
1

Introduction​ 3
Cluster: Sherlock​ 3

Sherlock Setup​ 3
Using Sherlock​ 4

Sherlock Workflow​ 4
Sherlock Disk Usage​ 4
Sherlock SLURM Jobs​ 4

Cluster: SNAP​ 5
Brando’s Comments​ 5
Rylan’s Recommend Setup​ 6
Brando’s Recommended Setup​ 8

Always Put This At The Top of Your Scripts​ 9
Using vscode or pycharm (or an IDE) that directly connects to a server​ 10
Long Running Jobs on SNAP​ 10
The simplest way to use SNAP/Info labels (imo)​ 10
Secret Q&A doc from snap​ 11

Model Checkpoints on SNAP​ 12
Large Datasets on SNAP​ 12
Data crawling on SNAP​ 12

Installing Anaconda/Miniconda​ 12
Conda init bricks?​ 14

IDE Use on Clusters​ 15
PyCharm​ 15
VSCode​ 17

IDE Use on Clusters for Windows (VSCode)​ 19
Lab Website​ 20
Lab HuggingFace​ 21
Lab GitHub​ 21
Sang’s Setup​ 21

Everything Conda​ 21
Conda Alternatives​ 22
Conda for Finetune LLMs​ 22
LLMs everything​ 24
Conda for Deploying LLMs​ 24
Install Python​ 27
Install Jupyter Kernel​ 27

2

Install Torch​ 27
Everything Tmux​ 28

FAQ​ 28

3

Introduction
Welcome! Hopefully, this tutorial will get you up and running on at least one of Stanford CS’s
many compute clusters.
Overview of Stanford Clusters

-​ There are several clusters you may use during your time here
-​ SNAP

-​ Used by: Subset of labs in Stanford Computer Science
-​ Managed by:

-​ Sherlock
-​ Used by: All of Stanford
-​ Managed by: Stanford
-​ Properties:

-​ SC - previously called the Stanford AI Lab (SAIL) Cluster
-​ Used:
-​ Managed by:
-​ Properties:
-​ Onboarding

https://docs.google.com/document/d/1WmdhdR_-uigbtHHcINz7sTB-vlFasTp8
pQ0Y6L4eCm4/edit

-​ NLP Cluster
-​ Yamins’ Cluster

-​ Used by: Yamins, Goodman, Ganguli
-​ Managed by: Yamins
-​ Properties:

Cluster: Sherlock
-​ Sherlock is a Slurm cluster
-​ Slurm is a cluster management tool that makes running & queuing jobs easy, as well

as managing equitable use and good resource sharing
-​ Slurm means that when you login, you’re routed to a load balanced login node, which

means a node in the cluster that can communicate quickly with the outside world
with minimal compute

-​ You should not run code on the login node!
-​ Rather, use the head node to submit jobs to Slurm. Slurm

Sherlock Setup
-​ Email srcc-support@stanford.edu with your name and your SUNet ID (e.g. rschaef),

cc’ing your supporting professor (e.g. Koyejo)
-​ Instructions: https://www.sherlock.stanford.edu/docs/getting-started/

-​ Once approved, connect via SSH:
-​ ssh <sunetid>@login.sherlock.stanford.edu

https://docs.google.com/document/d/1WmdhdR_-uigbtHHcINz7sTB-vlFasTp8pQ0Y6L4eCm4/edit
https://docs.google.com/document/d/1WmdhdR_-uigbtHHcINz7sTB-vlFasTp8pQ0Y6L4eCm4/edit
https://slurm.schedmd.com/documentation.html
mailto:srcc-support@stanford.edu
https://uit.stanford.edu/service/accounts/sunetids
https://www.sherlock.stanford.edu/docs/getting-started/

4

-​ For more details, see
https://www.sherlock.stanford.edu/docs/getting-started/connecting/

Using Sherlock

Sherlock Workflow
-​ Because Sherlock is a SLURM cluster, the way to run code is to submit jobs to Slurm

that specify what code you want to run and what resources each job will require
(examples below). Slurm will then provision the necessary compute resources and
run your jobs.

Sherlock Disk Usage
-​ When you login, Sherlock will show you our group’s current disk usage and max disk

usage

-​
-​ You have 15GB in your HOME directory (e.g. /home/users/rschaef)

-​ To figure out what your HOME is, use: echo $HOME
-​ We collectively have 1 TB in our GROUP_HOME directory (i.e. /home/groups/sanmi)

-​ To figure out what our GROUP_HOME is, use: echo $GROUP_HOME
-​ I recommend installing Anaconda under $HOME, and putting everything else

(including virtual environments) in your personal directory under $GROUP_HOME
because 15 GB is not enough

Sherlock SLURM Jobs
-​ In order to run code, you’ll need to submit a job to SLURM specifying what code you

want run and what resources you want provisioned for that run
-​ To do that, you’ll need a SLURM bash script. Here is an example:

#!/bin/bash
#SBATCH -n 1 ​ # one node

https://www.sherlock.stanford.edu/docs/getting-started/connecting/

5

#SBATCH --mem=32G ​ # RAM
#SBATCH --time=01:00:00 ​ # total run time limit (D-HH:MM:SS)
#SBATCH --mail-type=FAIL

Activate virtual environment.
source /home/groups/sanmi/rschaef/KoyejoLab-Rotation/emergence_venv/bin/activate

export PYTHONPATH=.

write the executed command to the slurm output file for easy reproduction

https://stackoverflow.com/questions/5750450/how-can-i-print-each-command-before-e
xecuting
set -x

-u is critical to ensuring results aren’t buffered but are instead immediately written to
stdout.
python -u notebooks/emergence/gpt3_addition_analyze.py

Cluster: SNAP

Brando’s Comments

To gain access to the SNAP cluster, email action@cs.stanford.edu and cc Professor Koyejo.
Provide your SUID ID number (e.g., 05756291) and your CSID (e.g., rschaef), not your SUNetID.

Before you read, I want to preface by giving the wiki page Snap/info lab give about their own
cluster: https://ilwiki.stanford.edu/doku.php?id=start. That’s the docs they made
themselves and that I used to construct my own set up. You can also read the Introduction
to SNAP slides.

