Telluride Decoding Toolbox

6-0-6-0-0
0 ©®0 0

Sahar Akram (UMD), Alain de Cheveigné (ENS), Peter Udo Diehl (ETH),
Emily Graber (Stanford), Carina Graversen (Oticon), Jens Hjortkjaer (DTU),
Nima Mesgarani (Columbia), Lucas Parra (NYU), Ulrich Pomper (UCL),
Shihab Shamma (UMD), Jonathan Simon (UMD), Malcolm Slaney (Google),
Daniel Wong (ENS)

Telluride Decoding Toolbox

Introduction

This document introduces the Telluride Decoding Toolbox. The toolbox offers a test bed for
algorithms for decoding brain signals in relation to a stimulus. Our goal is to provide a standard
set of tools to allow users to decode brain signals into the signals that generated them—whether
the signals come from visual or auditory stimuli, and whether they are measured with EEG,
MEG, ECoG or any other response for decoding.

In line with the dictionary definition of decoding, we want to convert (a coded) message into
intelligible language, or at least determine which of several messages was intended. The tools
in this toolbox allow any perceptual stimulus to be connected to any neural signal. Although the
developers of this toolbox are largely researchers who meet in Telluride Colorado for a
Neuromorphic workshop and use EEG to analyze auditory experiments, the tools in this toolbox
allow any perceptual stimulus to be connected to any neural signal.

Classically, temporal responses of EEG signals have been analyzed using event-related
potentials (ERP) or time-frequency analysis. ERP studies repeat a discrete short signal many
times, average the response over repetitions and look for changes in the peaks and valleys of
the stimulus-locked response. MMN (mismatch negativity) is a particular event-related response
that examines oddball responses in the context of repetitive stimuli. Time-frequency analysis
examines the changes in the EEG spectrum in particular bands over time. BCI (brain-computer
interface) experiments may look for some spectral change in the brain response that
researchers can use to indicate a choice—the problem is treated as a classification problem.

The Telluride Decoding Toolbox takes a new approach. Given a stimulus and the resulting brain
response, we want to find the relation between the two. The aim may be to decode the
response to approximate the original stimulus, or choose among alternative stimuli, or
determine the attentional state of the listener. In the simplest case we want to find the auditory
signal that generated the measured EEG response, or at least predict to which of two auditory
stimuli a user is attending. The goal is to produce a continuous prediction of the neural signals
that are likely to be produced by a stimulus (the forward problem), or given an EEG or MEG
response, find the stimulus that generated it.

This is a hard problem. Given an EEG or MEG signal, we can’t yet synthesize the auditory
signal with high fidelity. But we can already say with much better than chance whether the
subject was listening to speaker A or speaker B. Thus there is information that can be decoded,
and with better machine-learning technology and more data, the time has come to think about
pushing the limits of neural decoding. People have done this with spikes [Bialek, 1991], but we
want to look at a wider range of cortical signals. While the correlations obtained are still low, we
think they will get better with time.

Overview
This toolbox offers general-purpose routines to implement and test new decoding methods, and
a set of predefined methods and data for reference purposes and as examples.

A common application of these tools is to decode attention: estimate which auditory source is a
listener attending. As shown in the attention-decoding block diagram below, this toolbox
addresses three parts of the decoding problem: predicting the stimuli, correlating with the
expected signals, and deciding the attended speaker.

Decoding Algorithms and Signal Flow

Speaker 1

Speaker 2

i

Intensity,
MFCC, ar
— Spectrogram

1

Attended
Signal

Instantaneous

Correlation Non-Linear EEG Signals

Regression
(DNN)

Canonical
Correlation

Decide which Speaker = Correlate with Speech Predict Signals

To connect audio and EEG (or the reverse) we provides two basic forms of predictions: linear
and non-linear. They each have different strengths and needs. Linear prediction is easiest to
formulate, analyze, and calculate. Non-linear predictions based on deep neural networks
(DNNs) represent a rich source of possibilities but with a larger computational cost.

Then to decide which speaker a subject is attending, we correlate the predictions with the
original stimuli. Correlation answers a simple question: are two signals related, and thus might
perform better in some situations. This can be done in any of several feature domains, such as
intensity, MFCC and spectrograms.

Finally, given the correlation signals, we need to decide to which speaker the subject is
attending. This can be done by simply summing the correlations over time, and picking the
winner. Or a more principled approach combines a probabilistic model of how long a time a
subject is likely to attend to one subject along with the behavior of the correlation signal, and
chooses a winner that optimizes a loss function that combines these two factors.

Most importantly, this toolbox calculates temporal response functions, TRFs. The TRF describes
the connection between the stimulus and the recorded responses, or the inverse, going from

responses back to the stimuli. For the linear model (FindTRF) this is equivalent to a
multi-channel convolution. While for the DNN approach the TRF is a non-linear function of its
inputs.

Decoding algorithms depend on temporal context to make their predictions. For example when
predicting the forward response (audio->eeg), the audio right now will generate a response over
several tens of milliseconds to come. Conversely, to estimate the EEG signal now we need to
know the audio signal from the previous ~200ms. This is called context, and is shown in the
figure below. In these cases, the model predicts the response based on 7 frames of data. The
FindTRF and DnnRegression routines take a context-window size, which is an integer
representing the number of frames of data, either forward or backward in time depending on the
model direction, to include as input data in the analysis.

Audio
Data

Forward model Inverse model

EEG
Data

Time

The toolbox includes the code (MATLAB or Python) to implement the four models described
above, along with necessary test code. We have also included sample EEG and MEG data so
new users can verify that the algorithms work as promised.

We demonstrate the basic behavior of the three algorithms with a synthetic dataset. This
dataset starts with a deterministic attention signal and creates two random 32 channel EEG
system impulse responses, one for the attended and one for the unattended signal. It correlates
two sinusoidal test signals with the appropriate impulse response to get the EEG response. The
goal of this toolbox is to reconstruct the original attention signal---was the subject listening to
speaker 1 (sinusoid test signal 1) or speaker 2 (sinusoid test signal 2). See the
CreateDemosSignals function for the setup, and each algorithm for its behavior.

It is important to note that all data in this dataset is organized as MATLAB arrays, where time is
always the first dimension. Every dataset in our applications includes time, so it makes sense to
put this dimension first since it is required.

This toolbox includes both code and real data. The datasets include (to be finalized.. just a
guess now):

1) EEG data with a single subject (data/Telluride-demo.mat)

2) MEG data with two sound sources and subject attends to one

For more details see Appendix 1.

Comparisons and Evaluations

Having all of these routines in one place, along with some sample data, allows us to compare
and contrast the different approaches. In this section, we use the EEG Demo dataset for this
evaluation (See Appendix 1). The data happened to be recorded from four subjects at once, 16
channels per subject, all listening to one of four different speech signals. But conceptually, it
represents a simple speech to EEG recording experiment, and we use the combined data to
illustrate the various algorithms.

The data was recorded in 32 blocks, each about 4 minutes long. The plot below shows four
tests, as a function of trial number, using the normal FindTRF linear regressor. In each case we
trained a regressor using some of the data, and then predicted the intensity for that trial.

e Self correlation: Train a decoder on the same trial data used to test the regressor. This is
the “cheating” approach, and should always produce the best (highest) correlation.

e Mean model: Train a decoder separately for each of the 32 trials, and then average all
the regressor matrices together to form a single model. This single model is then used
to estimate the intensity of each model. This is still not a good model because the test
data is used in the training.

e Jackknife model: Calculate a decoder by averaging the models for a random selection of
31 trials, and test it by applying the model to the 32nd trial. This is the cleanest test
because the test data is not used in any way to calculate the model.

e Random model: The data from a single trial (not the test trial) was randomly selected
and used to train a TRF. This TRF was then used to estimate the intensity for the test
trial. This is a clean test, since the test data and the training data are separate, but it is
low performing because the model is estimated from only 4 minutes of training data
(compared to 31x4 minutes in the jackknife model above.)

Demo Data Model Correlation

0.3

0.25 - -
=
o
E
T 02- -
=4
T = Self Correlation
= Mean Model Cormelation
= 015 - Jackkrite Model Cormelation |
w 2 Random Modsl Corrslation |
i
E
=
% 01- |
e
o _
= 005
5

|:| .
_JJ_DS L -
a 5 10 15 20 25 ao as

Trial Number

The figure below shows the estimated correlation in a speech-decoding task as a function of the
algorithm’s regularization parameter. Note, not all regularization values make sense---the
meaning of any regularization parameter depends on the algorithm used. [The first four listings
in the legend below represent variations of the FindTRF linear regressor.]

