PROCESOS E HILOS

e PROCESOS

En cualquier sistema de multiprogramacién, la CPU conmuta de un proceso a otro
con rapidez, ejecutando cada uno durante décimas o centésimas de milisegundos:
hablando en sentido estricto, en cualquier instante la CPU esta ejecutando sélo un
proceso, y en el transcurso de 1 segundo podria trabajar en varios de ellos, dando la
apariencia de un paralelismo (o pseudoparalelismo, para distinguirlo del verdadero
paralelismo de hardware de los sistemas multiprocesadores con dos o0 mas CPUs
que comparten la misma memoria fisica)

1. El modelo del proceso

1.1.

Todo el software ejecutable en la computadora, que algunas veces incluye al
sistema operativo, se organiza en varios procesos secuenciales. Un proceso
no es mas que una instancia de un programa en ejecucion, incluyendo los
valores actuales del contador de programa, los registros y las variables.

Un contador de programa Cuatro contadores
N— d

A Conmutacion € programa

= de proceso oD — —
B o

q E C — —_—
o

\l c A l B Y c l DY B - —_

n A | — —

\Y D Tiempo —=

(a) (b) (c)

Figura 2-1. (a) Multiprogramacién de cuatro programas. (b) Modelo conceptual de
cuatro procesos secuenciales independientes. (¢) Solo hay un programa activo a la vez.

2. Creacion de un proceso

2.1.

2.2.

Hay cuatro eventos principales que provocan la creacion de procesos:
1. El arranque del sistema.

2. La ejecucion, desde un proceso, de una llamada al sistema para creacion
de procesos.

3. Una peticién de usuario para crear un proceso.

4. El inicio de un trabajo por lotes.

Generalmente, cuando se arranca un sistema operativo se crean varios
procesos. Algunos de ellos son procesos en primer plano; es decir, procesos

que interactian con los usuarios (humanos) y realizan trabajo para ellos.
Otros son procesos en segundo plano, que no estan asociados con usuarios

especificos sino con una funcion especifica. Los procesos que permanecen
en segundo plano para manejar ciertas actividades como correo electrénico,
paginas Web, noticias, impresiones, etcétera, se conocen como demonios
(daemons).

2.3. En UNIX sélo hay una llamada al sistema para crear un proceso: fork. Esta
llamada crea un clon exacto del proceso que hizo la llamada. Después de
fork, los dos procesos (padre e hijo) tienen la misma imagen de memoria, las
mismas cadenas de entorno y los mismos archivos abiertos

2.4. En Windows una sola llamada a una funcién de Win32 (CreateProcess)
maneja la creacién de procesos y carga el programa correcto en el nuevo
proceso. Esta llamada tiene 10 parametros, que incluyen el programa a
ejecutar, los parametros de la linea de comandos para introducir datos a ese
programa, varios atributos de seguridad, bits que controlan si los archivos
abiertos se heredan, informacion de prioridad, una especificacion de la
ventana que se va a crear para el proceso (si se va a crear una) y un
apuntador a una estructura en donde se devuelve al proceso que hizo la
llamada la informacion acerca del proceso recién creado.

3. Terminacién de procesos

3.1. Tarde o temprano el nuevo proceso terminara, por lo general debido a una de
las siguientes condiciones:

3.1.1. Salida normal (voluntaria): Para indicar al sistema operativo que ha
terminado. Esta llamada es exit en UNIX y ExitProcess en Windows.
Los programas orientados a pantalla también admiten la terminacién
voluntaria.

3.1.2. Salida por error (voluntaria): Si un usuario escribe el comando para
compilar el programa foo.c y no existe dicho archivo, el compilador
simplemente termina. Los procesos interactivos orientados a pantalla
por lo general no terminan cuando reciben parametros incorrectos. En
vez de ello, aparece un cuadro de dialogo y se le pide al usuario que
intente de nuevo.

3.1.3. Error fatal (involuntaria): El ejecutar una instruccion ilegal, hacer
referencia a una parte de memoria no existente o la division entre
cero.

3.1.4. Eliminado por otro proceso (involuntaria): Es que ejecute una llamada
al sistema que indique al sistema operativo que elimine otros
procesos. En UNIX esta llamada es kill. La funcién correspondiente
en Win32 es TerminateProcess. En ambos casos, el proceso
eliminador debe tener la autorizacion necesaria para realizar la
eliminacion.

4.

5.

6.