The info labs/SNAP cluster is not set up in a standard way – e.g. with a HPC workload
manager like slurm, condor, qsub or variants. Therefore the advice below might be strange
for people with more experience. After too many hours trying to set up a nice workflow I
recommend one of the following:

Read this: https://ilwiki.stanford.edu/doku.php?id=hints:storefiles. The tldr summary is DFS in
snap is super slow so use LFS (means data & ckpts likely need to be duplicated across
serves to gain speed or it’s totally unusable). AFS is nice for sharing code across servers.
DFS I don’t know what it’s useful for. I claim nothing even though they sent me this link:
https://www.weka.io/learn/ai/what-is-network-file-system . If you find a use for DFS let
everyone know please. I’m avoiding dfs like the plague.

mailto:action@cs.stanford.edu
https://legacy.cs.stanford.edu/computing-guide/access/csid
https://ilwiki.stanford.edu/doku.php?id=start
https://drive.google.com/file/d/1xJUxMa-w3gTQ_k70AtYqYc-wWc0FOSL0/view?usp=sharing
https://drive.google.com/file/d/1xJUxMa-w3gTQ_k70AtYqYc-wWc0FOSL0/view?usp=sharing
https://ilwiki.stanford.edu/doku.php?id=hints:storefiles
https://www.weka.io/learn/ai/what-is-network-file-system

6

Youtube show case of the recommended way on how to use snap:
https://youtu.be/XEB79C1yfgE .

Rylan’s Recommend Setup
●​ Step 0: Join the SNAP Slack because everyone misses this step

○​ the SNAP slack channel
https://join.slack.com/t/snap-group/shared_invite/zt-1lokufgys-g6NOiK3gQi8
4NjIK_2dUMQ

●​ Step 1: Connect to a SNAP server
○​ You need to SSH into a server directly
○​ For setup, the first machine you choose doesn’t much matter
○​ Choose a server from this list and SSH into it

■​ e.g., I choose turing1
■​ Then I SSH into turing1 with ssh rschaef@turing1.stanford.edu
■​ You may receive the following error: Unable to negotiate with

171.64.75.72 port 22: no matching host key type found. Their offer:
ssh-rsa,ssh-dss

●​ Following https://askubuntu.com/a/836064, you’ll need to
modify the SSH command

●​ ssh -oHostKeyAlgorithms=+ssh-rsa
rschaef@turing1.stanford.edu

●​ Step 2: Create your .bashrc files
○​ SNAP doesn’t use a .bashrc file per user, but rather .bashrc.user
○​ Create your .bashrc.user file on /afs/

■​ e.g. Rylan’s is at /afs/cs.stanford.edu/u/rschaef/.bashrc.user
■​ SNAP has three storage systems. AFS is the one that will always be

available and loaded whenever you SSH into any SNAP machine
■​ Following Brando’s configuration, Rylan’s .bashrc.user file has 1 line:

●​ source /afs/cs.stanford.edu/u/rschaef/.bashrc.lfs
○​ Create a .bashrc.lfs file on /afs/

■​ e.g. Rylan’s is at /afs/cs.stanford.edu/u/rschaef/.bashrc.lfs
■​ Following Brando’s configuration, Rylan’s .bashrc.lfs file has a few lines

●​ Step 3: Install Anaconda/Miniconda
○​ We recommend installing Anaconda/Miniconda on /lfs/, not /afs/
○​ For detailed instruction, see Installing Anaconda/Miniconda below
○​ I installed my Miniconda to /lfs/turing4/0/rschaef/miniconda3

■​ Make sure to install Miniconda on LFS!!! Not AFS. If you install on AFS,
you will run out of space.

○​ Miniconda will ask: Do you wish the installer to initialize Miniconda3 by
running conda init? [yes|no]

■​ If you type yes, Miniconda installation will modify your /lfs/ .bashrc file
and say something like:

●​ modified ​ /.bashrc
■​ That file is irrelevant in the eyes of SNAP and will affect nothing

https://youtu.be/XEB79C1yfgE
https://join.slack.com/t/snap-group/shared_invite/zt-1lokufgys-g6NOiK3gQi84NjIK_2dUMQ
https://join.slack.com/t/snap-group/shared_invite/zt-1lokufgys-g6NOiK3gQi84NjIK_2dUMQ
https://ilwiki.stanford.edu/doku.php?id=snap-servers:snap-servers
https://askubuntu.com/a/836064
mailto:rschaef@turing1.stanford.edu
https://github.com/brando90/.dotfiles/blob/master/.bashrc.user
https://github.com/brando90/.dotfiles/blob/master/.bashrc.lfs

7

■​ You have two choices:
●​ 1) Source that /lfs/turing4/0/rschaef/.bashrc file inside your

.bashrc.user file
●​ 2) Move the contents of that file into your .bashrc.user file (or

your .bashrc.lfs file)
■​ If you do neither, conda will not work.

At the end of setup, Rylan has the following files:

File: /afs/cs.stanford.edu/u/rschaef/.bashrc.user

source /afs/cs.stanford.edu/u/rschaef/.bashrc.lfs

File: /afs/cs.stanford.edu/u/rschaef/.bashrc.lfs
print current working directory with each prompt
export PS1="\u@\h \w$ "

Use current machine as home.
export LOCAL_MACHINE_PWD=$(python3 -c "import
socket;hostname=socket.gethostname().split('.')[0];print('/lfs/'+str(hostname)+'/0/rschaef');")
mkdir -p $LOCAL_MACHINE_PWD
export WANDB_DIR=$LOCAL_MACHINE_PWD
export LFS_HOME=$LOCAL_MACHINE_PWD

cd $LFS_HOME
export TEMP=$LFS_HOME
export AFS_HOME=/afs/cs.stanford.edu/u/rschaef
export DFS_HOME=/dfs/scratch0/rschaef/

Enable running with GPUs.
- https://ilwiki.stanford.edu/doku.php?id=hints:gpu
export PATH=/usr/local/cuda-11.7/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATH
source cuda11.7