Prediction Performance with Different Regularizers
T T

.09 T
008 - 1
a.o7 \
0.08 ~ 1
Linear - Mo Regulanzation '
0.05 - Linear - Shrinkags 3
e Linear - Ridgs
o Linear - LRA
T 0.04 - A 1
E DMN
0.03
00z ¢ 1
0o - 1
of \ -
001 L " " | ki i " |
102 107’ 10° 10! 102

Reqularization Value [K)

This toolbox lets us easily explore other representations of sound. One possibility is that our
auditory system is not sensitive to intensity, but to changes in intensity. The plot was computed
using this Toolkit, and shows that the derivative of the intensity and the positive portions of the
derivative (onsets) works better than raw intensity. Furthermore, the negative portions (offsets)
are not very predictive of the EEG signal.

011 Prediction Performance with Different Audio Representations (FindTRF Shrinkage)

Q.09 -

Intersity
Derivative
Onsat
Ofaat

0.08 -

Correlation

a.or

0.06

1w 1w’ 10
Reqularization Value [K)

Code

This toolbox is implemented with a combination of MATLAB and Python. The basic decoding
routines (FindTRF, CCA, ViterbiSearch) only use the basic MATLAB software, while the
StateSpace model depends on the Mathworks Optimization toolbox. The DNN code is
implemented in Python, using the PyLearn2 and Theano packages, and there is a MATLAB
routine that calls the Python routines so you can do all your work in MATLAB if you choose.

The code for this toolbox is available from GitHub at
https://github.com/Neuromorphs/telluride-decoding-toolbox

You can download the software by cloning the repository, or download all the software in a ZIP

archive (look for the button that says download ZIP).

License
This software is provided under the Apache 2 license. We encourage you to use this toolbox in
your work, and we are eager to receive improvements, comments and bug reports.

Publications

Please reference this toolkit as follows:
Sahar Akram, Alain de Cheveigné, Peter Udo Diehl, Emily Graber, Carina Graversen,
Jens Hjortkjaer, Nima Mesgarani, Lucas Parra, Ulrich Pomper, Shihab Shamma,
Jonathan Simon, Malcolm Slaney, Daniel Wong. Telluride Decoding Toolbox. Institute for

Neuromorphic Engineering, http://www.ine-web.org/software/decoding, 2015.

https://github.com/Neuromorphs/telluride-decoding-toolbox
http://www.ine-web.org/software/decoding

Acknowledgements
This toolbox was conceived and the authors were brought together by the Telluride
Neuromorphic Cognition Engineering Workshop, held annually in Telluride, Colorado.

We are especially grateful for support we received from BrainVision which provided EEG
equipment for our wild experiments, some of which turned into interesting results. In addition,
Mathworks provided MATLAB licenses to many of our students. All the authors had support from
their home institutions to attend the workshop and to continue this work.

References

W Bialek, F Rieke, RR de Ruyter van Steveninck, & D Warland. Reading a neural code. Science
252, 1854-1857 (1991).

CCA

Canonical correlation analysis

Syntax
[Wx, Wy, r] = cca(X, Y, regularization)

Description

Canonical Correlation Analysis (CCA) is a tool to find a linear relation between two datasets.
Specifically, it finds a linear transform of set A with components that are best correlated to set B,
and a similar transform of set B. CCA is closely related to PCA. Like PCA, the components are
mutually orthogonal (the time series are decorrelated two-by-two), their variance sums up to that
of the original dataset (the transform is a rotation), and they have a clearly defined order.
However, contrary to PCA, which orders principal components by decreasing variance, CCA
orders them by decreasing variance of their projection on the other dataset. The greatest
difference between CCA and PCA is of course that CCA produces two transforms, one for each
dataset, whereas PCA produces only one.

CCA requires that data sets A and B have the same number of rows (time samples), but they
can have a different number of columns. However CCA is really only useful if both A and B
have more than one column, otherwise it boils down to a simple projection of one set on the
other. CCA is powerful in that it can “discover” the presence of a pattern that is hidden within
both A and B, even if that pattern has such a poor SNR that no other technique could find it.

CCA is a great tool for audio-to-brain decoding, because it can help find the transform to apply
to the audio to get something predictive of the EEG response that it might elicit, and a transform
of the EEG to find some aspect of brain activity that cares about sound. This is much more
powerful than just hopefully choosing some arbitrary representation of the audio (e.g. envelope
or TF-analysis channel) or some selected electrode to use for decoding. Concretely: (1) create
a multichannel representation of the audio (e.g. TF analysis), (2) apply CCA to find two
transforms, one for the audio the other for the EEG, (3) apply them and select the first
component on each side. These two component signals (one from audio the other from EEG)
have the highest possible correlation of any linear transforms of the data.

CCA assumes that the relation between A and B is scalar (instantaneous) and linear. However
it is easy to extend it to convolutional relations between A and B by augmenting either dataset
(or both) with a set of time shifts (or a filter bank). Likewise it is possible to address non-linear
relations by applying an appropriate set of non-linearities to the data. For example, one can find
a linear relation between A and the instantaneous power of some component hidden within B by
applying CCA to A and to the set of quadratic forms derived from B (as in de Cheveigné 2012).
This will find the component even if its SNR within B is very small.

As for any data-driven analysis technique, the greatest peril in using CCA is overfitting, possibly
more severe with CCA than other techniques because the temptation is strong to throw in extra
dimensions (e.g. time shifts and non-linearities), to see if they improve correlation factors. To
limit overfitting one needs to reduce dimensionality at every stage, and apply standard
cross-validation techniques.

speaker listener

preprocesing
MFCC(t) correlation denoising

spectrogram selection

decision: A or B e

correlation

spectrogram, EEG, TF analysis,
MFCC, NL transforms,
etc. etc.
Examples

We use the CreateDemoSignals script to create test signals. We use about +/-12 seconds of
data on either side of the first attention switch as training data. Anything less, for this example,

is not enough to get a good answer. We then add context to the data (38 frames) before
computing the CCA model.

Lags = 1:38;

ccaTrainingWindow = attentionDuration/2; % Choose a small window for training
iTrain = find(recordingT>attentionDuration-ccaTrainingWindow & ...

recordingT < attentionDuration+ccaTrainingWindow) ;

laggedTrainResponse = LagGenerator (response (iTrain, :), Lags);
[wAttendedAudio,wAttendedEEG] = cca (attendedAudio (iTrain)', laggedTrainResponse');
[wUnattendedAudio, wUnattendedEEG] = cca (unattendedAudio (iTrain) ',
laggedTrainResponse') ;

In this case, the audio data is single-dimensional and the audio transform becomes a scalar.

The EEG transform then rotates the EEG data so that it is maximally correlated with the audio
data.

laggedTestResponse = LagGenerator (response, Lags);
ccaAttendedPrediction = laggedTestResponse * wAttendedEEG;
ccaUnattendedPrediction laggedTestResponse * wUnattendedEEG;

10

We can plot the attended and unattended responses:
clf
attentionSwitchPick = 3;
plotWindow = attentionDuration/20;
iPlot = find(recordingT>attentionSwitchPick*attentionDuration-plotWindow & ...
recordingT < attentionSwitchPick*attentionDuration+plotWindow) ;

subplot (2, 2, 1);
plot (recordingT (iPlot), attendedAudio (iPlot()));
title ('Attended Signal'); axis tight

subplot (2, 2, 2);
plot (recordingT (iPlot), unattendedAudio (iPlot()));
title ('Unattended Signal'); axis tight

subplot (2, 2, 3);
plot (recordingT (iPlot), ccaAttendedPrediction(iPlot()));
title ('Attended CCA Prediction'); axis tight

subplot (2, 2, 4);
plot (recordingT (iPlot), ccaUnattendedPrediction (iPlot()));
title ('Unattended CCA Prediction'); axis tight

to get this summary plot. Note: the sinusoid has a lower frequency in the first half of each
attended plot. Furthermore, the prediction of the attended signal has higher fidelity than the
unattended signal, since its signal-to-noise ratio is higher.

1 |' rrntFllﬂdﬂT El‘ig1nalr I 1 1 I l 1 u"TﬂrTT Sighlnl "
|W|| || . ‘||| || | |‘ ‘I
° HHW | ” \\‘W |
|
LY | AR LN

Unattended CCA Prediction

1541 1
of| |

Mmoo & i
T —
n

__
5] ©

10 |
|

A5

745 TE 755 TG

We can then compute the correlation between the original and predicted audio signals,
downsampling to 2Hz so we can see a less noisy signal.

corsl = ccaAttendedPrediction(l:length (audioSl)) .* audioSl;
cors2 = ccaAttendedPrediction(l:length(audioS2)) .* audioS2;
newFs = 2;

11

corsld = resample fft(corsl, fs, 2);

cors2d = resample fft(cors2, fs, 2);
recording2T = recordingT(l: (fs/newFs) :end-1);
i2Plot = find(recording2T>attentionSwitchPick*attentionDuration-1l*ccaTrainingWindow &

recording2T < attentionSwitchPick*attentionDuration+l*ccaTrainingWindow) ;

clf; plot(recording2T (i2Plot), [corsld(i2Plot) cors2d(i2Plot)1]1);
legend('Signal 1', 'Signal 2'); xlabel('Seconds'); ylabel('Correlation');

This results in a summary correlation, around the third attention switch, that looks like this.

s} BS 70 7E BO B5 an

Note, the model that was trained for this CCA example needed 25 seconds of training data,
while the linear model trained with FindTRF needed 2.5 seconds. Better results are possible by
subsampling the lag vector, and/or using different normalization methods.

