
PROCESOS E HILOS

●​ PROCESOS

En cualquier sistema de multiprogramación, la CPU conmuta de un proceso a otro
con rapidez, ejecutando cada uno durante décimas o centésimas de milisegundos:
hablando en sentido estricto, en cualquier instante la CPU está ejecutando sólo un
proceso, y en el transcurso de 1 segundo podría trabajar en varios de ellos, dando la
apariencia de un paralelismo (o pseudoparalelismo, para distinguirlo del verdadero
paralelismo de hardware de los sistemas multiprocesadores con dos o más CPUs
que comparten la misma memoria física)

​
1.​ El modelo del proceso

1.1.​ Todo el software ejecutable en la computadora, que algunas veces incluye al

sistema operativo, se organiza en varios procesos secuenciales. Un proceso
no es más que una instancia de un programa en ejecución, incluyendo los
valores actuales del contador de programa, los registros y las variables.

2.​ Creación de un proceso

2.1.​ Hay cuatro eventos principales que provocan la creación de procesos:

1. El arranque del sistema.

2. La ejecución, desde un proceso, de una llamada al sistema para creación
de procesos.

3. Una petición de usuario para crear un proceso.

4. El inicio de un trabajo por lotes.

2.2.​ Generalmente, cuando se arranca un sistema operativo se crean varios
procesos. Algunos de ellos son procesos en primer plano; es decir, procesos
que interactúan con los usuarios (humanos) y realizan trabajo para ellos.
Otros son procesos en segundo plano, que no están asociados con usuarios

específicos sino con una función específica. Los procesos que permanecen
en segundo plano para manejar ciertas actividades como correo electrónico,
páginas Web, noticias, impresiones, etcétera, se conocen como demonios
(daemons).

2.3.​ En UNIX sólo hay una llamada al sistema para crear un proceso: fork. Esta
llamada crea un clon exacto del proceso que hizo la llamada. Después de
fork, los dos procesos (padre e hijo) tienen la misma imagen de memoria, las
mismas cadenas de entorno y los mismos archivos abiertos

2.4.​ En Windows una sola llamada a una función de Win32 (CreateProcess)
maneja la creación de procesos y carga el programa correcto en el nuevo
proceso. Esta llamada tiene 10 parámetros, que incluyen el programa a
ejecutar, los parámetros de la línea de comandos para introducir datos a ese
programa, varios atributos de seguridad, bits que controlan si los archivos
abiertos se heredan, información de prioridad, una especificación de la
ventana que se va a crear para el proceso (si se va a crear una) y un
apuntador a una estructura en donde se devuelve al proceso que hizo la
llamada la información acerca del proceso recién creado.

3.​ Terminación de procesos

3.1.​ Tarde o temprano el nuevo proceso terminará, por lo general debido a una de
las siguientes condiciones:

3.1.1.​ Salida normal (voluntaria): Para indicar al sistema operativo que ha
terminado. Esta llamada es exit en UNIX y ExitProcess en Windows.
Los programas orientados a pantalla también admiten la terminación
voluntaria.

3.1.2.​ Salida por error (voluntaria): Si un usuario escribe el comando para
compilar el programa foo.c y no existe dicho archivo, el compilador
simplemente termina. Los procesos interactivos orientados a pantalla
por lo general no terminan cuando reciben parámetros incorrectos. En
vez de ello, aparece un cuadro de diálogo y se le pide al usuario que
intente de nuevo.

3.1.3.​ Error fatal (involuntaria): El ejecutar una instrucción ilegal, hacer
referencia a una parte de memoria no existente o la división entre
cero.

3.1.4.​ Eliminado por otro proceso (involuntaria): Es que ejecute una llamada
al sistema que indique al sistema operativo que elimine otros
procesos. En UNIX esta llamada es kill. La función correspondiente
en Win32 es TerminateProcess. En ambos casos, el proceso
eliminador debe tener la autorización necesaria para realizar la
eliminación.

4.​ Jerarquías de procesos

4.1.​ En algunos sistemas, cuando un proceso crea otro, el proceso padre y el

proceso hijo continúan asociados en ciertas formas. El proceso hijo puede
crear por sí mismo más procesos, formando una jerarquía de procesos.

4.2.​ Como otro ejemplo dónde la jerarquía de procesos juega su papel, veamos la
forma en que UNIX se inicializa a sí mismo cuando se enciende la
computadora. Hay un proceso especial (llamado init) en la imagen de inicio.
Cuando empieza a ejecutarse, lee un archivo que le indica cuántas
terminales hay. Después utiliza fork para crear un proceso por cada terminal.
Estos procesos esperan a que alguien inicie la sesión. Si un inicio de sesión
tiene éxito, el proceso de inicio de sesión ejecuta un shell para aceptar
comandos. Éstos pueden iniciar más procesos y así sucesivamente.

4.3.​ Windows no tiene un concepto de una jerarquía de procesos. Todos los
procesos son iguales. La única sugerencia de una jerarquía de procesos es
que, cuando se crea un proceso, el padre recibe un indicador especial un
token (llamado manejador) que puede utilizar para controlar al hijo.

5.​ Estados de un proceso

5.1.​ A los tres estados en los que se puede encontrar un proceso:

5.1.1.​ En ejecución (en realidad está usando la CPU en ese instante).

5.1.2.​ Listo (ejecutable; se detuvo temporalmente para dejar que se ejecute

otro proceso).

5.1.3.​ Bloqueado (no puede ejecutarse sino hasta que ocurra cierto evento
externo).

6.​ Implementación de los procesos

6.1.​ Para implementar el modelo de procesos, el sistema operativo mantiene una
tabla (un arreglo de estructuras) llamada tabla de procesos, con sólo una
entrada por cada proceso (algunos autores llaman a estas entradas bloques
de control de procesos). Esta entrada contiene información importante acerca
del estado del proceso, incluyendo su contador de programa, apuntador de
pila, asignación de memoria, estado de sus archivos abiertos, información de
contabilidad y planificación, y todo lo de más que debe guardarse acerca del
proceso cuando éste cambia del estado en ejecución a listo o bloqueado, de
manera que se pueda reiniciar posteriormente como si nunca se hubiera
detenido.