Initialize conda
>>> conda initialize >>>
!! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/lfs/turing4/0/rschaef/miniconda3/bin/conda' 'shell.bash' 'hook' 2>
/dev/null)"
if [$? -eq 0]; then
​ eval "$__conda_setup"
else
​ if [-f "/lfs/turing4/0/rschaef/miniconda3/etc/profile.d/conda.sh"]; then

8

 ​ . "/lfs/turing4/0/rschaef/miniconda3/etc/profile.d/conda.sh"
​ else
 ​ export PATH="/lfs/turing4/0/rschaef/miniconda3/bin:$PATH"
​ fi
fi
unset __conda_setup
<<< conda initialize <<<

Because I want this to work from any machine, I override the conda init defaults to
instead read:

Initialize conda
>>> conda initialize >>>
!! Contents within this block are managed by 'conda init' !!
__conda_setup="$("$LOCAL_MACHINE_PWD/miniconda3/bin/conda" 'shell.bash' 'hook' 2>
/dev/null)"
if [$? -eq 0]; then
​ eval "$__conda_setup"
else
​ if [-f "$LOCAL_MACHINE_PWD/miniconda3/etc/profile.d/conda.sh"]; then
 ​ . "$LOCAL_MACHINE_PWD/miniconda3/etc/profile.d/conda.sh"
​ else
 ​ export PATH="$LOCAL_MACHINE_PWD/miniconda3/bin:$PATH"
​ fi
fi
unset __conda_setup
<<< conda initialize <<<

Brando’s Recommended Setup

No matter what setup up for any cluster you use you need to solve the following problems

9

●​ Where $HOME points to? We recommend: $HOME -> lfs
●​ Where does your code live at? We recommend code -> afs
●​ Where you python env is at? We recommend: conda/python envs -> lfs (dfs super

slow!)
●​ Where data is at? We recommend: data & logs/ckpts -> lfs (but might make sense to

separate these)
●​ Where bashrc lives at: .bashrc.user & .bashrc.lfs -> afs
●​ Other local installs: other stuff e.g. other envs/local executables (e.g. opam, rugby, for

my TP projs) -> lfs (due to speed in installation)
●​ how to code? way to sync server with local (pycharm deployment paths) -> make

sure deployment works for each server you start using
●​ how to run experiments -> main.sh -> (snap kerberos) tmux

You always make a decision for the above -- even if it's not explicit, it happens implicitly by
the workflow you use.
My decisions can be inferred/confirmed by reading the following:

●​ my .bashrc.lfs (for my current local file system/lfs setup)
https://github.com/brando90/.dotfiles/blob/master/.bashrc.lfs

●​ my .bashrc.user sources my .bashrc.lfs or whatever setup I want to have at that
moment: ​​https://github.com/brando90/.dotfiles/blob/master/.bashrc.user

●​ and a past attempt with .bashrc.dfs:
https://github.com/brando90/.dotfiles/blob/master/.bashrc.dfs

●​ For a concrete assignment style to use my setup see this:
 Brando Starter task Spring 2024

●​ And a github repo with details explanations of my setup
https://github.com/brando90/snap-cluster-setup?tab=readme-ov-file#create-a-so
ft-link-for-your-cloned-github-project-lfs---afs

Continue for more details.

Always Put This At The Top of Your Scripts

Rok asked us to include the following specifications in our code to prevent CPUs from
spinning idly:
n_threads_str = "4"
os.environ["OMP_NUM_THREADS"] = n_threads_str
os.environ["OPENBLAS_NUM_THREADS"] = n_threads_str
os.environ["MKL_NUM_THREADS"] = n_threads_str
os.environ["VECLIB_MAXIMUM_THREADS"] = n_threads_str
os.environ["NUMEXPR_NUM_THREADS"] = n_threads_str

https://docs.google.com/document/d/1k3d3_AOp-Y22L-GbgHivDqKe9r9LC5nscaIzbm3LWYc/edit?usp=sharing
https://github.com/brando90/.dotfiles/blob/master/.bashrc.lfs
https://github.com/brando90/.dotfiles/blob/master/.bashrc.lfs
https://github.com/brando90/.dotfiles/blob/master/.bashrc.user
https://github.com/brando90/.dotfiles/blob/master/.bashrc.dfs
https://github.com/brando90/snap-cluster-setup?tab=readme-ov-file#create-a-soft-link-for-your-cloned-github-project-lfs---afs
https://github.com/brando90/snap-cluster-setup?tab=readme-ov-file#create-a-soft-link-for-your-cloned-github-project-lfs---afs

10

Using vscode or pycharm (or an IDE) that directly connects to a server

Since one can only run jobs by directly connecting to a specific server – using an IDE that
directly runs, debugs and edits files remotely seem like a good option. Since I do not use
this I cannot comment further but it seems a reasonable option – especially since slurm
won’t be in the way to run the debugger of the IDE directly with a GPU.

For long running jobs I strongly recommend to use their (very unorthodox) suggestion here:
https://ilwiki.stanford.edu/doku.php?id=hints:long-jobs .

Long Running Jobs on SNAP
●​ SSH into your preferred machine
●​ Run: krbtmux

○​ This will create a specialized tmux session
●​ Inside the tmux session, run: reauth

○​ Then enter your password
○​ This will prevent SNAP from kicking you off

●​ Navigate to wherever your code is & activate whatever environments you have in
mind

●​ Then run your code!