Author
We are grateful to Magnus Borga from Linkopings Universitet who provided this software:
http://www.imt.liu.se/~magnus/cca/. For more information see his tutorial

http://www.imt.liu.se/~magnus/cca/tutorial/tutorial. pdf

References
de Cheveigné, A. (2012). Quadratic component analysis. Neurolmage, 59(4), 3838-3844.
http://doi.org/10.1016/j.neuroimage.2011.10.084

12

http://www.imt.liu.se/~magnus/cca/
http://www.imt.liu.se/~magnus/cca/tutorial/tutorial.pdf
http://doi.org/10.1016/j.neuroimage.2011.10.084
http://doi.org/10.1016/j.neuroimage.2011.10.084

13

CreateDemoSignals

Create the signals used to describe the primary methods in this toolbox

Syntax

CreateDemoSignals

Description

The CreateDemoSignals script creates a number of synthetic signals that are used to

demonstrate the different algorithms in this toolbox. Most importantly, it creates a random linear

TRF that describes the (simulated) EEG signal for a pair of auditory inputs: the attended and

unattended signals. The toolbox assumes that the impulse response peaks around 50ms, and is

finished after 250ms. In addition, the impulse response of the unattended signal is attenuated,
as might be expected for a signal that is harder to pick up. With added noise, as is always
present in a neural measurement, the resulting unattended signals will be harder to decipher.

Attended Impulse Response

EEG Channel
Pa] - —
n [=] n (=] m

L
=]

Time (s}

Unatiended Impulse Response

EEG Channel
pa (%] L s
n (=] n (=] m

[
=]

Time [g)

We generate an artificial attention signal that tells which of two sounds the subject is attending.
This signal is binary and switches sides every 25s. We generate two sinusoids, at 5 and 7Hz, to

simulate the input stimuli. Under control of the attention signal, the “subject” switches between
the 5 and 7Hz input signals. These three signals are shown in the plot below. The top plot
shows the attention signal, and the switch at t=25s. The middle curve shows the attended

signal, where the subject listens to the 5Hz signal for the first 25s, and then switches to listening

14

to the 7Hz signal. The bottom curve show the unattended signal, with the opposite frequencies
at each time.

Test Signals

1 L 1 1 1 L 1 1
5
z
e
g
2
=T
™ % \ M Il'".l il il A n fi A i
=/} {1 [\ A {1 |'I A A (A
el 1 [{1 [[| [[1 | [[
= [|| | |1 | | | | | | | |
1 T A S A R vyl
N Y A Y L Y A W T Y Y Y B O
ki " N T N W N TR A R B | | | | | |
IR R Y RN
| || || Vo | f f f f f |
1 I T L T N W T A T A Y A L T Y A R
< \ |/ \ \ | \ o | T I | [
\ | \ / \
W W ¥ ¥, W vy
—_ i i M 1 1 I ' 1) ~ y IS
E I | I |} I | I. [| f .'I \ i1 | |
é?: A T T A Y Y T A \ \ f] {
| | | | | | | | | [1 \
| | | | | | ro | |
8 : [: [: [: [: [: f : {1 | \ x [[\
E | | | | | | | | | | | | | ! |I I|
£ Y O T YO Y O A O | i [[|
] | | | | | | | | Vo (A Vo |
c [| | | | | | | [| | | | | | | [| |
3 | II ! II | II | II ! II ! ,I | | \ | | [I | A
| | | { I._ 1 | | \ JI
' LY] Yoy il 1 |] il ! -
24 24.2 244 24.6 24.8 25 252 254 25.6 258 26

Time {seconds)

The final output of this script are the attendedResponse and unattendedResponse matrices.
Each of these signals is a 10000x32 matrix (100 seconds of audio at 100Hz). These matrices,
and the attendant experimental parameters, are used as demonstration signals for all the
routines in this toolbox.

Note: the “audio” signal can represent any high-level feature describing the audio waveform. In
many experiments [Mesgarani 2012, O’Sullivan 2015] this is the waveform energy (intensity).
But others have investigated MFCC [], and spectrograms []. In this demo we use the simplest,
the intensity.

Examples
CreateDemoSignals is a MATLAB script. When you run it, it creates several variables that are
useful in testing and demonstrating the tools in this toolbox.

>>> CreateDemoSignals

This code produces the following variables

Variable Size Meaning

15

T 1x1 Length (seconds) of total signals

recordingT 10000x1 Time of each sample frame (in seconds)

attentionDuration 1 Length of time subject attends to each signal
(seconds)

fs 1 Sample rate for audio and EEG signals
(100Hz).

nEEGChannels 1 Number of EEG channels in this

demonstration (32)

attentionSignal 10000x1 Signal that determines whether subject is
attending to signal 1 (value = 0) or signal 2
(value = 1). Flips between 0 and 1, every 25
seconds.

attendedAudio 10000x1 Composite audio signal to which the subject
is attending. A mix, based on the
attentionSignal, of the two simulated audio
signals.

unattendedAudio 10000x1 Composite audio signal to which the subject
is NOT attending.

attendedimpulseResponse 26x32 Random impulse response that connects
audio to EEG. There are 26 time samples
and 32 channels.

unattendedimpulseResponse 26x32 Random impulse response that connects
audio to EEG for unattended response.

response 10025x32 Total EEG signals for attended plus
unattended audio.

References

Mesgarani, N., Chang, E. F., (2012), “Selective cortical representation of attended speaker in
multi-talker speech perception”, Nature 485

James A. O'Sullivan, Alan J. Power, Nima Mesgarani, Siddharth Rajaram, John J. Foxe,
Barbara G. Shinn-Cunningham, Malcolm Slaney, Shihab A. Shamma and Edmund C. Lalor.
"Attentional Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG."
Cerebral Cortex, January 2014.

16

CreateLoudnessFeature

Analyze an audio signal and estimate its energy.

Syntax
loudnessFeature = CreateLoudnessFeature(audioData, audioFS, loudnessFS)

Description
Compute the loudness (intensity) of an audio signal by averaging the squared energy.

Given audioData at a sample rate of audioFS, compute the loudnessFeature of the sound. This
is done by finding the RMS energy within +/-1.5 times the windowSize (loudness sample interval
divided by audio sampling interval) samples of the center point.

Example

To compute the loudness (energy) of the signal, this sample code works.
[tap, fs] = audioread('tapestry.wav');
1fs = 100;
loudness = CreateloudnessFeature (tap', fs, 1lfs);
h = plot((l:length(tap))/fs, tap, ...
(1:1length (loudness))/1fs, sqgrt(loudness));
xlabel ('Seconds'); ylabel ('Amplitude');

set (h(2), 'LineWidth', 6)
This produces the plot shown here (best seen in color):

0.5 T T T T T T

35

Seconds

17

Inputs

audioData - Monophonic audio data, a single column of data

audioFS - The sampling rate for the audio siganl.
loudnessFS - The desired sampling rate for the loudness signal.

Outputs

loudnessFeature - A vector representing the energy (loudness) of the input signal at the new
sample rate.

18

DNNRegression

Use a deep neural network (DNN) to find a model connecting stimulus and response.

Syntax
[0,pred] = DNNRegression(stimulus, response, direction, testdata, g, Lags)

Description

This function provides a MATLAB wrapper so that the Python DNN code can be called from
MATLAB. This function takes the given data arrays, writes them to temporary files, call the
Python interpreter to do the necessary calculations, and then reads back into MATLAB the model
(a matrix since it is a single-layer DNN) and the model’s predictions from the test data. See the
documentation for DNNRegression.py for more details.

Examples
This is plot shows the output of the DNN decoder on the standard synthetic dataset.

Predicted Signals
] L] Ll

I 1 I I
Attendad Signal
f | Unatiended Signal

08| [|

agl | |

| |
VAN I T L
0.4-|r|||' |||| NIANE | |
|
| ||II Il |l ||' || I|| H

ozt |

Intensity
[}
1

oo ||]|

4.4

ost | ||||| |

|I|I | (1] I [|I
ol U] i v | L|| A

T4.2 T4.4 74.6 4.8 K=} 752 75.4 75.6 5.8
fime (seconds)

Here is a comparison of the real (top) and predicted (bottom) signals, for the attended (left) and
unattended (right) signals.