7.​ Modelación de la multiprogramación

7.1.​ Cuando se utiliza la multiprogramación, el uso de la CPU se puede mejorar.

Dicho en forma cruda: si el proceso promedio realiza cálculos sólo 20 por
ciento del tiempo que está en la memoria, con cinco procesos en memoria a
la vez la CPU deberá estar ocupada todo el tiempo. Sin embargo, este
modelo es demasiado optimista, ya que supone que los cinco procesos
nunca estarán esperando la E/S al mismo tiempo.

7.2.​ Suponga que un proceso gasta una fracción p de su tiempo esperando a que
se complete una operación de E/S. Con n procesos en memoria a la vez, la
probabilidad de que todos los n procesos estén esperando la E/S (en cuyo

caso, la CPU estará inactiva) es pn. Entonces, el uso de la CPU se obtiene
mediante la fórmula

7.3.​ Por ejemplo, suponga que una computadora tiene 512 MB de memoria, de la

cual el sistema operativo ocupa 128 MB y cada programa de usuario ocupa
otros 128 MB. Estos tamaños permiten que haya tres programas de usuario
en memoria a la vez. Con un promedio de 80 por ciento de tiempo de espera
de E/S, tenemos una utilización de la CPU (ignorando la sobrecarga del
sistema operativo) de 1 – 0.83 o de aproximadamente 49 por ciento. Si
agregamos 512 MB más de memoria, el sistema puede pasar de la
multiprogramación de tres vías a una multiprogramación de siete vías, con lo
cual el uso de la CPU se eleva hasta 79 por ciento. En otras palabras, los
512 MB adicionales elevarán el rendimiento en un 30 por ciento. Si
agregamos otros 512 MB, el uso de la CPU sólo se incrementa de 79 a 91
por ciento, con lo cual se elevaría el rendimiento sólo en 12% adicional.

●​ HILOS

Con frecuencia hay situaciones en las que es conveniente tener varios hilos de
control en el mismo espacio de direcciones que se ejecuta en cuasi-paralelo, como
si fueran procesos (casi) separados (excepto por el espacio de direcciones
compartido).

1.​ Uso de hilos

1.1.​ La principal razón de tener hilos es que en muchas aplicaciones se

desarrollan varias actividades a la vez. Algunas de ellas se pueden bloquear
de vez en cuando. Al descomponer una aplicación en varios hilos
secuenciales que se ejecutan en cuasi-paralelo, el modelo de programación
se simplifica.

1.2.​ Sólo que ahora con los hilos agregamos un nuevo elemento: la habilidad de
las entidades en paralelo de compartir un espacio de direcciones y todos sus
datos entre ellas. Esta habilidad es esencial para ciertas aplicaciones, razón
por la cual no funcionará el tener varios procesos (con sus espacios de
direcciones separados).

1.3.​ Un segundo argumento para tener hilos es que, como son más ligeros que
los procesos, son más fáciles de crear (es decir, rápidos) y destruir. En
muchos sistemas, la creación de un hilo es de 10 a 100 veces más rápida
que la de un proceso.

1.4.​ Los hilos son útiles en los sistemas con varias CPUs, en donde es posible el
verdadero paralelismo.

2.​ El modelo clásico de hilo

El modelo de procesos se basa en dos conceptos independientes: agrupamiento de
recursos y ejecución. Algunas veces es útil separarlos; aquí es donde entran los
hilos.

2.1.​ Una manera de ver a un proceso es como si fuera una forma de agrupar

recursos relacionados. Un proceso tiene un espacio de direcciones que
contiene texto y datos del programa, así como otros recursos. Estos pueden
incluir archivos abiertos, procesos hijos, alarmas pendientes, manejadores de
señales, información contable y mucho más. Al reunirlos en forma de un
proceso, pueden administrarse con más facilidad.

2.2.​ El otro concepto que tiene un proceso es un hilo de ejecución, al que por lo
general sólo se le llama hilo. El hilo tiene un contador de programa que lleva
el registro de cuál instrucción se va a ejecutar a continuación. Tiene registros
que contienen sus variables de trabajo actuales. Tiene una pila, que contiene
el historial de ejecución, con un conjunto de valores para cada procedimiento
al que se haya llamado, pero del cual no se haya devuelto todavía.

2.3.​ Cuando hay multihilamiento, por lo general los procesos empiezan con un
solo hilo presente. Este hilo tiene la habilidad de crear hilos mediante la
llamada a un procedimiento de biblioteca, como thread_create. Comúnmente,
un parámetro para thread_create especifica el nombre de un procedimiento
para que se ejecute el nuevo hilo

2.4.​ En algunos sistemas con hilos, un hilo puede esperar a que un hilo
(específico) termine mediante la llamada a un procedimiento, por ejemplo
thread_join. Este procedimiento bloquea al hilo llamador hasta que un hilo
(específico) haya terminado.

3.​ Hilos en POSIX

3.1.​ El IEEE ha definido un estándar para los hilos conocido como 1003.1c. El

paquete de hilos que define se conoce como Pthreads. El estándar define
más de 60 llamadas a funciones

4.​ Implementación de hilos en el espacio de usuario

Hay dos formas principales de implementar un paquete de hilos: en espacio de
usuario y en el kernel.

4.1.​ El primer método es colocar el paquete de hilos completamente en espacio
de usuario. El kernel no sabe nada acerca de ellos. En lo que al kernel
concierne, está administrando procesos ordinarios con un solo hilo. La
primera ventaja, la más obvia, es que un paquete de hilos de nivel usuario
puede implementarse en un sistema operativo que no acepte hilos. Con este
método, los hilos se implementan mediante una biblioteca.

4.2.​ Ventajas:

4.2.1.​ Realizar una conmutación de hilos como éste es por lo menos una
orden de magnitud (o tal vez más) más veloz que hacer el trap al
kernel y es un sólido argumento a favor de los paquetes de hilos de
nivel usuario.