The simplest way to use SNAP/Info labels (imo)

1.​ Read intro to get an account in Snap.
2.​ Connecting to SNAP: connect to the snap cluster using ssh, see:

https://ilwiki.stanford.edu/doku.php?id=hints:remote-access but change it to the
right name for the specific server you need. For server names see:
https://ilwiki.stanford.edu/doku.php?id=snap-servers:snap-gpu-servers-stats . For
stanford vpn see:
https://ilwiki.stanford.edu/doku.php?id=hints:remote-access#stanford_vpn

3.​ Setting up bash: They named the usual .bashrc to the very unconventional
.bashrc.user. For details see: https://ilwiki.stanford.edu/doku.php?id=hints:enviroment

4.​ Storage: For files and storage I personally recommend to choose a server or two that
you like most and use that to have all your files & storage. It will be faster and it is
simpler than trying to manage many paths to code, data, conda/python envs,
.bashrc.files etc. i.e. use this:
https://ilwiki.stanford.edu/doku.php?id=hints:storefiles#lfs_local_server_storage .
You can also use dfs store (in that link) so that the code is available everywhere but
dfs is slow and if you want to manage multiple paths do it at your own risk & time
sink. To install conda see:
https://github.com/brando90/ultimate-utils/blob/master/sh_files_repo/download_a
nd_install_conda.sh

https://ilwiki.stanford.edu/doku.php?id=hints:long-jobs
https://ilwiki.stanford.edu/doku.php?id=hints:remote-access
https://ilwiki.stanford.edu/doku.php?id=snap-servers:snap-gpu-servers-stats
https://ilwiki.stanford.edu/doku.php?id=hints:remote-access#stanford_vpn
https://ilwiki.stanford.edu/doku.php?id=hints:enviroment
https://ilwiki.stanford.edu/doku.php?id=hints:storefiles#lfs_local_server_storage
https://github.com/brando90/ultimate-utils/blob/master/sh_files_repo/download_and_install_conda.sh
https://github.com/brando90/ultimate-utils/blob/master/sh_files_repo/download_and_install_conda.sh

11

5.​ Syncing code: personally I use pycharms ability to rsync on save when I work on
servers
https://www.jetbrains.com/help/pycharm/uploading-and-downloading-files.html .
But you can use git for that if you want (though git is a versioning system not server
local sync system). Or connect with your ide directly to the server.

6.​ Select a server: reminder based on 3 you should have select a server or two where
most of your jobs will be done (based on the advice here).

7.​ Long lived jobs: due to very strange uncommon reasons, you have to run your jobs
through the krbtmux and the reauth command. See details here:
https://ilwiki.stanford.edu/doku.php?id=hints:long-jobs . I strongly recommend not
skip this step.

8.​ GPUs: once you selected a server & know how to use krbtmux/krbscreen, use the
GPUs as outlined here: https://ilwiki.stanford.edu/doku.php?id=hints:long-jobs . Likely
by making a specific GPU available as you do experiments or debug.

9.​ Checking GPU availability: see
https://ilwiki.stanford.edu/doku.php?id=snap-servers:snap-gpu-servers-stats and/or
the SNAP slack channel
https://join.slack.com/t/snap-group/shared_invite/zt-1lokufgys-g6NOiK3gQi84NjIK_
2dUMQ .

10.​ Done! Now you can login to your fav server, sync your code with your fav method,
have your files in the local sever, know how to set up GPUs, and run long-lived jobs
with kbrtmux+reauth to run your experiments!

Comments.

-​ For help/support please do not message Brando directly. Instead, use the
cluster-help or general channel in Snap where I will see it and will happily help (but
everyone will benefit + others might help too).

-​ For other help message Rok https://profiles.stanford.edu/rok-sosic (in slack or email
or whatever he prefers) or email il-action@cs.stanford.edu.

-​ To install conda see:

https://github.com/brando90/ultimate-utils/blob/master/sh_files_repo/download_a
nd_install_conda.sh

Secret Q&A doc from snap

https://docs.google.com/document/d/1pFBJFki9uJ69q0EcI4vcaB603lA_AXHdwaLMfqIovwE
/edit#heading=h.efy1aim4jl4q read it for Q & As.

https://www.jetbrains.com/help/pycharm/uploading-and-downloading-files.html
https://ilwiki.stanford.edu/doku.php?id=hints:long-jobs
https://ilwiki.stanford.edu/doku.php?id=hints:long-jobs
https://ilwiki.stanford.edu/doku.php?id=snap-servers:snap-gpu-servers-stats
https://join.slack.com/t/snap-group/shared_invite/zt-1lokufgys-g6NOiK3gQi84NjIK_2dUMQ
https://join.slack.com/t/snap-group/shared_invite/zt-1lokufgys-g6NOiK3gQi84NjIK_2dUMQ
https://profiles.stanford.edu/rok-sosic
mailto:il-action@cs.stanford.edu
https://github.com/brando90/ultimate-utils/blob/master/sh_files_repo/download_and_install_conda.sh
https://github.com/brando90/ultimate-utils/blob/master/sh_files_repo/download_and_install_conda.sh
https://docs.google.com/document/d/1pFBJFki9uJ69q0EcI4vcaB603lA_AXHdwaLMfqIovwE/edit#heading=h.efy1aim4jl4q
https://docs.google.com/document/d/1pFBJFki9uJ69q0EcI4vcaB603lA_AXHdwaLMfqIovwE/edit#heading=h.efy1aim4jl4q

12

Model Checkpoints on SNAP

Large Datasets on SNAP
●​ skampere1

○​ ImageNet: /lfs/skampere1/0/rschaef/data/Imagenet2012
○​ LM Evaluation Harness: /lfs/skampere1/0/rschaef/data/huggingface
○​ SBU Captions: /lfs/skampere1/0/rschaef/data/sbucaptions
○​

●​ ampere1
○​ Anthropic HHH:

/lfs/ampere1/0/rschaef/data/huggingface/Anthropic___json
○​ FineWeb:

/lfs/ampere8/0/dhruvpai/KoyejoLab-EBLM/data/HuggingFaceFW/fi
neweb

○​ asdf
●​ ampere8

○​ asdf
●​ hyperturing2

○​ FineWeb:
/lfs/hyperturing2/0/rschaef/KoyejoLab-EBLM/data/HuggingFaceF
W/fineweb

Data crawling on SNAP
Currently, there are four machines on SNAP available for crawling: silk04-07
(https://ilwiki.stanford.edu/doku.php?id=other-servers:crawling-servers)

These machines have higher bandwidth than usual GPU machines and are suitable for data
crawling. There is a strange thing: no /lfs on these machines. Instead, we have "/dfs/scratch0/"
which operates somewhat like /lfs.