Jerarquias de procesos

4.1. En algunos sistemas, cuando un proceso crea otro, el proceso padre y el
proceso hijo continlan asociados en ciertas formas. El proceso hijo puede
crear por si mismo mas procesos, formando una jerarquia de procesos.

4.2. Como otro ejemplo donde la jerarquia de procesos juega su papel, veamos la
forma en que UNIX se inicializa a si mismo cuando se enciende la
computadora. Hay un proceso especial (Ilamado init) en la imagen de inicio.
Cuando empieza a ejecutarse, lee un archivo que le indica cuantas
terminales hay. Después utiliza fork para crear un proceso por cada terminal.
Estos procesos esperan a que alguien inicie la sesion. Si un inicio de sesién
tiene éxito, el proceso de inicio de sesidon ejecuta un shell para aceptar
comandos. Estos pueden iniciar mas procesos y asi sucesivamente.

4.3. Windows no tiene un concepto de una jerarquia de procesos. Todos los
procesos son iguales. La unica sugerencia de una jerarquia de procesos es
que, cuando se crea un proceso, el padre recibe un indicador especial un
token (llamado manejador) que puede utilizar para controlar al hijo.

Estados de un proceso

5.1. Alos tres estados en los que se puede encontrar un proceso:

5.1.1. En ejecucion (en realidad esta usando la CPU en ese instante).

5.1.2. Listo (ejecutable; se detuvo temporalmente para dejar que se ejecute
otro proceso).

5.1.3. Bloqueado (no puede ejecutarse sino hasta que ocurra cierto evento
externo).

En ejecucion

1. El proceso se bloquea para recibir entrada
2. El planificador selecciona otro proceso

3. El planificador selecciona este proceso

4. La entrada ya esta disponible

LR Y

Figura 2-2. Un proceso puede encontrarse en estado “en ejecucion”, “bloqueado” o
“listo”. Las transiciones entre estos estados son como se muestran.

Implementacion de los procesos

7.

6.1.

Para implementar el modelo de procesos, el sistema operativo mantiene una
tabla (un arreglo de estructuras) llamada tabla de procesos, con sélo una
entrada por cada proceso (algunos autores llaman a estas entradas bloques
de control de procesos). Esta entrada contiene informacion importante acerca
del estado del proceso, incluyendo su contador de programa, apuntador de
pila, asignacion de memoria, estado de sus archivos abiertos, informacion de
contabilidad y planificacion, y todo lo de mas que debe guardarse acerca del
proceso cuando éste cambia del estado en ejecucion a listo o bloqueado, de
manera que se pueda reiniciar posteriormente como si nunca se hubiera

detenido.

Administracion de procesos

Registros

Contador del programa

Palabra de estado del programa

Apuntador de la pila

Estado del proceso

Prioridad

Parametros de planificacién

ID del proceso

Proceso padre

Grupo de procesos

Sefales

Tiempo de inicio del proceso

Tiempo utilizado de la CPU

Tiempo de la CPU utilizado por
el hijo

Hora de la siguiente alarma

Administracion de memoria

Apuntador a la informacion
del segmento de texto

Apuntador a la informacion
del segmento de datos

Apuntador a la informacion
del segmento de pila

Administracion de archivos
Directorio raiz

Directorio de trabajo
Descripciones de archivos

ID de usuario

ID de grupo

El hardware mete el contador del programa a la pila, etc.

El hardware carga el nuevo contador de programa del vector de interrupciones.

Procedimiento en lenguaje ensamblador guarda los registros.

Procedimiento en lenguaje ensamblador establece la nueva pila.

El servicio de interrupciones de C se ejecuta (por lo general lee y guarda la entrada en el bufer).
El planificador decide qué proceso se va a ejecutar a continuacion.

Procedimiento en C regresa al cédigo de ensamblador.

Procedimiento en lenguaje ensamblador inicia el nuevo proceso actual.

N OR LN

Figura 2-5. Esqueleto de lo que hace el nivel mas bajo del sistema operativo cuando
ocurre una interrupeion.

Modelacion de la multiprogramacion

7.1.

7.2.

Cuando se utiliza la multiprogramacién, el uso de la CPU se puede mejorar.
Dicho en forma cruda: si el proceso promedio realiza calculos soélo 20 por
ciento del tiempo que esta en la memoria, con cinco procesos en memoria a
la vez la CPU debera estar ocupada todo el tiempo. Sin embargo, este
modelo es demasiado optimista, ya que supone que los cinco procesos
nunca estaran esperando la E/S al mismo tiempo.