19

Attended Signal Unattended Signal

| 1
T T N TRTTTT] TR
S
NN R o RS RNRN RN
gt AAATARFt s AN
'Jl '.I| |"| ll.' ll.' |J |||| I |u| | l.l | |n| |J| | Ll |J |.| I '.ll 'Jl 'Jl Idl |
T4.:5 75 5.5 1 T4.5 K] T5.5
Attended TRF Prediction Unattended TRF Prediction
|r|||||'||ﬂ||1 ||r|'|,| fr n k
> I|| || || |'| ||| |' || || |'| |ﬂ| ||1| |||| || l' | |||| || || N h| IE] |h'| || |||| |Iﬂ| [I ﬁ |’|\ |f II| [ﬂl
|
SITARTATHAAiHn - AR
T
s |||||I || || || |I || || ||| ||| ||| |||| |||| |||| “ | s |u|| ||| | ||||| ‘|| || || |]i U ||“.J ||IJ '|r| |
ARARNLIANR Bl |
4.5 7h 755 745 Fi=) 7hE

Inputs
stimulus - The (audio) stimulus response data of Size Nyme samples X Nehanneis- If both the stimulus
and the response matrices are non-null, then this routine calculates a new model (g).

response - The brain signals of size Nime-samples X Nehanneis- If bOth the stimulus and the response
matrices are non-null, then this routine calculates a new model (g).

direction - One of the two strings: forward or reverse, to indicate whether to compute the forward
or reverse predictions.

testdata - If present, then the computed model (if the stimulus and response are given) or
conversely the pre-computed model, is used to predict the corresponding result. Thus if
direction is ‘forward’ then the test data is used to predict a neural signal.

g - The model (currently a single matrix) if you do not wish to calculate a new model. It is used
to process the test data.

Lags - The number of temporal frames of data that are added to the present sample as context
in the prediction.

Outputs

g - A new model to describe the DNN prediction

20

pred - A prediction from the model. The meaning of the prediction depends on the direction. If
the direction argument is ‘inverse,’ then the testdata is a brain signal, and the prediction is a
estimate of the original audio.

21

DNNRegression.py (Python)

A Python program to find a non-linear model connecting stimulus and response.

Syntax
python DNNRegression.py {--train, --predict}
-m model.yaml
-s stimulus_data [i/o, default text, or .mat file]
-r response_data [i/o, default text, or .mat file]
-w weights [i/o, default text, or .pkl]
[--visual visualize.png]
[--context N for N>=1 *25]
[--numEpochs N default is 100]
[--dir forward/backward*]
[--valid which parts are valid, in case of concatenating trials, default all valid.]

Description

This program uses a deep neural network (DNN) to find a non-linear model that connects the
(audio) stimulus and the (EEG/MEG/eCog) response. The DNN, as configured by default in the
model.yaml file is a single layer with a rectified linear non-linearity. The dimensions of the DNN
depend on the input and output, and the direction of the regression.

You must supply either the -predict or -train argument to specify the type of calculation.
Estimating the model from the stimulus and response when -training is used, and predicting one
or the other when the -predict flag is used.

The -direction flag specifies the direction of the regression. In the forward case, the response is
predicted from the stimulus. While in the backward case, the stimulus is predicted from the
measured response.

The data for the regression, specified by the -stimulus and -response arguments, are supplied in
one of two ways. The default is a text file, with one line containing all the channels for one time
step, different columns are separated by whitespace. Time goes down the file. Alternatively, the
data can be supplied in a binary file ending in “.mat” and containing a single rectangular matrix
(matrix named ‘data’) of the same format as the text file. Both these file names must be
specified, although when predicting with the model, depending on the direction, one file is used
as input, and the other file is written (overwriting any data already in that file!)

The output weights are either a text file, as long as the model only contains a single layer, or if
the filename ends in “.pkl” then the data is written out in Python’s pickle format. The model
weights (for each layer) have a size of #input_channels x #output_channels. These numbers,
and their connection to stimulus and response, depend on the direction the model is run.

The -context argument specifies the number of frames (N) to use as context in the regression.
The exact meaning depends on whether the model is predicting the forward or the reverse
response. As shown in the figure at the start of this manual, when predicting the response N
frames starting at the current stimulus frame and going backwards are used as input. When

22

predicting the stimulus from the response (the backward model) then N frames starting at the
current frame of the response are used as input to the DNN.

Examples
For training:

python DNNRegression.py -t -m "./network.yaml" -s "trainUnattendedAudio.mat" \

-r "trainResponse.mat" -w "./network best 3.pkl" --debug
For testing:
python DNNRegression.py -p -m "./network.yaml" -s "testUnattendedAudio.mat™ \
-r "testResponse.mat" -w "./network best 3.pkl" --debug
Prediction of Training Data
IE I I I B] 1 1 I
1F A " - 4
f '|II I||l I', II'IJ-\II'|I | III |Ill II', |I I| |Ir|| Ilrll Ilrl| Il |I-I|I |I-I|| |I1I|
| I o
o 1 B R |r | |I II | || | [1 | 1
[] [| \ [[[||
ad ll I| |I |IJ I|| IH I|I IIJ II I| || f || | | | | || || || | || | ||
| P | L]l |
L Vv L | L
05k | III | lII III| |I [|II II| |I I| |I I| || || 1Rl || I| || I| J
\) | [l |
1 ll" J'I I W W l'u' I l'u'l 1 II-I IIJ| 1 Uy |JI
a 20 40 &0 =i 100 120 140 160 180
Prediction of Test Data
IE I I I B] 1 1 I
|
1 | s
A | 1
{ | I 1 . F
| l'W [TR | | I
0spf | IF;II'I A r'lﬂl 'll I| I\ I| u'l' f A
[II| f | |II I L"l |I I | I| l | ||Ilﬂlll |Iﬁ|| II I| [I| |I
o 4N M \‘\ / Voo I RYRNAVANRY k| (1] -
|II { | I| by J;. | .'I IHU, A I|I I| | ||I I| II I| |I | I| Il | I| | II
v L \ L \ | | | || [| [
ask Y/ Ry, v Y | T [A T [A
VA A A A A
_1 | | 1 I 1 1 1 1
a 20 40 2] &0 100 120 140 160 180

Similar to the results of the TRF method, the prediction of the attended signal shows a
correlation of ~0.986 with the actual attended signal. The unattended signal has a lower
correlation of ~0.922 which is slightly better than the TRF method. In both cases, attended and
unattended, +/- 1.0 second of training data was used with a window size of 0.25 seconds.

Input Parameters
-train - Train a model

23

Either this or the -predict argument must be used. The -train argument specifies that the
stimulus and response files will be used to train a model, thus producing a weight matrix. The
direction of the model depends on the -direction parameter.

-predict - Use the model to predict some data

Either this or the -train argument must be used. The -predict argument specifies that either the
stimulus (reverse prediction) or the response (forward prediction) data will be predicted using
the weight matrix trained on a previous use of this program. The direction of the prediction
depends on the -direction parameter.

-stimulus filename - path to a stimulus dataset

-response filename - path to a response dataset

Mandatory. The stimulus and response datasets are specified as file paths. The default data
format is a text file, with one time step per line, channels separated by whitespace. Time goes
down the file. Alternatively, if the file name ends in “.mat” then the file is assumed to be a binary
MATLAB file containing a single variable, the variable is named ‘data’. Note when using this
program to predict data, one of these two files is read and the other file is written, overwriting
any data already in this file.

-model filename - path to YAML file describing the DNN

This parameter is mandatory and specifies a file containing the YAML description of the
network. See the YAML manual/web page for more details of this file format and the file
contents (http://deeplearning.net/software/pylearn2/yaml_tutorial/index.html).

-weights filename - path to a file for the model weights.

Optional in training, mandatory for predicting. A file that is used to store the DNN weights. The
default is a text file, containing a rectangular matrix (N_inputs X N_outputs) containing the
weight matrix for a single-layer DNN. If the weights filename ends in .pkl, then the file contains
a Python pickle string.

-visual - Generate a graphical summary
Generate a graphical summary of the training and testing results. This is a file in Portable
Network Graphics (PNG) format.

-context N - Additional temporal context for the prediction

The context argument specifies how many temporal frames should be provided to the DNN as
context for its prediction. The meaning of this parameter depends on the direction of the
prediction. If the direction is forward, predicting EEG from audio, then the context goes
backward in time, to pick up older data from the audio. If the direction is reverse, predicting the
stimulus, then N frames of sensor data after the current frame are added as context. See the
figure on page 3 of this report for a graphical explanation.

-dir {forward/backward} - Direction of the prediction
This Parameter specifies whether the prediction goes forward from the stimulus to the response,
or in reverse, from response to the stimulus. The default is reverse.

-valid filename - Which parts of the data are valid

24

http://deeplearning.net/software/pylearn2/yaml_tutorial/index.html

When concatenating the data from multiple trials into one longer stimulus or response file, the
temporal context is no longer valid across trial boundaries. The valid data is a binary signal, one
value per time step that says whether the data at this frame should be used in the training and
testing. [Peter, we should automatically extend any invalid data points forward or backward
depending on the direction and the context.] DNNRegression automatically extends the region
of validity based on the direction and the requested context.