Installing Anaconda/Miniconda
-​ On any of the above clusters, you may want to install anaconda
-​ You can run Brando’s script

https://github.com/brando90/ultimate-utils/blob/master/sh_files_repo/download_a
nd_install_conda.sh

-​ Or you can manually step through the following sequence of commands
-​ Get Miniconda:

https://ilwiki.stanford.edu/doku.php?id=other-servers:crawling-servers
https://github.com/brando90/ultimate-utils/blob/master/sh_files_repo/download_and_install_conda.sh
https://github.com/brando90/ultimate-utils/blob/master/sh_files_repo/download_and_install_conda.sh

13

-​ wget
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_
64.sh

-​ Make sure you can execute the script:
-​ chmod +x Miniconda3-latest-Linux-x86_64.sh

-​ Execute the script:
-​ ./Miniconda3-latest-Linux-x86_64.sh

-​ Read through the user agreement and type “yes”
-​ You will be prompted where you want miniconda to be located. Feel free to

use the default location or choose your own preferred location
-​ IF YOU ARE ON SNAP, PUT MINICONDA on “/lfs/” NOT “/afs/”
-​ This is because afs has some size limit (like 1 GB or maybe 5 GB) and if

you put your conda installation there, you will not have sufficient
space to install packages

-​ Consequently, if you want conda on multiple machines, you’ll need to
install it on each machine

-​ I put mine at /lfs/<machine name e.g. turing1>/0/rschaef/miniconda3

-​ Go make tea for ~3 minutes
-​ When prompted whether you want the installer to initialize Miniconda, type

“n”

-​ Log out and log back in (or run: source .bashrc)docke
-​ Make sure conda is up to date:

https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

14

-​ conda install conda-build
-​ conda update -n base -c defaults conda
-​ conda update conda
-​ conda update --all

-​ Feel free to create a conda environment:
-​ conda create -n rylan_env python=3.9
-​ conda activate rylan_env

-​ Feel free to check pip and ensure pip is up to date
-​ # - make sure pip is up to date
-​ which python
-​ pip install --upgrade pip
-​ which pip
-​ which pip3

Conda init bricks?

You followed all of the steps above. Conda installs just fine. But then you type conda init,
and you get some error message like this:

My guess is conda is trying to write to the .bashrc file, which requires sudo permissions,
instead of .bashrc.user
One thing you can try is writing the conda init statement yourself in .bashrc.user. It will be
this:

15

Make sure to change the paths so they reflect the path to conda on your machine! After
modifying the file use source ~/.bashrc.user or restart your connection. Hopefully you
should see a (base) next to your name & path, indicating conda is working.
Copyable text:
>>> conda initialize >>>
!! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/afs/cs.stanford.edu/u/YOUR USERNAME HERE/miniconda/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [$? -eq 0]; then
 eval "$__conda_setup"
else
 if [-f "/afs/cs.stanford.edu/u/YOUR USERNAME HERE/miniconda/etc/profile.d/conda.sh"]; then
 . "/afs/cs.stanford.edu/u/YOUR USERNAME HERE/miniconda/etc/profile.d/conda.sh"
 else
 export PATH="/afs/cs.stanford.edu/u/YOUR USERNAME HERE/miniconda/bin:$PATH"
 fi
fi
unset __conda_setup
<<< conda initialize <<<

When using SNAP, conda init might raise an error and ask you for a report. Just skip the
conda init step and proceed.

Or just skip the conda init block.

IDE Use on Clusters

PyCharm
-​ PyCharm uses the term “Deployment” to describe automatically synchronizing code

between machines
-​ The below instructions use Sherlock for demonstrative purposes, but the

instructions should be the same for other clusters, e.g., SNAP
-​ How to create a deployment (Option 1):

-​ On your cluster, create a virtual environment e.g. via python3 -m venv
<name_of_my_virtual_env>

-​ Open settings:

16

-​ Select “Add Interpreter”, then “On SSH”

-​ Specify the SSH connection. If this is a new cluster, you’ll want to select “New”

-​ Enter your password:

17

-​ 2-Factor Authenticate if necessary

-​ Note: After successfully connecting, PyCharm will immediately try to rsync to

check that files can be transferred successfully. However, some clusters (e.g.
Sherlock) will require 2 Factor Authentication again, and PyCharm will just
hang

-​ If this happens, follow the instructions here:
https://www.sherlock.stanford.edu/docs/advanced-topics/connection/
#avoiding-multiple-duo-prompts

-​ Specifically, on your local machine, create a file ~/.ssh/config, and
enable multiplexing:

Host login.sherlock.stanford.edu
 ControlMaster auto
 ControlPath ~/.ssh/%l%r@%h:%p

-​ This means that once you authenticate, so long as you keep that initial
connection open, you won’t need to reauthenticate

-​ Sometimes clusters will requi

VSCode
1.​ Configure SSH Config File:

a.​ touch ~/.ssh/config (if nonexistent)

https://www.sherlock.stanford.edu/docs/advanced-topics/connection/#avoiding-multiple-duo-prompts
https://www.sherlock.stanford.edu/docs/advanced-topics/connection/#avoiding-multiple-duo-prompts

18

b.​ nano ~/.ssh/config
c.​ Example Below (replace ‘shinyw’ with your user and the corresponding

machine skampere1):

Host whale
 HostName whale.stanford.edu
 User shinyw

Host skampere1
 HostName skampere1.stanford.edu
 User shinyw
 ProxyJump whale

2.​ Launch VS Code:
a.​ Click bottom left corner (b) to connect to host, which opens window (c):

b.​

c.​

d.​
e.​ Remote-SSH: Connect to Host and select skampere1’, or whichever machine

you are on. ‘skampere1’ is shown in above screenshot (d) for example:
i.​ Enter password/phrase as needed, follow prompted steps.
ii.​ VS Code will establish the SSH connection through whale.stanford.edu

to skampere1.stanford.edu.

iii.​

3.​ Other:

a.​ [Snap Servers] Shiny's Access Steps

b.​ Ask alylee15@stanford.edu

https://docs.google.com/document/d/12Eo_OjRDhg5uO2t5I59yYK7gOy4spEYOLvaoVrB_4-E/edit
mailto:alylee15@stanford.edu

19

c.​ See the Cluster Q&A (this does not work on Koyejo/Mercury servers)

IDE Use on Clusters for Windows (VSCode)
Since the above tutorial only applies linux based systems the one described here is the same
process for windows based systems.