4.2.2.​ Permiten que cada proceso tenga su propio algoritmo de planificación
personalizado. Por ejemplo, para algunas aplicaciones, las que tienen
un hilo recolector de basura, es una ventaja no tener que preocuparse
porque un hilo se detenga en un momento inconveniente. También se
escalan mejor, ya que los hilos del kernel requieren sin duda algo de
espacio en la tabla y en la pila del kernel, lo cual puede ser un
problema si hay una gran cantidad de hilos.

4.2.3.​ Si el programa llama o salta a una instrucción que no esté en
memoria, ocurre un fallo de página y el sistema operativo obtiene la
instrucción faltante (y las instrucciones aledañas) del disco. A esto se
le conoce como fallo de página.

4.3.​ Desventajas:

4.3.1.​ El primero de todos es la manera en que se implementan las

llamadas al sistema de bloqueo. Suponga que un hilo lee del teclado
antes de que se haya oprimido una sola tecla. Es inaceptable permitir
que el hilo realice la llamada al sistema, ya que esto detendrá a todos
los hilos. Uno de los principales objetivos de tener hilos en primer
lugar era permitir que cada uno utilizara llamadas de bloqueo, pero
para evitar que un hilo bloqueado afectará a los demás. Con las
llamadas al sistema de bloqueo, es difícil ver cómo se puede lograr
este objetivo sin problemas

4.3.2.​ Es posible otra alternativa si se puede saber de antemano si una
llamada se va a bloquear. En algunas versiones de UNIX existe una
llamada al sistema (select), la cual permite al procedimiento que hace
la llamada saber si una posible llamada a read realizará un bloqueo.El
código colocado alrededor de la llamada al sistema que se encarga
de la comprobación se conoce como envoltura.

4.3.3.​ Si un hilo empieza a ejecutarse, ningún otro hilo en ese proceso se
ejecutará a menos que el primero renuncie de manera voluntaria a la

CPU. Dentro de un solo proceso no hay interrupciones de reloj, lo
cual hace que sea imposible planificar procesos en el formato round
robin (tomando turnos).

5.​ Implementación de hilos en el kernel.

5.1.​ No se necesita un sistema en tiempo de ejecución para ninguna de las dos

acciones. Además, no hay tabla de hilos en cada proceso. En vez de ello, el
kernel tiene una tabla de hilos que lleva la cuenta de todos los hilos en el
sistema. Cuando un hilo desea crear un nuevo hilo o destruir uno existente,
realiza una llamada al kernel, la cual se encarga de la creación o destrucción
mediante una actualización en la tabla de hilos del kernel.

5.2.​ Todas las llamadas que podrían bloquear un hilo se implementan como
llamadas al sistema, a un costo considerablemente mayor que una llamada a
un procedimiento del sistema en tiempo de ejecución. Cuando un hilo se
bloquea, el kernel, según lo que decida, puede ejecutar otro hilo del mismo
proceso (si hay uno listo) o un hilo de un proceso distinto. Con los hilos de
nivel usuario, el sistema en tiempo de ejecución ejecuta hilos de su propio
proceso hasta que el kernel le quita la CPU (o cuando ya no hay hilos para
ejecutar).

5.3.​ Ventajas:

5.3.1.​ Los hilos de kernel no requieren de nuevas llamadas al sistema sin
bloqueo. Además, si un hilo en un proceso produce un fallo de
página, el kernel puede comprobar con facilidad si el proceso tiene
otros hilos que puedan ejecutarse y de ser así, ejecuta uno de ellos
mientras espera a que se traiga la página requerida desde el disco.

5.4.​ Desventajas:

5.4.1.​ Su principal desventaja es que el costo de una llamada al sistema es

considerable, por lo que si las operaciones de hilos (de creación o
terminación, por ejemplo) son comunes, se incurrirá en una mayor
sobrecarga.

6.​ Implementaciones híbridas

6.1.​ Una de esas formas es utilizar hilos de nivel kernel y después multiplexar los

hilos de nivel usuario con alguno o con todos los hilos de nivel kernel.
Cuando se utiliza este método, el programador puede determinar cuántos
hilos de kernel va a utilizar y cuántos hilos de nivel usuario va a multiplexar
en cada uno. Este modelo proporciona lo último en flexibilidad.

7.​ Activaciones del planificador

7.1.​ Los objetivos del trabajo de una activación del planificador son imitar la

funcionalidad de los hilos de kernel, pero con el mejor rendimiento y la mayor
flexibilidad que por lo general se asocian con los paquetes de hilos
implementados en espacio de usuario. En especial, los hilos de usuario no
deben tener que realizar llamadas especiales al sistema sin bloqueo, ni
comprobar de antemano que sea seguro realizar ciertas llamadas al sistema.
Sin embargo, cuando un hilo se bloquea en una llamada al sistema o un fallo
de página, debe ser posible ejecutar otros hilos dentro del mismo proceso, si
hay alguno listo.

7.2.​ La eficiencia se obtiene evitando transiciones innecesarias entre los espacios
de usuario y de kernel. Por ejemplo, si un hilo se bloquea en espera de que
otro hilo realice alguna acción, no hay razón para involucrar al kernel, con lo
cual se ahorra la sobrecarga de la transición de kernel a usuario. El sistema
en tiempo de ejecución en espacio de usuario puede bloquear el hilo
sincronizador y programar uno nuevo por sí solo.

7.3.​ Cuando se utilizan las activaciones del planificador, el kernel asigna cierto

número de procesadores virtuales a cada proceso y deja que el sistema en
tiempo de ejecución (en espacio de usuario) asigne hilos a los procesadores.
Este mecanismo también se puede utilizar en un multiprocesador, donde los
procesadores virtuales podrían ser CPUs reales.

7.4.​ La idea básica que hace que este esquema funcione es que, cuando el
kernel sabe que un hilo se ha bloqueado (por ejemplo, al ejecutar una
llamada al sistema de bloqueo o al ocasionar un fallo de página), se lo
notifica al sistema en tiempo de ejecución del proceso, pasándole como
parámetros a la pila el número del hilo en cuestión y una descripción del
evento que ocurrió. Para realizar la notificación, el kernel activa el sistema en
tiempo de ejecución en una dirección inicial conocida, no muy similar a una

señal en UNIX. A este mecanismo se le conoce como llamada ascendente
(upcall).