Suponga que un proceso gasta una fraccion p de su tiempo esperando a que
se complete una operacién de E/S. Con n procesos en memoria a la vez, la
probabilidad de que todos los n procesos estén esperando la E/S (en cuyo

7.3.

HILOS

caso, la CPU estara inactiva) es pn. Entonces, el uso de la CPU se obtiene
mediante la formula

Usodela CPU =1 — p”

Por ejemplo, suponga que una computadora tiene 512 MB de memoria, de la

cual el sistema operativo ocupa 128 MB y cada programa de usuario ocupa
otros 128 MB. Estos tamafnos permiten que haya tres programas de usuario
en memoria a la vez. Con un promedio de 80 por ciento de tiempo de espera
de E/S, tenemos una utilizacion de la CPU (ignorando la sobrecarga del
sistema operativo) de 1 — 0.83 o de aproximadamente 49 por ciento. Si
agregamos 512 MB mas de memoria, el sistema puede pasar de la
multiprogramacién de tres vias a una multiprogramacion de siete vias, con lo
cual el uso de la CPU se eleva hasta 79 por ciento. En otras palabras, los
512 MB adicionales elevaran el rendimiento en un 30 por ciento. Si
agregamos otros 512 MB, el uso de la CPU sdlo se incrementa de 79 a 91
por ciento, con lo cual se elevaria el rendimiento sélo en 12% adicional.

Con frecuencia hay situaciones en las que es conveniente tener varios hilos de
control en el mismo espacio de direcciones que se ejecuta en cuasi-paralelo, como
si fueran procesos (casi) separados (excepto por el espacio de direcciones
compartido).

Uso de hilos

1.1.

1.2.

1.3.

1.4.

La principal razén de tener hilos es que en muchas aplicaciones se
desarrollan varias actividades a la vez. Algunas de ellas se pueden bloquear
de vez en cuando. Al descomponer una aplicacion en varios hilos
secuenciales que se ejecutan en cuasi-paralelo, el modelo de programacion
se simplifica.

Solo que ahora con los hilos agregamos un nuevo elemento: la habilidad de
las entidades en paralelo de compartir un espacio de direcciones y todos sus
datos entre ellas. Esta habilidad es esencial para ciertas aplicaciones, razén
por la cual no funcionara el tener varios procesos (con sus espacios de
direcciones separados).

Un segundo argumento para tener hilos es que, como son mas ligeros que
los procesos, son mas faciles de crear (es decir, rapidos) y destruir. En
muchos sistemas, la creacién de un hilo es de 10 a 100 veces mas rapida
que la de un proceso.

Los hilos son utiles en los sistemas con varias CPUs, en donde es posible el
verdadero paralelismo.

while (TRUE) { while (TRUE) {

obtener_siguiente_peticion(&buf); esperar_trabajo(&buf)
pasar_trabajo(&buf); buscar_pagina_en_cache(&buf,&pagina);
} if (pagina_no_esta_en_cache(&pagina))

leer_pagina_de_disco(&buf, &pagina);
devolver_pagina(&pagina);

(a) (b)

Figura 2-9. Un bosquejo del codigo para la figura 2-8. (a) Hilo despachador.
(b) Hilo trabajador.

Modelo Caracteristicas

Hilos Paralelismo, llamadas al sistema con blogueo

Proceso con un solo hilo Sin paralelismo, llamadas al sistema con blogueo

Magquina de estados finitos Paralelismo, llamadas al sistema sin bloqueo, interrupciones

El modelo clasico de hilo

El modelo de procesos se basa en dos conceptos independientes: agrupamiento de
recursos y ejecucion. Algunas veces es Util separarlos; aqui es donde entran los
hilos.

2.1. Una manera de ver a un proceso es como si fuera una forma de agrupar
recursos relacionados. Un proceso tiene un espacio de direcciones que
contiene texto y datos del programa, asi como otros recursos. Estos pueden
incluir archivos abiertos, procesos hijos, alarmas pendientes, manejadores de
sefiales, informacion contable y mucho mas. Al reunirlos en forma de un
proceso, pueden administrarse con mas facilidad.

2.2. El otro concepto que tiene un proceso es un hilo de ejecucion, al que por lo
general sélo se le llama hilo. El hilo tiene un contador de programa que lleva
el registro de cual instruccidén se va a ejecutar a continuacion. Tiene registros
que contienen sus variables de trabajo actuales. Tiene una pila, que contiene
el historial de ejecucién, con un conjunto de valores para cada procedimiento
al que se haya llamado, pero del cual no se haya devuelto todavia.