1.​ Launch VS Code:
a.​ Click bottom left corner (b) to connect to host, which opens window (c), click

on Configure New Hosts… (d), which opens window (e) and then click on the
first file path that is seen:

b.​

c.​

d.​

e.​
i.​ Select the first option

https://docs.google.com/document/d/1pFBJFki9uJ69q0EcI4vcaB603lA_AXHdwaLMfqIovwE/edit#heading=h.drnivpek97o5

20

f.​ Simply paste the text in the box below in the file that opens(replace ‘shinyw’
with your user and the corresponding machine skampere1):

Host whale
 HostName whale.stanford.edu
 User shinyw

Host skampere1
 HostName skampere1.stanford.edu
 User shinyw
 ProxyJump whale

g.​ Then follow the same steps as (b), (c) , and click on skampere1, it will ask for

your CSID password twice, once for the whale ssh and once for jumping to
the skampere1 cluster.

Lab Website
The lab website is at https://stair.cs.stanford.edu/, and the GitHub is
https://github.com/stair-lab/stair. If you don’t have access, ping Sang

. Sang built the website in 2022 but has no longer had the sttruong@stanford.edu
bandwidth to maintain it. Each quarter, we should assign one person responsible for
keeping the website up-to-date for that quarter (e.g. updating the list of rotators, new
papers, new awards, etc). The idea is that this responsibility will be distributed. The website
folder is under /afs. To publish changes to the live website, you need permission. Email
action@cs.stanford.edu and request to be added to the koyejolab ldap group.

Essentially, since you can’t build the website on SNAP, I typically build it on my local
machine (Mac) and sync it to SNAP via GitHub.

To build locally:
bundle exec jekyll build

Commit your change to GitHub

Connect to server: /afs/cs/group/koyejolab/stair

Do git pull

cp -r /afs/cs/group/koyejolab/stair/_site /afs/cs/group/koyejolab/www

mailto:sttruong@stanford.edu
https://stair.cs.stanford.edu/
https://github.com/koyejo-lab/stair
mailto:action@cs.stanford.edu

21

Lab HuggingFace

https://huggingface.co/stair-lab

Lab GitHub

Sang’s Setup
Under the resource constraint on SNAP, I recommend using the DFS file server (instead of
AFS or LFS) since it would make machine hopping painless. Unless you do something heavily
I/O related, it doesn’t make much difference in performance. The setup instructions above
are mainly for AFS or LFS, and weird errors happen when you try to apply that for DFS,
hence the existence of this note.

Everything Conda
Step-by-step Instructions:
source /dfs/user/sttruong/miniconda3/bin/activate
conda activate eval_llm
export
LD_LIBRARY_PATH=/dfs/user/sttruong/miniconda3/envs/eval_llm/lib/python3.10/site-packages/torc
h/lib:/dfs/user/sttruong/miniconda3/envs/eval_llm/lib:$LD_LIBRARY_PATH
export CUDA_VISIBLE_DEVICES=0
Test if we can send a tensor to cuda if you have recently hopped across machines.
import torch
print(torch.cuda.is_available())
a=torch.rand(5)
a.cuda()
​
This is my attempt to install a unified environment for all SNAP machines, from turing to ampere
After reinstalling CUDA, it will work for a few days, and fail for unknown reason, sadly.
Please ignore if you are short in time.
conda install nvidia/label/cuda-11.8.0::cuda-toolkit -y
conda install -c pytorch -c nvidia pytorch==2.1.0 pytorch-cuda=11.8 -y
To ensure cuda installation is successful, run
nvcc --version

To clone a conda environment:
conda create --name <new_env> --clone train_llm

https://huggingface.co/stair-lab

22

Conda Alternatives
python -m pip install virtualenv
python -m virtualenv -p /dfs/user/sttruong/env/python3.10/bin/python3.10 bosd
deactivate

Conda for Finetune LLMs
Motivation: If you try to finetune LLMs with the vanilla Hugging Face pipeline, you will likely
run into OOM errors unless you tune a tiny model on a relatively large machine. Using Llama
Factory will save you from that. The environment set up for this can be irritating, hence the
existence of this note. Ping if you have feedback. sttruong@stanford.edu

Step-by-step Instruction:
📌 Step 1: Clone Llama Factory
git clone https://github.com/hiyouga/LLaMA-Factory
cd LLaMA-Factory

📌 Step 2: Create an environment (assuming access to conda)
source /dfs/user/sttruong/miniconda3/bin/activate
conda create -n train_llm python=3.10 -y
conda activate train_llm

📌 Step 3: Install two packages: deepspeed and unsloth
pip install deepspeed==0.12.6 flash-attn==2.4.1
pip install -r requirements.txt
pip install "unsloth[cu118_ampere] @ git+https://github.com/unslothai/unsloth.git"

📌 Step 4: Export the required paths
export LIBRARY_PATH=/dfs/user/sttruong/miniconda3/envs/test_env/lib/python3.10/site-packages/
torch/lib:$LIBRARY_PATH
export LD_LIBRARY_PATH=/dfs/user/sttruong/miniconda3/envs/test_env/lib/python3.10/
site-packages/torch/lib:$LD_LIBRARY_PATH
export HF_HOME="/dfs/local/0/sttruong/env/.huggingface"
export TRANSFORMERS_CACHE="/lfs/local/0/sttruong/env/.huggingface"
export HF_DATASETS_CACHE="/lfs/local/0/sttruong/env/.huggingface/datasets"

📌 Step 5: Config GPUs and nodes for training/finetuning
accelerate config
- This machine
- multi-GPU
- node: [number_of_nodes]
- Machine rank: [index_of_each_machine_start_from_0]
- IP address of the machine that will host the main process: [IP…]
- Port: 5000
- check errors: NO

mailto:sttruong@stanford.edu
https://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/LLaMA-Factory
https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth.git

