex 2 becomes 8.

Fig. 13.3
Pick the vertex with minimum key value and not already included in MST (not in mstSET). We
can either pick vertex 7 or vertex 2, let vertex 7 is picked. So mstSet now becomes {0, 1, 7}.
Update the key values of adjacent vertices of 7. The key value of vertex 6 and 8 becomes finite
(7 and 1 respectively).

Fig. 13.4
Pick the vertex with minimum key value and not already included in MST (not in mstSET).
Vertex 6 is picked. So mstSet now becomes {0, 1, 7, 6}. Update the key values of adjacent
vertices of 6. The key value of vertex 5 and 8 are updated.

Fig. 13.5
We repeat the above steps until mstSet includes all vertices of given graph. Finally, we get the following
graph.

Fig. 13.6

Algorithm:-

PRIM’S ALGORITHM FOR IMPLEMENTING MINIMUM COST SPANNING TREE. E=SET
OF EDGES IN G, N=NO. OF VERTICES, T=FINAL ARRAY MATRIX, FINALLY MINCOST
IS RETURNED.

ALGORITHM(E, COST, N, T)
{
let (K, L) be an edge m cost in
E; mincost:=cost (K, L);
T [1,1]=K; T[1,2]=L;
for i=1 to N do;
if COST [i,L]<COST[i then near[i]=L;
else near [i]:=K;
near [K]=near [L]=0;
for i=2 to N-1 do;
{
let j be an index such that near [j]!=0
and cost [j,near[j]] is minimum;
T [i, 1]=j;T[i,2]=near[j];
mincost=mincost+cost [j,near[j])
near [j]: =0;
for K=1 to N do
if ((near [K]! =0and (cost
[K,near[K]>cost[K,j]) then near [K]=j;
}
return mincost;
}

Flowchart:-

Fig. 13.7

Outcome:- Students will be able to find Minimum cost spanning tree of a given graph with
Prim’s strategy.

EXPERIMENT NO. 14

Aim:- Code and analyze to find all occurrences of a pattern P in a given string S.

Objective:- To find all occurrences of a pattern P in a given string S.
Procedure:- Given a text txt[0..n-1] and a pattern pat[0..m-1],
write a function search(char pat[], char txt[]) that prints all occurrences of pat[] in txt[].
You may assume that n > m.
Examples:
1) Input:

Output:

2) Input:

Output:

Pattern searching is an important problem in computer science. When we do search for a string
in notepad/word file or browser or database, pattern searching algorithms are used to show the
search results.

KMP (Knuth Morris Pratt) Pattern Searching

The KMP matching algorithm uses degenerating property (pattern having same sub-patterns
appearing more than once in the pattern) of the pattern and improves the worst case complexity
to O(n). The basic idea behind KMP’s algorithm is: whenever we detect a mismatch (after some
matches), we already know some of the characters in the text (since they matched the pattern

characters prior to the mismatch). We take advantage of this information to avoid matching the
characters that we know will anyway match.

KMP algorithm does some preprocessing over the pattern pat[] and constructs an auxiliary array
lps[] of size m (same as size of pattern).

Here name lps indicates longest proper prefix which is also suffix.. For each sub-pattern
pat[0…i] where i = 0 to m-1, lps[i] stores length of the maximum matching proper prefix which
is also a suffix of the sub-pattern pat[0..i].

Examples:
For the pattern “AABAACAABAA”, lps[] is [0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 5]

For the pattern “ABCDE”, lps[] is [0, 0, 0, 0, 0]

For the pattern “AAAAA”, lps[] is [0, 1, 2, 3, 4]

For the pattern “AAABAAA”, lps[] is [0, 1, 2, 0, 1, 2, 3]

For the pattern “AAACAAAAAC”, lps[] is [0, 1, 2, 0, 1, 2, 3, 3, 3, 4]

Algorithm:

Naive string matching:
for (i=0; T[i] != '\0';
i++)
{
for (j=0; T[i+j] != '\0' && P[j] != '\0' && T[i+j]==P[j]; j++) ;
if (P[j] == '\0') found a match
}

KMP, version 1:
i=0;
o=0;
while (i<n)
{
for (j=o; T[i+j] != '\0' && P[j] != '\0' && T[i+j]==P[j]; j++) ;
if (P[j] == '\0') found a match;
o = overlap(P[0..j-1],P[0..m]);
i = i + max(1, j-o);
}