Elementos por proceso Elementos por hilo
Espacio de direcciones Contador de programa
Variables globales Registros

Archivos abiertos Pila

Procesos hijos Estado

Alarmas pendientes
Sefiales y manejadores de sefiales
Informacién contable

Figura 2-12. La primera columna lista algunos elementos compartidos por todos los
hilos en un proceso; la segunda, algunos elementos que son privados para cada hilo.

2.3.

2.4.

Cuando hay multihilamiento, por lo general los procesos empiezan con un
solo hilo presente. Este hilo tiene la habilidad de crear hilos mediante la
llamada a un procedimiento de biblioteca, como thread create. Comunmente,
un parametro para thread_create especifica el nombre de un procedimiento
para que se ejecute el nuevo hilo

En algunos sistemas con hilos, un hilo puede esperar a que un hilo
(especifico) termine mediante la llamada a un procedimiento, por ejemplo
thread_join. Este procedimiento bloquea al hilo llamador hasta que un hilo
(especifico) haya terminado.

Hilos en POSIX

3.1.

El IEEE ha definido un estandar para los hilos conocido como 1003.1c. El
paquete de hilos que define se conoce como Pthreads. El estandar define
mas de 60 llamadas a funciones

Llamada de hilo Descripcion

Pthread_create Crea un nuevo hilo

Pthread_exit Termina el hilo llamador

Pthread_join Espera a que un hilo especifico termine
Pthread_yield Libera la CPU para dejar que otro hilo se ejecute
Pthread_attr_init Crea e inicializa la estructura de atributos de un hilo
Pthread_attr_destroy Elimina la estructura de atributos de un hilo

Figura 2-14. Algunas de las llamadas a funciones de Pthreads.

Implementacion de hilos en el espacio de usuario

Hay dos formas principales de implementar un paquete de hilos: en espacio de
usuario y en el kernel.

Proceso Hilo Proceso Hilo
Espacio
de usuario
=]

Espacio

de kernel{ / Kernel \ — Kernel — %

% / 3

7 1 N YA

Sistema en tiempo Tabla Tabla de Tabla de Tabla
de ejecucion de hilos procesos procesos de hilos
(a) (b)

Figura 2-16. (a) Un paquete de hilos de nivel usuario. (b) Un paquete de hilos admi-
nistrado por el kernel.

4.1. El primer método es colocar el paquete de hilos completamente en espacio
de usuario. El kernel no sabe nada acerca de ellos. En lo que al kernel
concierne, esta administrando procesos ordinarios con un solo hilo. La
primera ventaja, la mas obvia, es que un paquete de hilos de nivel usuario
puede implementarse en un sistema operativo que no acepte hilos. Con este
método, los hilos se implementan mediante una biblioteca.

4.2. Ventajas:

4.21.

4.2.2.

4.2.3.

Realizar una conmutacion de hilos como éste es por lo menos una
orden de magnitud (o tal vez mas) mas veloz que hacer el trap al
kernel y es un sélido argumento a favor de los paquetes de hilos de
nivel usuario.

Permiten que cada proceso tenga su propio algoritmo de planificacion
personalizado. Por ejemplo, para algunas aplicaciones, las que tienen
un hilo recolector de basura, es una ventaja no tener que preocuparse
porque un hilo se detenga en un momento inconveniente. También se
escalan mejor, ya que los hilos del kernel requieren sin duda algo de
espacio en la tabla y en la pila del kernel, lo cual puede ser un
problema si hay una gran cantidad de hilos.

Si el programa llama o salta a una instruccion que no esté en
memoria, ocurre un fallo de pagina y el sistema operativo obtiene la
instruccion faltante (y las instrucciones aledafas) del disco. A esto se
le conoce como fallo de pagina.

4.3. Desventajas:

4.3.1.

4.3.2.

4.3.3.

El primero de todos es la manera en que se implementan las
llamadas al sistema de bloqueo. Suponga que un hilo lee del teclado
antes de que se haya oprimido una sola tecla. Es inaceptable permitir
que el hilo realice la llamada al sistema, ya que esto detendra a todos
los hilos. Uno de los principales objetivos de tener hilos en primer
lugar era permitir que cada uno utilizara llamadas de bloqueo, pero
para evitar que un hilo bloqueado afectara a los demas. Con las
llamadas al sistema de bloqueo, es dificil ver como se puede lograr
este objetivo sin problemas

Es posible otra alternativa si se puede saber de antemano si una
llamada se va a bloquear. En algunas versiones de UNIX existe una
llamada al sistema (select), la cual permite al procedimiento que hace
la llamada saber si una posible llamada a read realizara un bloqueo.El
cédigo colocado alrededor de la llamada al sistema que se encarga
de la comprobacion se conoce como envoltura.