8.​ Hilos emergentes

8.1.​ Los hilos se utilizan con frecuencia en los sistemas distribuidos. Un

importante ejemplo es la forma en que se manejan los mensajes entrantes
(por ejemplo, las peticiones de servicio). El método tradicional es hacer que
un proceso o hilo, que está bloqueado en una llamada al sistema receive,
espere un mensaje entrante. Cuando llega un mensaje, lo acepta, lo
desempaqueta, examina su contenido y lo procesa.

8.2.​ También es posible utilizar un método completamente distinto, en el cual la
llegada de un mensaje hace que el sistema cree un nuevo hilo para manejar
el mensaje. A dicho hilo se le conoce como hilo emergente (pop-up thread)

8.3.​ Una ventaja clave de los hilos emergentes es que, como son nuevos, no
tienen historial (registros, pila, etcétera) que sea necesario restaurar. Cada
uno empieza desde cero y es idéntico a los demás. Esto hace que sea
posible crear dicho hilo con rapidez. El nuevo hilo recibe el mensaje entrante
que va a procesar. El resultado de utilizar hilos emergentes es que la latencia
entre la llegada del mensaje y el inicio del procesamiento puede ser muy
baja.

Por otro lado, un hilo de kernel con errores puede hacer más daño que un
hilo de usuario con errores. Por ejemplo, si se ejecuta durante demasiado
tiempo y no hay manera de quitarlo, los datos entrantes se pueden perder.

9.​ Conversión de código de hilado simple a multi hilado

9.1.​ Para empezar, el código de un hilo normalmente consiste de varios

procedimientos, al igual que un proceso. Éstos pueden tener variables
locales, variables globales y parámetros. Las variables y parámetros locales

no ocasionan problemas, pero las variables que son globales a un hilo, pero
no globales para todo el programa, son un problema.

Otra solución es asignar a cada hilo sus propias variables globales privadas. De esta
forma, cada hilo tiene su propia copia privada de errno y de otras variables globales,
por lo que se evitan los conflictos.

9.2.​ Al convertir un programa con un solo hilo en un programa con múltiples hilos

es que muchos procedimientos de biblioteca no son re-entrantes; es decir, no
se diseñaron para hacer una segunda llamada a cualquier procedimiento
dado mientras que una llamada anterior no haya terminado. Por ejemplo,
podemos programar el envío de un mensaje a través de la red ensamblando
el mensaje en un búfer fijo dentro de la biblioteca, para después hacer un
trap al kernel para enviarlo. ¿Qué ocurre si un hilo ha ensamblado su
mensaje en el búfer y después una interrupción de reloj obliga a que se haga
la conmutación a un segundo hilo que de inmediato sobrescribe el búfer con
su propio mensaje?

9.2.1.​ Para corregir estos problemas de manera efectiva, tal vez sea
necesario reescribir la biblioteca completa, lo que no es insignificante.

9.2.2.​ Una solución distinta es proporcionar a cada procedimiento una
envoltura que fije un bit para marcar la librería como si estuviera en
uso. Si otro hilo intenta usar un procedimiento de biblioteca mientras
no se haya completado una llamada anterior, se bloquea. Aunque se
puede hacer que este método funcione, elimina en gran parte el
paralelismo potencial.

9.3.​ Un último problema que introducen los hilos es la administración de la pila.
En muchos sistemas, cuando la pila de un proceso se desborda, el kernel
sólo proporciona más pila a ese proceso de manera automática. Cuando un
proceso tiene múltiples hilos, también debe tener varias pilas. Si el kernel no
está al tanto de todas ellas, no puede hacer que su tamaño aumente de
manera automática cuando ocurra un fallo de la pila.De hecho, ni siquiera
puede detectar que un fallo de memoria está relacionado con el aumento de
tamaño de la pila de algún otro hilo.

●​ COMUNICACIÓN ENTRE PROCESOS

Hay tres cuestiones aquí. La primera se alude a lo anterior: cómo un proceso puede
pasar información a otro. La segunda está relacionada con hacer que dos o más
procesos no se interpongan entre sí; por ejemplo, dos procesos en un sistema de
reservaciones de una aerolínea, cada uno de los cuales trata de obtener el último
asiento en un avión para un cliente distinto. La tercera trata acerca de obtener la
secuencia apropiada cuando hay dependencias presentes: si el proceso A produce
datos y el proceso B los imprime, B tiene que esperar hasta que A haya producido
algunos datos antes de empezar a imprimir.

1.​ Condiciones de carrera

1.1.​ Un spooler de impresión. Cuando un proceso desea imprimir un archivo,

introduce el nombre del archivo en un directorio de spooler especial. Otro
proceso, el demonio de impresión, comprueba en forma periódica si hay
archivos que deban imprimirse y si los hay, los imprime y luego elimina sus
nombres del directorio.

1.2.​ Situaciones como ésta, en donde dos o más procesos están leyendo o

escribiendo algunos datos compartidos y el resultado final depende de quién
se ejecuta y exactamente cuándo lo hace, se conocen como condiciones de
carrera.

2.​ Regiones críticas

2.1.​ ¿Cómo evitamos las condiciones de carrera? Lo que necesitamos es

exclusión mutua, cierta forma de asegurar que si un proceso está utilizando
una variable o archivo compartido, los demás procesos se excluirán de hacer
lo mismo.

2.2.​ Esa parte del programa en la que se accede a la memoria compartida se
conoce como región crítica o sección crítica.