-verbosity N - How much information o see during the training and testing
The default value of this parameter is 1. Reduce it to zero to see fewer status messages, and
increase it to see more information.

Output Parameters

The output from this program depends on whether it is training or testing a model.

When training a model the only output is a weight matrix, indicating the best DNN parameters
for the training data. This weight matrix can be used as input to the test phase.

When testing a model (provided as the weight matrix and the yaml file), the output is either a
stimulus or a response file, depending on whether the predictions are reverse, or forward. The
test output is written to the appropriate file, overwriting any contents there already.

Dependencies

This code uses PylLearn2, which is built on top of machine-learning system known as Theano.
PyLearn2 is useful because it make it easy to describe a neural network, and thus it easier to
modify. Building upon Theano adds the ability for the training calculations to be done on a GPU,
if there is one available in your computer.

25

http://deeplearning.net/software/pylearn2/
http://deeplearning.net/software/theano/

FindTRF

Find the temporal response function (TRF) connecting stimulus and response using a linear
model.

Syntax
[g,pred] = FindTRF(stimulus, response, Dir, testdata, g, Lags, Method, K, doscale)

Description

Find the Temporal Response Function (TRF). This function uses linear regression to find a
model (g) that linearly maps between stimulus and response. Because the stimulus causes the
response, the best model should be causal, with a number of input frames in the past
determining the output at the current frame. The stimulus might be the intensity of the presented
audio signal, while the response is a multi-channel EEG signal measured while the subject
listens to the audio. The basic process was used in O'Sullivan et al (2014)

This function can compute the response direction in either direction: from stimulus to response
(forward) or from response to stimulus (backward). Forward mapping uses a stimulus in testdata
to predict a neural response, while the backward mapping uses a response in testdata to
reconstruct a stimulus. Although forward and backward mapping are mathematically identical
operations, the two usually yield very different results. This is because of the different nature of
the two signals (EEG vs audio). In the forward mapping we are predicting on EEG data while
controlling for the noise in the audio. Backward mapping predicts on audio data while controlling
for noise in the EEG.

An important part of obtaining good results is using regularization to avoid overfitting. EEG or
audio data have higher-order statistical properties that are not relevant but which the decoder
might still pick up during model fitting. The decoder usually have many parameters (lags x
features x channels) which leads to systematic errors due to overfitting to random noise.
Overfitting results in good results on training data but poor generalization to test data where the
noise is different. Regularization puts constraints on the decoder weights to avoid this. FindTRF
offers several options for regularizing the decoder described below.

The function both computes the model (if the stimulus and response variables are not empty)
and uses a model to make predictions (if g and testdata are provided in the function call.) In
either case, the model is returned. If testdata is supplied then the pred is returned with the
appropriate prediction (depending on the direction).

Examples
We provide a number of examples that demonstrate how this function behaves.

First we start with a simple two-channel simulation, where the EEG features depend on only two
audio samples, the current and the preceding, from the first channel. In signal processing terms,
this represents a two-sample FIR (finite impulse response) filter. The inverse filter is then an IR
(infinite impulse response) filter with geometrically decaying terms. The code to perform this
test is shown below.

N = 10000;
StimulusData = randn (N, 2); % Generate a bunch of 2-channel data
lags = -4:10; Dir = -1;

26

% Create the response. First channel is 0.5 times current time, plus

% 0.25 times previous time. Second channel is all noise.

ResponseData = [StimulusData(:,1)*.5 + [StimulusData(2:end,1)*.25; 0] randn(N,1)];
TestingTimes = 1:1000; % Use first part for testing

TrainingTimes = max (TestingTimes)+1:N; % Use rest of data for training
TrainingStim = StimulusData (TrainingTimes, :);

TrainingResp = ResponseData (TrainingTimes, :);

TestingStim = StimulusData (TestingTimes, :);

TestingResp = ResponseData (TestingTimes, :);

% Now compute the response.

K =1.0; doScale = 0;

[g,TestingStimPredict] = FindTRF (TrainingStim, TrainingResp, Dir,
TestingResp, [], lags, 'none', K, doScale);

% Impulse response for feature 1, channel 1 should be powers of 2.
subplot (2,1,1);

plot (fliplr(lags), g(:,1,1), fliplr(lags), g(:,1,1), 'x");

xlabel ('Delta Time');

yvlabel ('Impulse Response');

subplot(2,1,2);

t=1:100; plot(t, TestingStim(t,1l), t, TestingStimPredict(t),'x")
legend ('Ground Truth', 'Predictions'); ylabel('Estimated Stimulus');

This produces the output shown below. Note, the response before time 0 is flat. With no noise
the simulated predictions are a perfect match to the original stimulus.

-—h
. 2]
T T

Impulse Hesponse
[}
(]
L]

03 ¥ W
Q5 =
1 1 1 1 1 1 1
-4 2 a 2 4] | i0
Delia Time
3 1 L 1 1 L] 1 L 1 1
Ground Truth
] 25 ¥ Predictions i
g1} 7‘1 :
tn
i _
g [l
Bl .
E -2k =
_3 | 1 1 1 L | 1 | 1
a 10 20 30 40 5O EQ 70 B0 2} 100

27

Here is a more realistic example of using the FindTRF function to estimate the attended and
unattended audio. We use the CreateDemoSignals script to generate test signals, and then find
the best linear model to predict the audio stimulus from the response. The code shown here
performs this calculation.

Use FindTRF to calculate the attended and unattended signal models. These are impulse
responses that predict the input audio given an EEG response. We'll do it for both the attended
and unattended signals. We just use a fraction of the input signals around the first attention
switch. The attention switches every attentionDuration seconds, and we'll use trfTrainingWindow
seconds on either side of one switch as training data.

trfTrainingWindow = attentionDuration / 20;

iTrain = find(recordingT > attentionDuration - trfTrainingWindow &
recordingT < attentionDuration + trfTrainingWindow) ;

iTest = find(recordingT > 2*attentionDuration);

% Now calculate the models for the attended and unattended signals.

trfDirection = -1;

Lags = O:round(l.5*impulselLength*fs);

Method = 'Shrinkage';

K= 11;

doScale = 1;

attentionModel = FindTRF (attendedAudio (iTrain), response (iTrain, :),
trfDirection, [], [], Lags, Method, K, doScale);

unattentionModel = FindTRF (unattendedAudio (iTrain), response(iTrain, :),
trfDirection, [], [], Lags, Method);

Now calculate the predicted responses for the entire signal. (Note, this includes the already
seen training data as part of the entire signal, but we only use the last half the signal (unseen by
training) when computing the correlations.

[~, attendedPrediction] = FindTRF([], [],
trfDirection, response, attentionModel, Lags, Method, K, doScale);
[~, unattendedPrediction] = FindTRF([], [],

trfDirection, response, unattentionModel, Lags, Method, K, doScale);

ca = corrcoef ([attendedAudio (iTest) attendedPrediction(iTest)]);

cu = corrcoef ([unattendedAudio (iTest) unattendedPrediction (iTest)]);

fprintf ("Attended correlation: %g, Unattended correlation: %g.\n',
ca(l,2), cu(l,2));

oe°
o

% Plot the predicted stimuli

clf

attentionSwitchPick = 3;

iPlot = find(recordingT>attentionSwitchPick*attentionDuration-trfTrainingWindow &
recordingT < attentionSwitchPick*attentionDuration+trfTrainingWindow) ;

plot (recordingT (iPlot), [attendedPrediction(iPlot) unattendedPrediction (iPlot)]")

legend ('Attended Signal', 'Unattended Signal');

axis tight

The results are shown here.

28

Attended Signal Unattended Signal

T ‘|1|-r|r|r||1|
" I I =t " I
il H\'H'HHH'H"' | ik
A R
U AN R R 110
154 s 7 785 76 T34 745 75 s T8
. Attended TRF Prediction Unattended TRF Prediction
l‘rI'l IIHI|I]||||||1||II|| ITJI.'!”'IH]H‘["!”
" ‘ ‘ H“ |‘||||| |||| 05 ||,1||| | "||| HM[“‘H .
AT AT <t M
(Rt L 1 1
“ \H \|||I|||||\| Imw,” AL
B e 745 75 7es 76 74 745 75 755 7B

As predicted the unattended response is noisier because the signal-to-noise ratio is higher--the
attended correlation: 0.988244, unattended correlation: 0.861533. The model used to predict
these particular responses were based on +/- 1.25 of training data right around the first attention
switch (at t=25s). We are plotting the response above around the 3rd attention switch (near
t=75s).

Input Parameters

stimulus - Stimulus training set

A Nime X Nieatures Matrix of data that represents the data the subject heard. This data is used as
training data and from this data the FindTRF function computes the best linear regression
model. The sample rate of the stimulus and the response must be the same, and both matrices
must have the same number of rows (samples).

response - Neural responses

A Niime X Nonanneis Matrix of data that represents the measured EEG/MEG responses of the
subject. The sample rate of the stimulus and the response must be the same, and both matrices
must have the same number of rows (samples).