KMP, version 2:
j = 0;
for (i = 0; i < n; i++)
for (;;) { // loop until break
if (T[i] == P[j]) { //
matches?
j++; // yes, move on to next state
if (j == m) { // maybe that was the last state
found a match;
j = overlap[j];

}
break;
} else if (j == 0) break; // no match in state j=0, give up
else j = overlap[j]; // try shorter partial match

}

KMP overlap computation:
overlap[0] = -1;
for (int i = 0; pattern[i] != '\0'; i++) {
overlap[i + 1] = overlap[i] + 1;
while (overlap[i + 1] > 0 &&

pattern[i] != pattern[overlap[i + 1] - 1])
overlap[i + 1] = overlap[overlap[i + 1] - 1] + 1;

}
return overlap;

Outcome:- Students will be able to find all occurrences of a pattern P in a given string S.

EXPERIMENT NO. 15

Aim:-Write a program to multiply two large integers using Karatsuba algorithm.

Objective: - To multiply two large integers using Karatsuba algorithm.

Procedure:
Given two binary strings that represent value of two integers, find the product of two strings. For
example, if the first bit string is “1100” and second bit string is “1010”, output should be 120.
For simplicity, let the length of two strings be same and be n.

A Naive Approach is to follow the process we study in school. One by one take all bits of
second number and multiply it with all bits of first number. Finally add all multiplications. This
algorithm takes O(n^2) time.

Using Divide and Conquer, we can multiply two integers in less time complexity. We divide the
given numbers in two halves. Let the given numbers be X and Y.
For simplicity let us assume that n is even

The product XY can be written as following.

If we take a look at the above formula, there are four multiplications of size n/2, so we basically
divided the problem of size n into for sub-problems of size n/2. But that doesn’t help because
solution of recurrence T(n) = 4T(n/2) + O(n) is O(n^2). The tricky part of this algorithm is to
change the middle two terms to some other form so that only one extra multiplication would be
sufficient. The following is tricky expression for middle two terms.

So the final value of XY becomes

With above trick, the recurrence becomes T(n) = 3T(n/2) + O(n) and solution of this recurrence
is O(n1.59).
What if the lengths of input strings are different and are not even? To handle the different length
case, we append 0’s in the beginning. To handle odd length, we put floor(n/2) bits in left half and
ceil(n/2) bits in right half. So the expression for XY changes to following.

The above algorithm is called Karatsuba algorithm and it can be used for any base.

Algorithm:

Flowchart:

Fig. 15.1
Outcome:

After studying and implementing this experiment, students will be able to multiply two large
numbers quickly and easily. They will also have a sound knowledge of Karatsuba’s Algorithm
for future purpose.

EXPERIMENT NO. 16

Aim:Write a program to compute the convex hull of a set of points in the plane.

Objective: To compute the convex hull of a set of points in the plane.

Procedure:

Given a set of points in the plane. The convex hull of the set is the smallest convex polygon that contains
all the points of it.

Fig. 16.1
Graham’s Algorithm

Let points[0..n-1] be the input array.
1) Find the bottom-most point by comparing y coordinate of all points. If there are two
points with same y value, then the point with smaller x coordinate value is considered. Let the
bottom- most point be P0. Put P0 at first position in output hull.
2) Consider the remaining n-1 points and sort them by polor angle in counterclockwise
order around points[0]. If polor angle of two points is same, then put the nearest point first.
3 After sorting, check if two or more points have same angle. If two more points have same
angle, then remove all same angle points except the point farthest from P0. Let the size of new
array be m.
4) If m is less than 3, return (Convex Hull not possible)
5) Create an empty stack ‘S’ and push points[0], points[1] and points[2] to S.
6) Process remaining m-3 points one by one. Do following for every point ‘points[i]’

6.1) Keep removing points from stack while orientation of following 3 points is not
counterclockwise (or they don’t make a left turn).

a) Point next to top in stack
b) Point at the top of stack
c) points[i]

6.2) Push points[i] to S
7) Print contents of S
The above algorithm can be divided in two phases.

Phase 1 (Sort points): We first find the bottom-most point. The idea is to pre-process points be
sorting them with respect to the bottom-most point. Once the points are sorted, they form a
simple closed path (See following diagram).

Fig. 16.2

What should be the sorting criteria? computation of actual angles would be inefficient since
trigonometric functions are not simple to evaluate. The idea is to use the orientation to compare
angles without actually computing them (See the compare() function below)

Phase 2 (Accept or Reject Points): Once we have the closed path, the next step is to traverse
the path and remove concave points on this path. How to decide which point to remove and
which to keep? Again, orientation helps here.
The first two points in sorted array are always part of Convex Hull. For remaining points, we
keep track of recent three points, and find the angle formed by them. Let the three points be
prev(p), curr(c) and next(n). If orientation of these points (considering them in same order) is not
counterclockwise, we discard c, otherwise we keep it. Following diagram shows step by step
process of this phase.