2.3.​ Necesitamos cumplir con cuatro condiciones para tener una buena solución:
2.3.1.​ 1. No puede haber dos procesos de manera simultánea dentro de sus

regiones críticas.
2.3.2.​ 2. No pueden hacerse suposiciones acerca de las velocidades o el

número de CPUs.
2.3.3.​ 3. Ningún proceso que se ejecute fuera de su región crítica puede

bloquear otros procesos.
2.3.4.​ 4. Ningún proceso tiene que esperar para siempre para entrar a su

región crítica

3.​ Exclusión mutua con espera ocupada

3.1.​ Deshabilitando interrupciones

3.1.1.​ La solución más simple es hacer que cada proceso deshabilite todas

las interrupciones justo después de entrar a su región crítica y las
rehabilite justo después de salir. Con las interrupciones
deshabilitadas, no pueden ocurrir interrupciones de reloj. Después de
todo, la CPU sólo se conmuta de un proceso a otro como resultado de
una interrupción del reloj o de otro tipo, y con las interrupciones
desactivadas la CPU no se conmutará a otro proceso. Por ende, una
vez que un proceso ha deshabilitado las interrupciones, puede
examinar y actualizar la memoria compartida sin temor de que algún
otro proceso intervenga.

3.1.2.​ La posibilidad de lograr la exclusión mutua al deshabilitar las
interrupciones (incluso dentro del kernel) está disminuyendo día con
día debido al creciente número de chips multinúcleo que se
encuentran hasta en las PCs de bajo rendimiento. Ya es común que
haya dos núcleos, las máquinas actuales de alto rendimiento tienen
cuatro y dentro de poco habrá ocho o 16.

3.2.​ Variables de candado

3.2.1.​ Considere tener una sola variable compartida (de candado), que al
principio es 0. Cuando un proceso desea entrar a su región crítica
primero evalúa el candado. Si este candado es 0, el proceso lo fija en
1 y entra a la región crítica. Si el candado ya es 1 sólo espera hasta
que el candado se haga 0. Por ende, un 0 significa que ningún
proceso está en su región crítica y un 1 significa que algún proceso
está en su región crítica.

3.2.2.​ Esta idea contiene exactamente el mismo error fatal que vimos en el
directorio de spooler. Suponga que un proceso lee el candado y ve
que es 0. Antes de que pueda fijar el candado a 1, otro proceso se
planifica para ejecutarse y fija el candado a 1. Cuando el primer
proceso se ejecuta de nuevo, también fija el candado a 1 y por lo
tanto dos procesos se encontrarán en sus regiones críticas al mismo
tiempo

3.3.​ Alternancia estricta

3.3.1.​ A la acción de evaluar en forma continua una variable hasta que
aparezca cierto valor se le conoce como espera ocupada. Por lo
general se debe evitar, ya que desperdicia tiempo de la CPU. La
espera ocupada sólo se utiliza cuando hay una expectativa razonable
de que la espera será corta. A un candado que utiliza la espera
ocupada se le conoce como candado de giro.

3.3.2.​ Aunque este algoritmo evita todas las condiciones de carrera, en
realidad no es un candidato serio como solución, ya que viola la
condición 3.

3.4.​ Solución de Peterson

3.5.​ La instrucción TSL

3.5.1.​ Lee el contenido de la palabra de memoria candado y lo guarda en el
registro RX, y después almacena un valor distinto de cero en la
dirección de memoria candado. Se garantiza que las operaciones de
leer la palabra y almacenar un valor en ella serán indivisibles; ningún
otro procesador puede acceder a la palabra de memoria sino hasta
que termine la instrucción. La CPU que ejecuta la instrucción TSL
bloquea el bus de memoria para impedir que otras CPUs accedan a la
memoria hasta que termine

3.5.2.​ Para usar la instrucción TSL necesitamos una variable compartida
(candado) que coordine el acceso a la memoria compartida. Cuando
el candado es 0, cualquier proceso lo puede fijar en 1 mediante el uso
de la instrucción TSL y después una lectura o escritura en la memoria
compartida. Cuando termina, el proceso establece candado de vuelta
a 0 mediante una instrucción move ordinaria.

4.​ Dormir y despertar

4.1.​ Tanto la solución de Peterson como las soluciones mediante TSL o XCHG

son correctas, pero todas tienen el defecto de requerir la espera ocupada

4.2.​ Una de las más simples es el par sleep (dormir) y wakeup (despertar). Sleep
es una llamada al sistema que hace que el proceso que llama se bloquee o
desactive, es decir, que se suspenda hasta que otro proceso lo despierte. La
llamada wakeup tiene un parámetro, el proceso que se va a despertar o
activar. De manera alternativa, tanto sleep como wakeup tienen un
parámetro, una dirección de memoria que se utiliza para asociar las llamadas
a sleep con las llamadas a wakeup.

4.3.​ El problema del productor-consumidor

4.3.1.​ El problema surge cuando el productor desea colocar un nuevo
elemento en el búfer, pero éste ya se encuentra lleno. La solución es
que el productor se vaya a dormir (se desactiva) y que se despierte
(se active) cuando el consumidor haya quitado uno o más elementos.

De manera similar, si el consumidor desea quitar un elemento del
búfer y ve que éste se encuentra vacío, se duerme hasta que el
productor coloca algo en el búfer y lo despierta.

4.4.​ Ahora regresemos a la condición de carrera. Puede ocurrir debido a que el
acceso a cuenta no está restringido. Una solución rápida es modificar las
reglas para agregar al panorama un bit de espera de despertar. Cuando se
envía una señal de despertar a un proceso que sigue todavía despierto, se
fija este bit.

5.​ Semáforos

5.1.​ En su propuesta introdujo un nuevo tipo de variable, al cual él llamó

semáforo. Un semáforo podría tener el valor 0, indicando que no se
guardaron señales de despertar o algún valor positivo si estuvieran
pendientes una o más señales de despertar

5.2.​ La operación down en un semáforo comprueba si el valor es mayor que 0.
De ser así, disminuye el valor y sólo continúa. Si el valor es 0, el proceso se
pone a dormir sin completar la operación down por el momento. Las acciones
de comprobar el valor, modificarlo y posiblemente pasar a dormir, se realizan
en conjunto como una sola acción atómica indivisible.

5.3.​ Cómo resolver el problema del productor-consumidor mediante el uso de
semáforos

5.3.1.​ Esta solución utiliza tres semáforos: uno llamado llenas para
contabilizar el número de ranuras llenas, otro llamado vacías para
contabilizar el número de ranuras vacías y el último llamado mutex,
para asegurar que el productor y el consumidor no tengan acceso al
búfer al mismo tiempo.