Dir - specifies the direction of the mapping.

With Dir = 1 we compute the forward mapping (predict neural response from stimulus, or
encoding). While with Dir = -1 we compute the backward mapping (predict stimulus from neural
response, decoding).

29

testdata - test data used to run the model.

An optional Ngne X Nieatures Matrix that is optional data used to test the model. If the data is empty
then there are no output predictions. If it is supplied it represents the appropriate data for the
desired direction. If direction is positive then supply the test stimulus data and the response is
calculated. If direction is negative, then supply the measured response data, and the stimulus is
calculated.

g - TRF model

A Niags X Nreatures X Nenannets Matrix containing a previously computed TRF. If empty, it will be
calculated from training data. Supply a pretrained g to predict based on testdata (be sure to
specify the same lags as used in training). If both the stimulus and response are provided then g
is always estimated. Singleton dimensions are removed.

Lags - The time lags to include in the model.
A vector of time lags from which to use in making a prediction. Are the time delays between
stimulus and response in samples. The lags should always be positive if the data is causal,
meaning that the response follows the stimulus. The time lags can be specified in one of three
ways.

e Specify the [start end] as a two-element vector. The intermediate values are added.

e Specify a vector with a full vector of lags.

e The default value for this parameter is a vector from 0:100
See the LagGenerator function for more information about how this parameter is used.

Method - Regularization method to use.
Use this parameter to specify a regularization method to avoid overfitting. An additional input K
specifies the regularization parameter(s). Possible methods are:
e 'Shrinkage', K (Default) (default K=0.2, range [0:1]).
Shrinkage regularization shrinks the decoder weights by reducing the amount of
off-diagonal sample variance. This is done by adding a penalty term during the decoder
estimation. K(1) is a tuning parameter that balances small and large variance
dimensions in the data. K=0 corresponds to the unregularized case, and K=1
corresponds to maximum regularization. See Blankertz et al. (2011) for details.
e 'Ridge’, K (default K=[10,2], range [0:Inf] [0 1])
This option uses Tikhonov (or L2) regularization which constrains the decoder weights to
be closer to zero, whereby only the more important weights are non-zero. This is done
by adding a penalty term during the decoder estimation. K(1) is a tuning parameter that
controls the size of this penalty. K(1)=0 corresponds to the unregularized case. The
weights shrinks as K(1) grows and the off-sample variance is constrained to be closer to
zero. K(2) is a flag that determines whether to use the derivative of the penalty matrix by
specifying its order (either 0 or 1). K(2)=0 performs normal ridge regression (no
derivative). K(2)=1 (default) uses the first order derivative. This penalizes neighboring
lags and yields more smooth solutions. K(2)=1 was suggested and used successfully by
Lalor et al 2006.
e LRA, K (default K=0.99, range [0:1]) : low rank approximation
This option uses principal component analysis to perform the regression in a
lower-dimensional subspace of the data. This is done to reduce the effect of data
dimensions with lower variance. The tolerance parameter K specifies the fraction of the
total variance to preserve. K=1 corresponds to the unregularized case. Lower values

30

removes more lower-variance dimensions (K=0.9 preserves 90% of the variance). See
Theunissen et al (2001) and David et al (2007) for details

e 'Lasso', K (default K=[.01,1]) : lasso / elastic net. Uses MATLAB's Lasso (and thus needs
the Statistics toolbox). K(2) controls the degree of L1 penalty (elastic net). This option
may result in long computation times

e 'None': no regularization, use ordinary least-squares

doscale - Scale inputs to zero mean and set standard deviation to 1
Offsets in the data are not estimated by the regularized regression so the data must be properly
scaled. This also pertains to predicted responses.

Output Parameters

g - the TRF function, a matrix

This is the decoder that is calculated from the input data. It has a size of Njgs X Nreatures X Nehannets-
The decoder represents weights at the given time lags, features, and channels.

pred - The predicted output from testdata

If Dir is positive (forward model), then this is EEG/MEG data predicted from the stimulus data
provided in testdata. If Dir is negative (backward model), then this is audio predictions based on
the EEG/MEG data provided in testdata.

References

B. Blankertz, S. Lemm, M. Treder, S. Haufe, K. Mller (2011). Single-trial analysis and
classification of ERP components - A tutorial. Neurolmage 56: 814-825. [PDE or CiteSeer]

S. David, N. Mesgarani, S. Shamma (2007). Estimating sparse spectro-temporal receptive fields
with natural stimuli. Network: Computation in Neural Systems 18(3): 191-212. [PDF or PDF]

E. Lalor, B. Pearimutter, R. Reilly, G. McDarby, J. Foxe (2006). The VESPA: a method for the
rapid estimation of a visual evoked potential. Neurolmage 32(4): 1549-1561. [PDFE or PDF]

J. O'Sullivan et al. (2014). Attentional selection in a cocktail party environment can be decoded
from single-trial EEG. Cerebral Cortex, doi:10.1093/cercor/bht355. [PDF]

F. Theunissen, S. David, N. Singh, A. Hsu, W. Vinje, J. Gallant (2001). Estimating spatial
temporal receptive fields of auditory and visual neurons from their responses to natural stimuli.
Network Comput. Neural Syst 12:289-316. [PDF]

31

http://statweb.stanford.edu/~tibs/lasso.html
http://dx.doi.org/10.1016/j.neuroimage.2010.06.048
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=29AAA1DD884A4AC9306A4F06028D9DE3?doi=10.1.1.370.8974
http://dx.doi.org/10.1080/09548980701609235
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.1583&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/S1053811906006434
http://eprints.maynoothuniversity.ie/5537/1/BP_vespa%20method.pdf
http://cercor.oxfordjournals.org/content/25/7/1697
http://www.maths.tcd.ie/~mnl/store/TheunissenEtAl2001a.pdf

LagGenerator

Create additional context for a signal by adding copies of the data at different temporal lags.

Syntax
out = LagGenerator(in, lags)

Description

Shift a temporal response so as to create multiple copies of the original data, shifted in time so
each row of the output response has several temporally shifted versions of the original data.
Zero pads the first part of the output for positive lags and zero pads the last part for negative
lags.

All functions in this toolbox assume that each column is a channel or a feature, and time goes
down each column. This function adds copies of the data, additional columns for each lag.

Examples
For example the input
>> in=[(1:5)"' (2:2:10)"']

in =

g w N
O 0 o DN

1

With a lag request for -1:1 produces a new array, the center two channels contains the original
data. The left two columns are shifted backward in time, while the right two columns are
shifted forward. In DSP terms, this is caused by adding a lag (z) to the data.

>> LagGenerator (in, -1:1)

ans =

O 0w N
O O O o >
g w N
O 0 o BN
S w N PO
O o BN O

Inputs
in - The input data, a Nime X Nieawres array of data.

lags - The requested temporal changes, a vector of length N,,... Negative lags correspond to
moving the entire data array forward in time, while positive lags delay the data.

Outputs

32

out - The output data, augmented with an additional copy of the data for each time lag. The
output array has a size of Ny X (Nreatures Niags)-

33

resample fft - Resample a signal

Syntax
newS = resample_fft(oldS, oldFs, newFs)

Description

Resample an (old) signal to a new sample rate. The original (old) sample rate is oldFs, the new
sample rate is newFs. This code processes one- or two-dimensional signals, Niames X Nehanneis 1IN
size. Each column of the data is resampled independently.

This code uses an FFT to perform interpolation and represents an optimal resampling. It does
this by converting the signal to the FFT domain, adjusts the size of the FFT array, and then
inverts the FFT to reconstruct the signal at the new sample rate. When upsampling, we add
zeros to the high-frequency end of the spectrum. To down sample we remove the
high-frequency components before inverting the FFT.

Note: this resampling is accomplished by zero-padding the original signal to twice its length, so
we implement the filtering with a linear convolution. This means that there might be some errors
at the beginning and end of the signal because of the explicit zero-padding.

Examples

We start with a sum of two sinusoids, sampled at 100Hz (top panel of the figure below). When
we resample this signal at 1Hz, we must filter the signal at the Nyquist rate (2 Hz), which is
done by removing high-frequency components of the FFT signal. When we reconstruct the
down-sampled signal we have lost the high-frequency component because it is above the
Nyquist rate. This is shown in the middle panel of the figure below and the actual sample points
are indicated with an ‘x.” Finally, we up-sample the down-sampled signal back to the original
sample rate (100Hz). This restores the straight lines used in the middle panel to something like
the original sinusoid.