Fig. 16.3

Algorithm:

Then let the result be stored in the array points.

Input: a set of points S = {P = (P.x,P.y)}

Select the rightmost lowest point P0 in S
Sort S radially (ccw) about P0 as a center {

Use isLeft() comparisons
For ties, discard the closer points

}
Let P[N] be the sorted array of points with P[0]=P0
Push P[0] and P[1] onto a stack
while i < N
{

Let PT1= the top point on
If (PT1== P[0]) {
Push P[i] onto
i++ // increment i

}
Let PT2= the second top point on
If (P[i] is strictly left of the line PT2 to PT1) {
Push P[i] onto
i++ // increment i

}
else
Pop the top point PT1 off the stack

}

Output: = the convex hull of S.

Outcome:

After studying and implementing this experiment, students will be able compute the convex hull
of a set of given points, and also they will have an insight of Graham’s Algorithm. They may
also perform this experiment by Divide and Conquer strategy.

EXPERIMENT NO. 17

Aim:Write a program to multiply two polynomials using Fast Fourier Transform.

Objective: To multiply two polynomials using Fast Fourier Transform.

Procedure: #include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;
typedef long long ll;

// polynomial coefficients are saved in increasing order of degree
// coefficient of x**i in polynomial p = p[i]

// multiply polynomials p and q, both of size sz,
// where sz is multiple of 2
void karatsuba(ll *res, const ll *p, const ll *q, int
sz){ ll t0[sz], t1[sz], r[sz<<1];

memset(r, 0, (sz<<1) * sizeof(ll));

if (sz <= 4){ // base case, no recursion, do basic school multiplication
for (int i = 0 ; i < sz ; i++)
for (int j = 0 ; j < sz ; j++){
r[i + j] += p[i] * q[j];

}
} else {
// let p = a*x**nSz + b
// q = c*x**nSz + d
// r = ac*x**sz + ((a+b)*(c+d) - ac - bd)*x**nSz +
bd int nSz = (sz >> 1);

for (int i = 0 ; i < nSz ; i++){
t0[i] = p[i] + p[nSz + i]; // t0 = a + b
t1[i] = q[i] + q[nSz + i]; // t1 = c + d
t0[i + nSz] = t1[i + nSz] = 0; // initialize

}

karatsuba(r + nSz, t0, t1, nSz); // r[nSz...sz] = (a+b) (c+d)

karatsuba(t0, p, q, nSz); // t0 = bd
karatsuba(t1, p + nSz, q + nSz, nSz); // t1 =
ac

for (int i = 0 ; i < sz ; i++){
r[i] += t0[i]; // bd
r[i + nSz] -= t0[i] + t1[i]; // ((a+b)(c+d) - ac - bd) * x**nSz
r[i + sz] += t1[i]; // ac * x**sz

}
}

memcpy(res, r, (sz<<1) * sizeof(ll));
}

// multiply two polynomials p and q, both of size sz = degree + 1
// save the output in array r
// NOTE: the maximum capacity of p, q, r should be power of two
// NOTE: r should be at least double of p or q in
size void polyMult(ll *r, ll *p, ll *q, int sz){
if (sz & (sz - 1)){ // if size is not power of
two int k = 1;
while (k < sz) k <<= 1;
while (++sz <= k) p[sz - 1] = q[sz - 1] = 0;
sz--;

}

karatsuba(r, p, q, sz);
}

// print polynomial in descending order of
degree void polyPrint(ll *p, int sz){
while (--sz >= 0) cout << p[sz] <<" ";
puts("");

}

int main(){
ll p[4] = {1,3,3,1};
ll q[4] = {-1,3,-3,1};
ll r[8];
int degree = 3;

polyMult(r, p, q, degree + 1);
polyPrint(r, degree * 2 + 1);
return 0;

}

Algorithm:

FFT (a[0:n-1],n,w,b[0:n-1])
Input: a[0:n-1] (an array of coefficients of the polynomial P(x) = an-1xn-1+….+ a1x+a0),
n (a positive integer) {n=2k}, w(a positive nth root of the unity)
Output: b[0:n-1] (an array of values b[i] = P(wi), i=0,…..n-1)
Call ReverseBinPerm(R[0:n-1])
for i=0 to n-1
b[i]=a[R[i]]
end for

Outcome: After studying and implementing this experiment, students will be able to
multiply two polynomials using FFT which is based on Dynamic programming. Also, they
will have a better insight of the advanced problems and their solutions in Algorithms.