6.​ Mutexes

6.1.​ Cuando no se necesita la habilidad del semáforo de contar, algunas veces se

utiliza una versión simplificada, llamada mutex. Los mutexes son buenos sólo
para administrar la exclusión mutua para cierto recurso compartido o pieza
de código.

6.2.​ Un mutex es una variable que puede estar en uno de dos estados: abierto
(desbloqueado) o cerrado (bloqueado). En consecuencia, se requiere sólo 1
bit para representarla, pero en la práctica se utiliza con frecuencia un entero,
en donde 0 indica que está abierto y todos los demás valores indican que
está cerrado.

6.3.​ Mutexes en Pthread: Pthreads proporciona varias funciones que se pueden

utilizar para sincronizar los hilos. El mecanismo básico utiliza una variable
mutex, cerrada o abierta, para resguardar cada región crítica.

6.4.​ Además de los mutexes, pthreads ofrece un segundo mecanismo de

sincronización: las variables de condición. Las variables de condición
permiten que los hilos se bloqueen debido a que cierta condición no se está
cumpliendo. Casi siempre se utilizan los dos métodos juntos.

7.​ Monitores

7.1.​ propusieron una primitiva de sincronización de mayor nivel, conocida como

monitor. Sus proposiciones tienen ligeras variaciones, como se describe a
continuación. Un monitor es una colección de procedimientos, variables y
estructuras de datos que se agrupan en un tipo especial de módulo o
paquete. Los procesos pueden llamar a los procedimientos en un monitor
cada vez que lo desean, pero no pueden acceder de manera directa a las
estructuras de datos internas del monitor desde procedimientos declarados
fuera de éste.

7.2.​ Los monitores tienen una importante propiedad que los hace útiles para
lograr la exclusión mutua: sólo puede haber un proceso activo en un monitor
en cualquier instante. Los monitores son una construcción del lenguaje de
programación, por lo que el compilador sabe que son especiales y puede
manejar las llamadas a los procedimientos del monitor en forma distinta a las
llamadas a otros procedimientos.

7.3.​ También necesitamos una forma en la que los procesos se bloqueen cuando
no puedan continuar: La solución está en la introducción de las variables de
condición, junto con dos operaciones de éstas: wait y signal. Cuando un
procedimiento de monitor descubre que no puede continuar realiza una
operación wait en alguna variable de condición. La operación wait debe ir
antes de la operación signal. Esta regla facilita la implementación en forma
considerable. En la práctica no es un problema debido a que es fácil llevar el
registro del estado de cada proceso con variables, si es necesario.

7.4.​ Al automatizar la exclusión mutua de las regiones críticas, los monitores
hacen que la programación en paralelo sea mucho menos propensa a
errores que con los semáforos.

8.​ Pasaje (transmisión) de mensajes

8.1.​ Ese “algo más” es el pasaje de mensajes (message passing). Este método

de comunicación entre procesos utiliza dos primitivas (send y receive) que, al
igual que los semáforos y a diferencia de los monitores, son llamadas al
sistema en vez de construcciones del lenguaje.

9.​ Barreras

9.1.​ Algunas aplicaciones se dividen en fases y tienen la regla de que ningún

proceso puede continuar a la siguiente fase sino hasta que todos los
procesos estén listos para hacerlo. Para lograr este comportamiento, se
coloca una barrera al final de cada fase. Cuando un proceso llega a la
barrera, se bloquea hasta que todos los procesos han llegado a ella.

●​ PLANIFICACIÓN

1.​ Introducción a la planificación

1.1.​ Comportamiento de un proceso

1.1.1.​ Casi todos los procesos alternan ráfagas de cálculos con peticiones

de E/S (de disco). Por lo general la CPU opera durante cierto tiempo
sin detenerse, después se realiza una llamada al sistema para leer
datos de un archivo o escribirlos en el mismo. Cuando se completa la
llamada al sistema, la CPU realiza cálculos de nuevo hasta que
necesita más datos o tiene que escribir más datos y así
sucesivamente.

1.2.​ Cuándo planificar procesos

1.2.1.​ En primer lugar, cuando se crea un nuevo proceso se debe tomar una

decisión en cuanto a si se debe ejecutar el proceso padre o el
proceso hijo.

1.2.2.​ En segundo lugar, se debe tomar una decisión de planificación
cuando un proceso termina.

1.2.3.​ En tercer lugar, cuando un proceso se bloquea por esperar una
operación de E/S, un semáforo o por alguna otra razón, hay que
elegir otro proceso para ejecutarlo.

1.2.4.​ En cuarto lugar, cuando ocurre una interrupción de E/S tal vez haya
que tomar una decisión de planificación.

1.3.​ No Apropiativos

1.3.1.​ Un algoritmo de programación no apropiativo (nonpreemptive)
selecciona un proceso para ejecutarlo y después sólo deja que se
ejecute hasta que el mismo se bloqueao hasta que libera la CPU en
forma voluntaria.

1.4.​ Apropiativos

1.4.1.​ Un algoritmo de planificación apropiativa selecciona un proceso y deja
que se ejecute por un máximo de tiempo fijo. Si sigue en ejecución al
final del intervalo de tiempo, se suspende y el planificador selecciona
otro proceso para ejecutarlo

1.5.​ Categorías de los algoritmos de planificación

1.5.1.​ 1. Procesamiento por lotes: En consecuencia, son aceptables los
algoritmos no apropiativos. Este método reduce la conmutación de
procesos y por ende, mejora el rendimiento.

1.5.2.​ 2. Interactivo: La apropiación es esencial para evitar que un proceso
acapara la CPU y niegue el servicio a los demás. Los servidores
también entran en esta categoría, ya que por lo general dan servicio a
varios usuarios (remotos), todos los cuales siempre tienen mucha
prisa.

1.5.3.​ 3. De tiempo real: La apropiación a veces es no necesaria debido a
que los procesos saben que no se pueden ejecutar durante periodos
extensos, que por lo general realizan su trabajo y se bloquean con
rapidez.