23

- torch dynamo: NO
- DeepSpeed: yes
- DeepSpeed file: NO
- ZeRO: 2 # In case not enough memory, please use ZeRO 3
- Offload optimizer: cpu
- Offload parameters: cpu
- Gradient accumulation: [based_on_command]
- Gradient clipping: [based_on_command]
- Clipping value: [based_on_command]
- Save 16-bit: yes
- deepspeed.zero.Init: yes # If training llama/mistral, please set to NO
- Number of GPUs: [Number_GPUs] - Number of GPUs should be equal for all nodes
- Dtype: BF16

📌 Step 6: Run finetuning/training code. Below is an example of pretraining:
accelerate launch src/train_bash.py \
 --stage pt \
 --do_train True \
 --model_name_or_path <path_to_model> \
 --use_fast_tokenizer True \
 --finetuning_type freeze \
 --template <template> \
 --flash_attn True \
 --dataset_dir data \
 --dataset <dataset_name>\
 --preprocessing_num_workers 32 \
 --cutoff_len <model_max_length>\
 --num_train_epochs <num_epochs> \
 --bf16 True \
 --tf32 False \
 --per_device_train_batch_size 2 \
 --gradient_accumulation_steps 64 \
 --learning_rate 1e-4 \
 --lr_scheduler_type cosine \
 --max_grad_norm 1.0 \
 --weight_decay 0.001 \
 --logging_steps 1 \
 --warmup_ratio 0.03 \
 --save_steps 2 \
 --neftune_noise_alpha 0 \
 --num_layer_trainable 32 \
 --name_module_trainable self_attn.q_proj,self_attn.k_proj,self_attn.v_proj,self_attn.o_proj \
 --output_dir <output_dir>\
 --save_total_limit 3 \
 --plot_loss True \
 --report_to neptune

24

LLMs everything
State of software packages for LLMs

Framework Training/FT Deployment Multi-GPU Multimodal Universal
LLM support

LLaMa
Factory

Yes - Yes - Yes

Text
Generation
Inference

- Yes Yes - Yes

Ollama - Yes Maybe/Not
tested

Yes Limited
available -
Can add LLM
manually

LLaVa Yes Yes Yes Yes Limited
available -
Can add LLM
manually

llama.cpp - Yes Maybe/Not
tested

Yes Limited
available -
Can add LLM
manually

LLM Foundry Yes - - Limited
available for
MPT and
DBRX

llm.c Yes - Maybe/Not
tested

- Limited
available for
GPT2

Conda for Deploying LLMs
Motivations: You want to deploy large LLMs (e.g. Llama2 70B) across different GPUs for
evaluation.

Step-by-step Instruction: Steps 1-4 are only required the first time.
📌 Step 1: Starting the conda environment:
source /dfs/user/sttruong/miniconda3/bin/activate
conda create -n eval_llm python=3.10 -y
conda activate eval_llm

https://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/LLaMA-Factory
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://ollama.com
https://github.com/haotian-liu/LLaVA
https://github.com/ggerganov/llama.cpp
https://github.com/mosaicml/llm-foundry
https://github.com/karpathy/llm.c

25

📌 Step 2: Install Rust, Cargo, and OpenSSL. Rust is a highly efficient, memory-safe language, making
it ideal for the heavy computations.
export CARGO_HOME="/dfs/user/sttruong/.cargo"
export RUSTUP_HOME="/dfs/user/sttruong/.rustup"
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
Select modify PATH variable: NO
wget openssl-3.0.13.tar.gz && tar xvf openssl-3.0.13.tar.gz
./config --prefix=/dfs/user/sttruong/miniconda3/envs/openssl
--openssldir=/dfs/user/sttruong/miniconda3/envs/openssl
cd openssl-3.0.13 && make install -j32
source "/dfs/user/sttruong/.cargo/env"
export PATH=/dfs/user/sttruong/.cargo/bin:/dfs/user/sttruong/miniconda3/envs/openssl/bin:$PATH
export
LD_LIBRARY_PATH=/dfs/user/sttruong/miniconda3/envs/eval_llm/lib:/dfs/user/sttruong/miniconda3/
envs/openssl/lib64:$LD_LIBRARY_PATH
export OPENSSL_DIR=/dfs/user/sttruong/miniconda3/envs/openssl

📌 Step 3: Install protoc, text-generation-inference
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit -y
conda install -c pytorch -c nvidia pytorch==2.1.2 pytorch-cuda=11.8 -y
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
unzip -o $PROTOC_ZIP -d /dfs/user/sttruong/miniconda3/envs/eval_llm/ bin/protoc
unzip -o $PROTOC_ZIP -d /dfs/user/sttruong/miniconda3/envs/eval_llm/ 'include/*'
rm -f $PROTOC_ZIP
git clone https://github.com/huggingface/text-generation-inference
cd text-generation-inference
git checkout 0d72af5ab01a5b1dabd5beda953403d63b1886e0
cargo clean
BUILD_EXTENSIONS=True make install
In case the compilation (d.) has errors related to C++ version (usually turing/hyperturing), install
C++11:
`conda install -c conda-forge gxx=11.4.0 libstdcxx-ng=11.4.0`
then rerun (d.)

📌 Step 4: Compile and install some necessary libraries for optimal deployment
export MAX_JOBS=32
cd server
make install-vllm-cuda
make install-awq # for quantization, not work for below A100
make install-eetq # for quantization
make install-flash-attention # For GPU below A100
make install-flash-attention-v2-cuda # For GPU >= A100
cd flash-attention-v2/csrc
cd ft_attention && python setup.py install && cd .. &
cd fused_dense_lib && python setup.py install && cd ..&
cd fused_softmax && python setup.py install && cd .. &
cd layer_norm && python setup.py install && cd .. &
cd rotary && python setup.py install && cd .. &

https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
https://github.com/huggingface/text-generation-inference/commits/main/
https://github.com/huggingface/text-generation-inference/commits/main/

26

cd xentropy && python setup.py install && cd .. &
cd ../../../
pip install mamba_ssm megablocks causal_conv1d