EXPERIMENTS
BEYOND SYLLABUS

EXPERIMENT NO. 18

Aim:Write a program to convert the infix expression into postfix expression.

Objective: To understand the concept of infix to postfix conversion.

Procedure:

There is an algorithm to convert an infix expression into a postfix expression. It uses a
stack; but in this case, the stack is used to hold operators rather than numbers. The
purpose of the stack is to reverse the order of the operators in the expression. It also
serves as a storage structure, since no operator can be printed until both of its
operands have appeared. In this algorithm, all operands are printed (or sent to output)
when they are read. There are more complicated rules to handle operators and
parentheses.

Example:

1. A * B + C becomes A B * C +

The order in which the operators appear is not reversed. When the '+' is read, it has
lower precedence than the '*', so the '*' must be printed first.

We will show this in a table with three columns. The first will show the symbol
currently being read. The second will show what is on the stack and the third will
show the current contents of the postfix string. The stack will be written from left to
right with the 'bottom' of the stack to the left.

current symbol operator stack postfix string

1 A A

2 * * A

3 B * A B

4 + + A B * {pop and print the '*' before pushing the '+'}

5 C + A B * C

6 A B * C +

The rule used in lines 1, 3 and 5 is to print an operand when it is read. The rule for
line 2 is to push an operator onto the stack if it is empty. The rule for line 4 is if the
operator on the top of the stack has higher precedence than the one being read, pop

and print the one on top and then push the new operator on. The rule for line 6 is that
when the end of the expression has been reached, pop the operators on the stack one
at a time and print them.

2. A + B * C becomes A B C * +

Here the order of the operators must be reversed. The stack is suitable for this, since
operators will be popped off in the reverse order from that in which they were pushed.

current symbol operator stack postfix string

1 A A

2 + + A

3 B + A B

4 * + * A B

5 C + * A B C

6 A B C * +

In line 4, the '*' sign is pushed onto the stack because it has higher precedence than
the '+' sign which is already there. Then when they are both popped off in lines 6 and
7, their order will be reversed.

3. A * (B + C) becomes A B C + *

A subexpression in parentheses must be done before the rest of the expression.
current symbol operator stack postfix string

1 A A

2 * * A

3 (* (A B

4 B * (A B

5 + * (+ A B

6 C * (+ A B C

7) * A B C +

8 A B C + *

Since expressions in parentheses must be done first, everything on the stack is saved
and the left parenthesis is pushed to provide a marker. When the next operator is read,
the stack is treated as though it were empty and the new operator (here the '+' sign) is
pushed on. Then when the right parenthesis is read, the stack is popped until the
corresponding left parenthesis is found. Since postfix expressions have no
parentheses, the parentheses are not printed.

4. A - B + C becomes A B - C +

When operators have the same precedence, we must consider association. Left to right
association means that the operator on the stack must be done first, while right to left
association means the reverse.

current symbol operator stack postfix string

1 A A

2 - - A

3 B - A B

4 + + A B -

5 C + A B - C

6 A B - C +

In line 4, the '-' will be popped and printed before the '+' is pushed onto the stack.
Both operators have the same precedence level, so left to right association tells us to
do the first one found before the second.

5. A * B ^ C + D becomes A B C ^ * D +

Here both the exponentiation and the multiplication must be done before the addition.

current symbol operator stack postfix string

1 A A

2 * * A

3 B * A B

4 ^ * ^ A B

5 C * ^ A B C

6 + + A B C ^ *

7 D + A B C ^ * D

8 A B C ^ * D +

When the '+' is encountered in line 6, it is first compared to the '^' on top of the stack.
Since it has lower precedence, the '^' is popped and printed. But instead of pushing the
'+' sign onto the stack now, we must compare it with the new top of the stack, the '*'.
Since the operator also has higher precedence than the '+', it also must be popped and
printed. Now the stack is empty, so the '+' can be pushed onto the stack.