1.6.​ Metas de los algoritmos de planificación

2.​ Planificación en sistemas de procesamiento por lotes

2.1.​ FCFS, (First-Come First-Served) (primero en entrar primero en ser atendido)

(no apropiativo):

2.1.1.​ La CPU se asigna a los procesos en el orden en el que la solicitan.
No se interrumpe debido a que se ha ejecutado demasiado tiempo. A

medida que van entrando otros trabajos, se colocan al final de la cola.
Si el proceso en ejecución se bloquea, el primer proceso en la cola se
ejecuta a continuación. Cuando un proceso bloqueado pasa al estado
listo, al igual que un trabajo recién llegado, se coloca al final de la
cola.

2.2.​ SJF (Shortest Job First) (el trabajo más corto primero) (no apropiativo):

2.2.1.​ En este algoritmo , da bastante prioridad a los procesos más cortos a

la hora de ejecución y los coloca en la cola. Selecciona el proceso
con el próximo tiempo de ejecución más corto y lo ejecuta hasta que
finaliza el proceso. Si hay dos procesos cuyas ráfagas de la CPU
tiene la misma duración, se emplea el algoritmo FCFS o FIFO para
romper el empate.

2.3.​ SRTN (Shortest Remaining Time Next) (el menor tiempo restante a
continuación) (apropiativa):

2.3.1.​ Con este algoritmo, el planificador siempre selecciona el proceso
cuyo tiempo restante de ejecución sea el más corto. Cuando llega un
nuevo trabajo, su tiempo total se compara con el tiempo restante del
proceso actual. Si el nuevo trabajo necesita menos tiempo para
terminar que el proceso actual, éste se suspende y el nuevo trabajo
se inicia. Ese esquema permite que los trabajos cortos nuevos
obtengan un buen servicio.

3.​ Planificación en sistemas interactivos

3.1.​ round-robin (turno circular) (apropiativo): Uno de los algoritmos más antiguos,

simples, equitativos y de mayor uso

3.1.1.​ A cada proceso se le asigna un intervalo de tiempo, conocido como
quántum, durante el cual se le permite ejecutarse. Si el proceso se
sigue ejecutando al final del cuento, la CPU es apropiada para
dársela a otro proceso. Si el proceso se bloquea o termina antes de
que haya transcurrido el quántum, la conmutación de la CPU se
realiza cuando el proceso se bloquea, desde luego. La cola de
procesos se estructura como una cola circular. La organización de la
cola es FIFO.

3.1.2.​ Suponga que está conmutación de proceso o conmutación de

contexto requiere 1 mseg, incluyendo el cambio de los mapas de
memoria, el vaciado y recarga de la caché, etc. Suponga además que
el quántum se establece a 4 mseg. Con estos parámetros, después
de realizar 4 mseg de trabajo útil, la CPU tendrá que gastar (es decir,
desperdiciar) 1 mseg en la conmutación de procesos.

3.1.3.​ 20 por ciento de la CPU se desperdiciará por sobrecarga
administrativa.

3.2.​ Planificación por prioridad:
3.2.1.​ La idea básica es simple: a cada proceso se le asigna una prioridad y

el proceso ejecutable con la prioridad más alta es el que se puede
ejecutar.

3.2.2.​ Para evitar que los procesos con alta prioridad se ejecuten de manera
indefinida, el planificador puede reducir la prioridad del proceso actual
en ejecución en cada pulso del reloj. Si esta acción hace que su
prioridad se reduzca a un valor menor que la del proceso con la
siguiente prioridad más alta, ocurre una conmutación de procesos. De
manera alternativa, a cada proceso se le puede asignar un quántum
de tiempo máximo que tiene permitido ejecutarse. Cuando este
quántum se utiliza, el siguiente proceso con la prioridad más alta
recibe la oportunidad de ejecutarse.

3.3.​ Múltiples colas

3.3.1.​ Su solución fue la de establecer clases de prioridades. Los procesos
en la clase más alta se ejecutaban durante un quántum. Los procesos
en la siguiente clase más alta se ejecutaban por dos quántums. Los
procesos en la siguiente clase se ejecutaban por cuatro quántums, y
así sucesivamente. Cada vez que un proceso utilizaba todos los
quántums que tenía asignados, se movía una clase hacia abajo en la
jerarquía

3.3.2.​ Cuando un proceso en espera de un bloque de disco pasaba al
estado listo, se enviaba a la segunda clase. Cuando a un proceso que
estaba todavía en ejecución se le agotaba su quántum, al principio se
colocaba en la tercera clase. No obstante, si un proceso utilizaba todo
su quántum demasiadas veces seguidas sin bloquearse en espera de
la terminal o de otro tipo de E/S, se movía hacia abajo hasta la última

cola. Muchos otros sistemas utilizan algo similar para favorecer a los
usuarios y procesos interactivos en vez de los que se ejecutan en
segundo plano.

3.4.​ El proceso más corto a continuación:

3.4.1.​ Si consideramos la ejecución de cada comando como un “trabajo”
separado, entonces podríamos minimizar el tiempo de respuesta total
mediante la ejecución del más corto primero. El único problema es
averiguar cuál de los procesos actuales ejecutables es el más corto.

3.4.2.​ La técnica de estimar el siguiente valor en una serie mediante la
obtención del promedio ponderado del valor actual medido y la
estimación anterior se conoce algunas veces como envejecimiento.

3.5.​ Planificación garantizada:

3.5.1.​ Un método completamente distinto para la planificación es hacer
promesas reales a los usuarios acerca del rendimiento y después
cumplirlas.

3.5.2.​ Para cumplir esta promesa, el sistema debe llevar la cuenta de cuánta
potencia de CPU ha tenido cada proceso desde su creación. Después
calcula cuánto poder de la CPU debe asignarse a cada proceso, a
saber el tiempo desde que se creó dividido entre n.