📌 Step 5: Now we can deploy LLMs. Note that some packages (e.g. flask attention) will require newer
CUDA; hence, the code will fail on turing machine. Indeed, it will only work on ampere1, ampere2,
mercury 1-4, skampere 1, and hyperturing.
source /dfs/user/sttruong/miniconda3/bin/activate
conda activate eval_llm
source "/dfs/user/sttruong/.cargo/env"
export CARGO_HOME="/dfs/user/sttruong/.cargo"
export RUSTUP_HOME="/dfs/user/sttruong/.rustup"
export PATH=/dfs/user/sttruong/.cargo/bin:/dfs/user/sttruong/miniconda3/envs/openssl/bin:$PATH
export
LD_LIBRARY_PATH=/dfs/user/sttruong/miniconda3/envs/eval_llm/lib/python3.10/site-packages/torch
/lib:/dfs/user/sttruong/miniconda3/envs/eval_llm/lib:/dfs/user/sttruong/miniconda3/envs/openssl/lib
64:$LD_LIBRARY_PATH
export OPENSSL_DIR=/dfs/user/sttruong/miniconda3/envs/openssl
For the llama family, the number of GPUs has to be a multiple of 4, and don’t allocate machine that
are almost full.
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7

📌 Step 6: Launch text generation inference server
text-generation-launcher \
 --model-id meta-llama/Llama-2-7b-chat-hf \
 --port 8889 \
 --max-input-length 4096 \
 --max-total-tokens 8192 \
 --max-batch-prefill-tokens 4096

📌 Step 7: Calling the server from python or a terminal.
from a terminal
curl --location 'https://localhost:8889/generate' \
--header 'Content-Type: application/json' \
--data '{
 "inputs": "[INST] Question: Who is Albert Einstein?\nAnswer: [/INST] ",
 "parameters": {
 "temperature": 1.0,
 "top_p": 1.0,
 "top_k": 50,
 "repetition_penalty": 1.0,
 "max_new_tokens":1024
 }
}'

from Python
import requests
import json
url = "https://localhost:8080/generate"

27

payload = json.dumps({
 "inputs": "[INST] Question: Who is Albert Einstein?\nAnswer: [/INST] ",
 "parameters": {
 "temperature": 1,
 "top_p": 1,
 "top_k": 50,
 "repetition_penalty": 1,
 "max_new_tokens": 1024
 }
})
headers = {
 'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)

Install Python
Motivations: Some packages require a newer Python version to run.
Step-by-step Instructions:
go to a designated folder that stores your environment package
cd /dfs/user/sttruong/env
wget https://www.python.org/ftp/python/3.10.11/Python-3.10.11.tar.xz
tar -xvf Python-3.10.11.tar.xz
cd Python-3.10.11/
./configure --prefix=/dfs/user/sttruong/env/python3.10
make install -j 64
To change the default to python3.10, edit your ~/.bashrc.user file: export
PATH=/dfs/user/sttruong/env/texlive/2023/bin/x86_64-linux:/dfs/user/sttruong/env/python
3.10/bin:/dfs/user/sttruong/env/openbabel/bin:$PATH
alias python="python3.10"

Install Jupyter Kernel
Go to the virtual env or conda environment
pip install ipykernel
python -m ipykernel install --user --name=pyro-playground
To delete a kernel:
jupyter kernelspec uninstall geometric_ampere
To start Jupyter Notebook:
jupyter-notebook --no-browser --ip 0.0.0.0 --port 10000

Install Torch
Motivations: There are two families of machines in SNAP: the one with old CUDA (e.g., turing
machines) and the one with new CUDA (ampere, hyperturing, mercury, etc). You will need a
separate CUDA environment for each family.

https://www.python.org/ftp/python/3.10.11/Python-3.10.11.tar.xz

28

CUDA version on Ampere is 11.7, meaning the latest PyTorch version we can use is 2.0.1
pip install torch==2.0.1
CUDA version on Turing is 11.3, meaning the latest PyTorch version we can use is 1.12.1
pip install torch==1.12.1

Everything Tmux
tmux new -s session_name
Login server
run krbtmux: /afs/cs/software/bin/krbtmux
run reauth: /afs/cs/software/bin/reauth
run jupyter: jupyter lab --no-browser
Control+B, then press D
tmux list-sessions
tmux a -t [screen_id]

Everything ngrok
Go to ngrok.com and register an account.

Install ngrok
wget https://bin.equinox.io/c/bNyj1mQVY4c/ngrok-v3-stable-linux-amd64.tgz
tar -xvzf https://bin.equinox.io/c/bNyj1mQVY4c/ngrok-v3-stable-linux-amd64.tgz
./ngrok config add-authtoken <your_token_on_dashboard_ngrok_com>

Get ngrok domain
On ngrok dashboard > Domains > New domain

Start ngrok
Start jupyter or any services you want. Remember the deployment port
./ngrok http --domain=<your_domain> <port>
You can now access your machine from the domain <your_domain>

Can you put the instruction to use W&B sweep here?

FAQ
 Cluster Q&A

https://docs.google.com/document/d/1pFBJFki9uJ69q0EcI4vcaB603lA_AXHdwaLMfqIovwE/edit

	
	
	
	
	Introduction
	Cluster: Sherlock
	Sherlock Setup
	Using Sherlock
	Sherlock Workflow
	Sherlock Disk Usage
	Sherlock SLURM Jobs

	Cluster: SNAP
	Brando’s Comments
	Rylan’s Recommend Setup
	Brando’s Recommended Setup
	Always Put This At The Top of Your Scripts
	Using vscode or pycharm (or an IDE) that directly connects to a server
	Long Running Jobs on SNAP
	The simplest way to use SNAP/Info labels (imo)
	Secret Q&A doc from snap

	Model Checkpoints on SNAP
	Large Datasets on SNAP
	Data crawling on SNAP

	Installing Anaconda/Miniconda
	Conda init bricks?

	IDE Use on Clusters
	PyCharm
	VSCode

	IDE Use on Clusters for Windows (VSCode)
	Lab Website
	
	Lab HuggingFace
	Lab GitHub
	Sang’s Setup
	Everything Conda
	Conda Alternatives
	Conda for Finetune LLMs
	LLMs everything
	Conda for Deploying LLMs
	Install Python
	Install Jupyter Kernel
	Install Torch
	Everything Tmux

	FAQ