6. A * (B + C * D) + E becomes A B C D * + * E +

current symbol operator stack postfix string

1 A A

2 * * A

3 (* (A

4 B * (A B

5 + * (+ A B

6 C * (+ A B C

7 * * (+ * A B C

8 D * (+ * A B C D

9) * A B C D * +

10 + + A B C D * + *

11 E + A B C D * + * E

12 A B C D * + * E +

A summary of the rules follows:

1. Print operands as they arrive.

2. If the stack is empty or contains a left parenthesis on top, push the incoming
operator onto the stack.

3. If the incoming symbol is a left parenthesis, push it on the stack.

4. If the incoming symbol is a right parenthesis, pop the stack and print the
operators until you see a left parenthesis. Discard the pair of parentheses.

5. If the incoming symbol has higher precedence than the top of the stack, push it
on the stack.

6. If the incoming symbol has equal precedence with the top of the stack, use
association. If the association is left to right, pop and print the top of the stack and
then push the incoming operator. If the association is right to left, push the incoming
operator.

7. If the incoming symbol has lower precedence than the symbol on the top of the
stack, pop the stack and print the top operator. Then test the incoming operator against
the new top of stack.

8. At the end of the expression, pop and print all operators on the stack. (No
parentheses should remain.)

Algorithm:
Let Q is an arithmetic expression written in infix notation. This algorithm finds the equivalent
postfix expression P.

1. Push “(“onto STACK, and add”)” to the end of Q.
2. Scan Q from left to right and repeat Steps 3 to 6 for each element of Q until the stack is

empty.
3. If an operand is encountered, add it to P.
4. If a left parenthesis is encountered, push it onto STACK.

5. If an operator ⊗ is encountered, then :

(a) Add ⊗ to STACK.
[End of If].

(b) Repeatedly pop from STACK and add P each operator (on the top of STACK) which

has the same precedence as or higher precedence than ⊗.
6. If a right parenthesis is encountered, then :

(a) Repeatedly pop from STACK and add to P each operator (on the top of STACK until a
left parenthesis is encountered.

(b) Remove the left parenthesis. [Do not add the left parenthesis to P.]
[End of if]

[End of Step 2 loop].
7. Exit.

Flowchart:

Outcome: After studying and implementing this experiment, students will be able to convert
infix expressions into postfix expressions using stack. This will also help them to understand the
stack data structure from application point of view.

EXPERIMENT NO. 19

Aim:Write a program to evaluate postfix expression.

Objective: To understand the concept of evaluation of a given postfix expression.

Procedure:

The Postfix notation is used to represent algebraic expressions. The expressions written in
postfix form are evaluated faster compared to infix notation as parenthesis are not required in
postfix. We have discussed infix to postfix conversion. In this post, evaluation of postfix
expressions is discussed.

Following is algorithm for evaluation postfix expressions.
1) Create a stack to store operands (or values).

2) Scan the given expression and do following for every scanned element.

…..a) If the element is a number, push it into the stack
…..b) If the element is a operator, pop operands for the operator from stack. Evaluate the
operator and push the result back to the stack

3) When the expression is ended, the number in the stack is the final answer

Example:

Let the given expression be “2 3 1 * + 9 -“. We scan all elements one by one.
1) Scan ‘2’, it’s a number, so push it to stack. Stack contains ‘2’

2) Scan ‘3’, again a number, push it to stack, stack now contains ‘2 3′ (from bottom to top)

3) Scan ‘1’, again a number, push it to stack, stack now contains ‘2 3 1′

4) Scan ‘*’, it’s an operator, pop two operands from stack, apply the * operator on operands,
we get 3*1 which results in 3. We push the result ‘3’ to stack. Stack now becomes ‘2 3′.

5) Scan ‘+’, it’s an operator, pop two operands from stack, apply the + operator on
operands, we get 3 + 2 which results in 5. We push the result ‘5’ to stack. Stack now becomes
‘5’.

6) Scan ‘9’, it’s a number, we push it to the stack. Stack now becomes ‘5 9′.

7) Scan ‘-‘, it’s an operator, pop two operands from stack, apply the – operator on operands,
we get 5 – 9 which results in -4. We push the result ‘-4′ to stack. Stack now becomes ‘-4′.

8) There are no more elements to scan, we return the top element from stack (which is the
only element left in stack).

Algorithm:

START

Scan the Postfix string from left to
right.

Initialise an empty stack.

If the scannned
No

c
h
a
r
a
c
t
e
r
i
s
a
n
o
p
e
r
a
n
d

If the scannned character is an
operator

Repaet these steps

Yes Yes

until last element is not
popped from the stack

Add it to stack. Pop up the stack

store this element in a variable
temp

Evaluate the operator
and Push the result back

to the stack.

Outcome: After studying and implementing this experiment, students will be able to evaluate
postfix expressions using stack. This will also give them a better insight to applications of stack.