3.6.​ Planificación por sorteo:

3.6.1.​ Aunque hacer promesas a los usuarios y cumplirlas es una buena
idea, es algo difícil de implementar. Este algoritmo se conoce como
planificación por sorteo

3.6.2.​ La idea básica es dar a los procesos boletos de lotería para diversos
recursos del sistema, como el tiempo de la CPU. Cada vez que hay
que tomar una decisión de planificación, se selecciona un boleto de
lotería al azar y el proceso que tiene ese boleto obtiene el
recurso.Cuando se aplica a la planificación de la CPU, el sistema
podría realizar un sorteo 50 veces por segundo y cada ganador
obtendría 20 mseg de tiempo de la CPU como premio.

3.6.3.​ La planificación por lotería tiene un alto grado de respuesta.

3.6.4.​ Los procesos cooperativos pueden intercambiar boletos si lo desean.
Por ejemplo, cuando un proceso cliente envía un mensaje a un
proceso servidor y después se bloquea, puede dar todos sus boletos
al servidor para incrementar la probabilidad de que éste se ejecute a
continuación.

3.7.​ Planificación por partes equitativas:

3.7.1.​ Si el usuario 1 inicia 9 procesos y el usuario 2 inicia 1 proceso, con la
planificación por turno circular o por prioridades iguales, el usuario 1
obtendrá 90 por ciento del tiempo de la CPU y el usuario 2 sólo
recibirá 10 por ciento.

3.7.2.​ En este modelo, a cada usuario se le asigna cierta fracción de la CPU
y el planificador selecciona procesos de tal forma que se cumpla con
este modelo. Por ende, si a dos usuarios se les prometió 50 por
ciento del tiempo de la CPU para cada uno, eso es lo que obtendrán
sin importar cuántos procesos tengan en existencia.

4.​ Planificación en sistemas de tiempo real

4.1.​ Por ejemplo, la computadora en un reproductor de disco compacto recibe los

bits a medida que provienen de la unidad y debe convertirlos en música, en
un intervalo de tiempo muy estrecho. Si el cálculo tarda demasiado, la
música tendrá un sonido peculiar.

4.2.​ En general, los sistemas de tiempo real se categorizan como de tiempo real
duro, lo cual significa que hay tiempos límite absolutos que se deben cumplir,
y como de tiempo real suave, lo cual significa que no es conveniente fallar en
un tiempo límite en ocasiones, pero sin embargo es tolerable.

4.3.​ En ambos casos, el comportamiento en tiempo real se logra dividiendo el
programa en varios procesos, donde el comportamiento de cada uno de
éstos es predecible y se conoce de antemano. Por lo general, estos procesos
tienen tiempos de vida cortos y pueden ejecutarse hasta completarse en
mucho menos de 1 segundo.

4.4.​ Los algoritmos de planificación en tiempo real pueden ser estáticos o
dinámicos.

4.4.1.​ Los primeros toman sus decisiones de planificación antes de que el
sistema empiece a ejecutarse. La planificación estática sólo funciona
cuando hay información perfecta disponible de antemano acerca del
trabajo que se va a realizar y los tiempos límite que se tienen que
cumplir.

4.4.2.​ Los segundos lo hacen durante el tiempo de ejecución. Los
algoritmos de planificación dinámicos no tienen estas restricciones.

5.​ Política contra mecanismo

5.1.​ Por desgracia, ninguno de los planificadores antes descritos acepta entrada
de los procesos de usuario acerca de las decisiones de planificación. Como
resultado, raras veces el planificador toma la mejor decisión.

5.2.​ La solución a este problema es separar el mecanismo de planificación de la
política de planificación, un principio establecido desde hace tiempo (Levin y
colaboradores, 1975). Esto significa que el algoritmo de planificación está
parametrizado de cierta forma, pero los procesos de usuario pueden llenar
los parámetros.

6.​ Planificación de hilos

6.1.​ Cuando varios procesos tienen múltiples hilos cada uno, tenemos dos niveles

de paralelismo presentes: procesos e hilos. La planificación en tales sistemas
difiere en forma considerable, dependiendo de si hay soporte para hilos a
nivel usuario o para hilos a nivel kernel (o ambos).

6.2.​ Consideremos primero los hilos a nivel usuario. Como el kernel no está
consciente de la existencia de los hilos, opera de la misma forma de siempre.
El algoritmo de planificación utilizado por el sistema en tiempo de ejecución
puede ser cualquiera de los antes descritos. La única restricción es la
ausencia de un reloj para interrumpir a un proceso que se ha ejecutado por
mucho tiempo

6.3.​ Ahora considere la situación con hilos a nivel kernel. Aquí el kernel
selecciona un hilo específico para ejecutarlo. No tiene que tomar en cuenta a
cuál proceso pertenece el hilo, pero puede hacerlo si lo desea. El hilo recibe
un quántum y se suspende obligatoriamente si se excede de este quántum.

Una diferencia importante entre los hilos a nivel usuario y los hilos a nivel kernel es
el rendimiento. Para realizar un conmutación de hilos con hilos a nivel usuario se
requiere de muchas instrucciones de máquina. Con hilos a nivel kernel se requiere
una conmutación de contexto total, cambiar el mapa de memoria e invalidar la
caché, lo cual es varias órdenes de magnitud más lento. Por otro lado, con los hilos
a nivel kernel, cuando un hilo se bloquea en espera de E/S no se suspende todo el
proceso, como con los hilos a nivel usuario.

●​ PROBLEMAS CLÁSICOS DE COMUNICACIÓN ENTRE PROCESOS (IPC)

1.​ El problema de los filósofos comelones

Sistemas Operativos, Interbloqueo 5 El problema de los filósofos

2.​ El problema de los lectores y escritores

​ Sistemas Operativos, Problema de la concurrencia 29 Lectores escritores, prioridad
a los escritores

●​ EXTRAS SEMÁFOROS

●​ MUTEX

SEMÁFORO BINARIO

https://www.youtube.com/watch?v=yFoq8mTL9RE
https://www.youtube.com/watch?v=6DFwZnERjko
https://www.youtube.com/watch?v=6DFwZnERjko

SEMÁFORO ENTERO

1.​ Para semáforos que pueden tomar valores negativos

2.​ Para semáforos que no pueden tomar valores negativos

●​ MONITORES