% Create sum of two sinusoids (1/2pi Hz and 10/pi Hz) sampled at 100Hz
t = (0:.01:4*pi)"';

s = sin(t) + sin(20*t);

subplot (3,1,1); plot(t,s);

axis tight; ylabel ('Original');

title ('Demonstration of fft_resample');

% Resample the signal down to 1Hz.

s2 = resample fft(s, 100, 1);

subplot(3,1,2); plot(t(1:100:end-99),s2, t(1:100:end-99),s2, 'x');
axis tight; ylabel ('Down Sampled');

% Upsample the down-sampled signal back to the original 100Hz
s3 = resample fft(s2, 1, 100);

subplot(3,1,3); plot(t(l:length(s3)), s3);

axis tight; ylabel ('Up Sampled');

34

Demonstration of fit resample

rlrl l-l |'|'| T T |-|| T T
|LFI“II||||II|||I||H| [I|||||
Té |||||||||||||||||||||'I |-|" '|-| || H || lll ||||||r| |
:E.CI-”” |V 'J“U|J|I||| I |1|'|flr|||||||||| | IJJUU' ||| |”|
2 on(\ VT A AL LS YU ||"I|||||
© 4t AU R AN
T CUUT LYY L,I | |I”h|
1 Illhll Ill |I 1 1
a 2 4 B B 1':| 12
|___ 1 L 1 1 I_'_,-F" T | 1
B §
2 ost]
N
(2] ':" -
s
0.5 - -
A
- 1 I 1 |__‘_'-— L L L L 1
a 1 2 d 4 5 53 7 B a 10 11
I ¥] L]
g G'5/ /
=
e of
9]
g§asr S
Ak]] 1 1 L
a 2 4 L] B 10

Input Parameters

oldS - Original (old) signal

The original signal to be resampled. This should be a matrix of data of size Niames X Nehannels-
Each column is resampled to the new sample rate, adjusting the frequency content of the signal
as appropriate.

oldFs - Original (old) sampling frequency
The sampling rate (Hz) of the original (old) signal.

newFs - New sampling frequency for the output data
The sampling rate (Hz) of the new signal.

Output Parameters

newsS - The new resampled data

This matrix contains the new data. The size of this resampled output matrix is N¢ames2 X Nenannetss
where N.mes» iS approximately equal to Ngamesn€WFs/oldFs.

35

StateSpaceDecoder

Use a probabilistic model to decide to which sound the subject is attending.

Syntax
[9,q_L, g_U] = StateSpace(cors1, cors2, max_iterations, debug)

Description
This function estimates the probability of attending to speaker 1 in a two-speaker environment.

Starting with an estimate of the correlation between the response and each of the two original
signals, this function uses a probabilistic state-space decoder to decide when the subject is
listening to speaker 1 (and not speaker 2). With noise and other random processes, the
correlation signals produced by any of the algorithms in this toolbox are noisy. This algorithm
finds an optimal path through the state space (which speaker the subject is attending) that
maximizes the probability of observations and minimizes the state transitions. The output is an
estimate of the likelihood that speaker 1 has the subjects attention at each point in time.

The correlations used by this routine can come from any number of sources. In the example
below, we use FindTRF to find an optimal linear decoder, and to predict the attended intensity
signal. But we can also use the DNN approach, or even CCA, to estimate the needed
correlations. Measures of correlation at a rate of about 2 to 4 Hz seem to work well.

This routine is based upon principled approach to transform correlations (produced by routines
like FindTRF) into a decision. An alternative approach, using an ad-hoc approximation to
convert correlations into probabilities, is provided by the ViterbiSearch routine. The
ViterbiSearch routine might be useful if you do not have the Optimization toolbox that this
routine needs.

Examples

Using the simulated data from the CreateDemoSignals script, as well as all the demo scripts
from the FindTRF documentation, we compute the correlations and apply the state space
model.

% Create the correlation signals, and downsample them to 2Hz.

corsl = attendedPrediction(l:length(audioSl)) .* audioSl;

cors2 = attendedPrediction(l:length(audioS2)) .* audioS2;

newFs = 2;

corsld = resample fft(corsl, fs, 2);

cors2d = resample fft(cors2, fs, 2);

recording2T = recordingT (l: (fs/newFs) :end-1);

i2Plot = find(recording2T>attentionSwitchPick*attentionDuration-4*trfTrainingWindow &

recording2T < attentionSwitchPick*attentionDuration+4*trfTrainingWindow) ;

clf; plot(recording2T (i2Plot), [corsld(i2Plot) cors2d(i2Plot)]);
legend('Signal 1', 'Signal 2'); xlabel('Seconds'); ylabel('Correlation');

This produces correlation signals that look like this around the attention switch at 75s:

36

1 1 1 1 L] 1 1 1 1
Signal 1
Signal 2
. -
T 1 ';\\//\f/ \“\, N
R | f) g o o
0.8 II I| -
II |
II I'
\ f
| |
0Bk i .
. ! |
1 |
1|
II I|
5 \/
=R i
p 04 :l:l
[
& A
[]
[1
| H
02+ {1 -
| I|
|
|
|
| I| .'ll
/ f |/
\ [R
B o "/ - A
o — /Y AN
\ _."l \ II I| Iu'l o —
Y, \ |'||
\
L
_{]_2 1 1 1 1 1 1 1 1 1
70 7 732 73 T4 75 76 Eicd TE 7a ao
Seconds

Now compute the state-space decoding, and plot the results. The dotted lines show the 70%

confidence interval [defined how?], while the dashed line shows a threshold between attending
to speaker 1 (above) and speaker 2 (below).

max iterations = 100; debug = 1;
la , g L, 9U]

StateSpace(corsld, cors2d, max iterations, debug);

o
o

plot (recording2T, g,
[min (recording2T) max (recording2T)], [0.5 0.5],
recording2T, g L, 'b:', recording2T, g U, 'b:');
xlabel ('Seconds'); ylabel ('Probability of Attention to Speaker 1');
title ('State Space Decoding Result');

‘r—-1',

The graph below shows the decoding result over the entire 100-second long trial. The results

around 25 seconds are not fair (or realistic) since this data was used for training the decoding
model.

37

State Space Decoding Result
0.8 1 T T T T 1

T T T =1
ok _ 3 4

ark / x‘a F/f .. 1

aat -\ / " | i _ 1

Probability of Attention to Speaker 1

a2t . LN 4

0.1k e -

1 L
a 10 20 an 40 B B0 70 an 90 100
Seconds

Input Parameters
[a,q9_ L, g U]= StateSpace(cors1, cors2, max_iterations, debug)

cors1 - Correlation of the response to the first speaker
cors2 - Correlation of the response to the second speaker

max_iterations - Optional, default value is 100. Number of EM iterations to perform while
deciding the optimal decoder.

debug - Optional, default value is 0 or off. Set to a non-zero value to see a plot of the state
decoding probability develop over iteration.

Output Parameters
g - The state decoding probability. This is a probability that the subject is listening to speaker 1.

g_L - A lower bound estimate of the state decoding variable. At any one point in time, there is a
70% chance that the true decoded state is in between the values of q_L and q_U.

g_U - An upper bound estimate of the state decoding variable. At any one point in time, there is
a 70% chance that the true decoded state is in between the values of g_L and q_U.

38

The Cl parameter’s default value is to compute the 70% confidence intervals around the
estimation points, but it can be arbitrarily changed to obtain different confidence intervals.

Dependencies
This algorithm depends on the fsolve() routine in the MATLAB Optimization Toolbox. It will only
run if you have access to this toolbox.

References
Akram, S., Simon, J. Z., Shamma, S. A., & Babadi, B. (2014). A State-Space Model for Decoding Auditory
Attentional Modulation from MEG in a Competing-Speaker Environment. In Advances in Neural

Information Processing Systems(pp. 460-468). [PDFE].

Akram, S., A. Presacco, J. Z. Simon, S. A. Shamma and B. Babadi (2015), Robust Decoding of Selective
Auditory Attention from MEG in a Competing-Speaker Environment via State-Space Modeling,
Neurolmage. 2015 Oct 2. pii: S1053-8119(15)00870-8.

39

http://papers.nips.cc/paper/5523-a-state-space-model-for-decoding-auditory-attentional-modulation-from-meg-in-a-competing-speaker-environment

TFRegression.py (Not Present Yet)
Use Tensorflow (www.tensorflow.org) to estimate an inverse decoding model.

Syntax
python TFRegression.py TrainStimulusDataFile.mat TrainResponseDataFile.mat \
[TestStimulusDataFile.mat TestResponseDataFile.mat]

Description

This is preliminary Python code. It demonstrates how to use Google’s Tensorflow
machine-learning system to do regression. You must install Tensorflow (www.tensorflow.org) to
use this routine.

Given training data (Nx1 stimulus, and NxC response data) this code uses Tensorflow to create
a network and optimize it for the given training data. It reports the loss and the final correlation
on the training data.

If the optional testing data files are included on the command line then these files are used to
test the model.

The data files listed on the command line are Matlab data files, each containing a single array
named ‘data’.

40

http://www.tensorflow.org
http://www.tensorflow.org

ViterbiDecoder - Estimate the state sequence

Syntax
[decoded_states,all_probs] = ViterbiSearch(observations, start_p, trans_p, emit_f)

Description
From basic correlation signals, use a Viterbi decoder to make a decision about the direction of

attention over time. At each time step one could simply use the larger correlation to indicate
whether the subject is paying attention to speaker 1 or speaker 2, but nobody switches their
attention at every frame. In the O’Sullivan EEG work the correlation values were averaged over
many seconds of each trial and the winner was chosen based on the overall window. Instead we
want to do something more subtle, deciding the state based on a probabilistic mixture of the
strength of the correlation and the time since the last attentional switch. The code used in this
toolbox is based on the Wikipedia algorithm.

In a Viterbi decoder one must be able to represent observations as probabilities. It is a bit
difficult to do that with correlations. In our case for each time step we have N correlation
measurements. For this demonstration we use a Gaussian centered at 1 with an arbitrary
standard deviation to estimate the probability that a particular correlation says we are in this
state. This is equivalent to saying that the probability of being in state i is only based on
correlation #i, and is independent of the other correlations.

Here are some results. We are using the same kind of data used for the synthetic tests by
CreateDemoSignal. One transition between speakers every 25 seconds. We generate artificial
signal correlations. The emit_f parameter is a function that converts the observations
(correlations) into a probability by assuming that the correlations are generated by Gaussian
process centered at O (state or speaker 1) or 1 (state of speaker 2), and with a standard
deviation of model_std. A Gaussian model is clearly not correct for this data, which is the
rationale for the improved approach used in the StateDecoderModel function .

The state-transition matrix is a first-order Markov model that defines how likely one stays in the
same (attentional) state. Here we simply use a parameter that is roughly equal to the expected
state-duration time. Since it's a Poisson process, the mean duration is equal to
1/transition_probability.

% Continuous observation example. Based on correlation signals from
% an attention-switching model.
max_t = 100;

noise std = 0.5; % How much noise to add to correlations

model std = 0.5; % How much noise the model expects

T = (l:max t)'; % A time scale, 1Hz sampling rate

start p = [0.5 0.5]; % We don't know who is speaking first

trans time = 25; % 1/trans time is approximation for transition probability
trans_p = [l-1/trans_time 1/trans_time; 1/trans_time 1-1/trans_time];

41

true state = mod(floor (T/25),2)+1;
correlations = [randn(max_t,1)*noise_std + ..
(2-true_state) randn(max t,1)*noise std + (true_ state-1)];

correlations = min(1l, max (-1, correlations)); % Limit correlation values
subplot(2,1,1); plot(correlations); title('Synthetic Correlations');
legend('Speaker 1', 'Speaker 2', 'Location', 'best'); ylabel('Correlation');

Probability of being in a particular state is based on the
correlation of observations. Probability of state i is a Gaussian of
width model std, centered at 1. Thus the emission probability for
state 1 is a function of element i of the observation (correlation)

o° oo oo o0 o°

vector.

emit f = @(obs v, desired state) exp(-((obs_v(desired state)-1)."2/model std.”"2));
[decoded states, all probs] =

ViterbiSearch (correlations, start p, trans_p, emit f);

subplot(2,1,2); hands = plot(T, decoded states, '*', T, true state, '--');

set (hands (1), 'Linewidth', 2)
title ('Decoded State'); xlabel ('Time');

Here is what it looks like when the expected duration in each state is 25 seconds.

Synthetic Correlations

V T/ |/ 7T

= |]
2 L[
g fll | | ||
8 V Mld
I I
a0 50 BO 100

[[| |

18} [I | Il
I [| |

16k | | | 4

1.4 | | ! I
| | | T

|

12} ' ']

| | I
" L, : e !
a 10 20 30 a0 50 EO 70 80 g0 100

Time

There is a bit of “hangover” at the true state boundaries since the decoder wants more evidence
before deciding.

42

And here is the result when you have an expected duration of 3 samples. There are more
errors because the decoder is integrating less information before making a change.

Bjrnihetl:: Correlations

i '“I MAITTT AT T YRWEYTAVEY
| | NN ! | 1 | | g l
|'||| I'.' Illl. ' | III I' '“' I III Iil i II rlll I| |I l Ir\\' I ||I II| |' N |'| [" II| [|II
0.5 -||| || ||) II I llll | || I'1 I|I|I J | | r
§ | } | l I | \ II | ' I IH
2 4 |/| |||I |\|4L1' |.1| ||| | |'u| || ' | r’.|'||||||l [l ||| "||
= (1, M | | ! I ||l
g Wy [V || I I N | |||l U
ask ([} N\ '|' I,
[| | \- I'. L | Soeaker 1
-1 l- 1 I 1 III| 1 I1 1 . r I I ere
a 10 20 a0 40 50 BO 70 a0 g0 100
T — el
2 . P gl
18+ [I | 1
16}k I I | T
1.4k \ | : .
12} ' ']
| | |
- gyl g | ! L W
a 10 20 30 a0 50 EO 70 80 80 100
Time
Input Parameters

observations - A matrix of size Ny.s X No,s Which describes the observations made of the data.
The number of observations at each time point is arbitrary, but must be what the emit_f function
is expecting.

start_p - The initial probability of being in each of the Nycs.

trans_p - The state transition probability matrix has size Nges X Neiaes @Nd encodes the
probability of moving from state i (the row index) to state j (the column index).

emit_f(obs_vec, s) - An emission probability function of two variables that takes an observation
vector size (1 x Nys) and returns the probability that we are in the given state (s). In the example
above, the emit_f function calculates the probability that the observation of the correlation for
state s is close enough to 1 by calculating N(1, model_std).

Output Parameters
decoded_states - A vector of length N,.s indicating the most likely state at each time.

43

all_probs - A matrix of size Ntimes x Nstates that indicates the probability that we are in each
state. (The decoded states are calculated from this matrix by tracing backwards from the last
frame, looking for the highest probability at each time frame.

44

Appendix 1: Data

We are distributing two different datasets with this toolbox. Neither is very large, but they can
be used to establish that this toolbox is producing sensible results. Hopefully these datasets,
and the tools in this toolbox, serve as a benchmark for future work.

The EEG dataset was collected in Telluride. The dataset is a simple single-speaker
speech-decoding experiment that can be used for measuring speech decoding correlations.

The second dataset is MEG data, collected by Jonathan Simon’s lab.

Speech Decoding Experiment - EEG Demo Data

This data was collected as part of demonstration in Telluride Colorado during July 2015. The
basic data is essentially speech in, EEG out. The task is to predict the speech or the EEG
signal from the other data.

A twist to the experiment was that the EEG signals are recorded from 4 subjects simultaneously.
Subjects were viewing a video of a talking face. We recorded EEG data from all 4 subjects
using 16 electrodes per subject. The ground from each of the 4 subjects were wired together,
and then connected via a single wire to the active ground on the BrainVision amplifier.

Preprocessing

e EEG
o Highpass FIR filter at 0.1 Hz with a filter order of 200
o Demean
o Eye blink removal using NoiseTools
o Robust PCA
o Resample to 128 Hz (using resample_fft)
o Bandpass FIR filter between 2-8 Hz with a filter order of 128

o Trial epoching and alignment with start of audio
e Audio
o Compute Hilbert envelope
o Resample to 128 Hz (using resample_fft)
o Lowpass FIR filter at 8 Hz with a filter order of 128

Data format

The data is stored in a large Matlab structure with a number of fields. The most important ones
are:

eeg: A cell array with the EEG recordings from 32 different trials.

wav: A cell array with the intensity profile of the 4 different stimuli.
data.event.eeg(i).value: The stimulus number for eeg trial i.

data.fsample: The sampling rate for the EEG and wav data.

45

Speech Attention Experiment - Two Speaker MEG Data

This MEG data was supplied by Jonathan Simon (U of Maryland).

There are four files, representing the response to four different conditions:
1. Male speaker alone
2. Female speaker alone
3. Simultaneous male and female speakers, subject attends to the male.
4. Simultaneous male and female speakers, subject attends to the female.

Each file contains the data from 3 separate 60 second trials. All the data was recorded from the
same subject.

The plot below shows the decoding accuracy from the male data, single speaker. We trained on
9/10th of the first trial, testing on the last 1/10th. Repeat 10 times.

MEG Model Accuracy (train on 9 pieces, test on 10th)
I L] I I I

0.2s |

10e-4

Corre lation for trial 1

l:l | 1 1 1 L | 1 1 1
a 5 10 15 20 25 o 35 40 45 A0
MNumber of additional lags in madel (f =64)

This data was used in the following study: Akram, S., A. Presacco, J. Z. Simon, S. A. Shamma
and B. Babadi. Robust Decoding of Selective Auditory Attention from MEG in a

Competing-Speaker Environment via State-Space Modeling, Neurolmage. 2015 Oct 2. pii:
S1053-8119(15)00870-8.

46

	Speech Decoding Experiment - EEG Demo Data
	Speech Attention Experiment - Two Speaker MEG Data