Si un hilo empieza a ejecutarse, ningun otro hilo en ese proceso se
ejecutara a menos que el primero renuncie de manera voluntaria a la

CPU. Dentro de un solo proceso no hay interrupciones de reloj, lo
cual hace que sea imposible planificar procesos en el formato round
robin (tomando turnos).

5. Implementacion de hilos en el kernel.

5.1.

5.2.

5.3.

5.4.

No se necesita un sistema en tiempo de ejecucion para ninguna de las dos
acciones. Ademas, no hay tabla de hilos en cada proceso. En vez de ello, el
kernel tiene una tabla de hilos que lleva la cuenta de todos los hilos en el
sistema. Cuando un hilo desea crear un nuevo hilo o destruir uno existente,
realiza una llamada al kernel, la cual se encarga de la creacion o destruccién
mediante una actualizacion en la tabla de hilos del kernel.

Todas las llamadas que podrian bloquear un hilo se implementan como
llamadas al sistema, a un costo considerablemente mayor que una llamada a
un procedimiento del sistema en tiempo de ejecucién. Cuando un hilo se
bloquea, el kernel, segun lo que decida, puede ejecutar otro hilo del mismo
proceso (si hay uno listo) o un hilo de un proceso distinto. Con los hilos de
nivel usuario, el sistema en tiempo de ejecucién ejecuta hilos de su propio
proceso hasta que el kernel le quita la CPU (o cuando ya no hay hilos para
ejecutar).

Ventajas:

5.3.1. Los hilos de kernel no requieren de nuevas llamadas al sistema sin

bloqueo. Ademas, si un hilo en un proceso produce un fallo de
pagina, el kernel puede comprobar con facilidad si el proceso tiene
otros hilos que puedan ejecutarse y de ser asi, ejecuta uno de ellos
mientras espera a que se traiga la pagina requerida desde el disco.

Desventajas:

5.4.1. Su principal desventaja es que el costo de una llamada al sistema es

considerable, por lo que si las operaciones de hilos (de creacion o
terminacion, por ejemplo) son comunes, se incurrird en una mayor
sobrecarga.

6. Implementaciones hibridas

6.1.

Una de esas formas es utilizar hilos de nivel kernel y después multiplexar los
hilos de nivel usuario con alguno o con todos los hilos de nivel kernel.
Cuando se utiliza este método, el programador puede determinar cuantos
hilos de kernel va a utilizar y cuantos hilos de nivel usuario va a multiplexar
en cada uno. Este modelo proporciona lo ultimo en flexibilidad.

7.

Varios hilos de usuario
en un hilo de kernel

_

Espacio
de usuario

—
Espacio
Kernel ~<— Hilo de kernel de kernel

Figura 2-17. Multiplexaje de hilos del nivel usuario sobre hilos del nivel kernel.

Activaciones del planificador

7.1.

7.2.

7.3.

7.4.

Los objetivos del trabajo de una activacion del planificador son imitar la
funcionalidad de los hilos de kernel, pero con el mejor rendimiento y la mayor
flexibilidad que por lo general se asocian con los paquetes de hilos
implementados en espacio de usuario. En especial, los hilos de usuario no
deben tener que realizar llamadas especiales al sistema sin bloqueo, ni
comprobar de antemano que sea seguro realizar ciertas llamadas al sistema.
Sin embargo, cuando un hilo se bloquea en una llamada al sistema o un fallo
de pagina, debe ser posible ejecutar otros hilos dentro del mismo proceso, si
hay alguno listo.

La eficiencia se obtiene evitando transiciones innecesarias entre los espacios
de usuario y de kernel. Por ejemplo, si un hilo se bloquea en espera de que
otro hilo realice alguna accion, no hay razon para involucrar al kernel, con lo
cual se ahorra la sobrecarga de la transicién de kernel a usuario. El sistema
en tiempo de ejecucidon en espacio de usuario puede bloquear el hilo
sincronizador y programar uno nuevo por si solo.

Cuando se utilizan las activaciones del planificador, el kernel asigna cierto
numero de procesadores virtuales a cada proceso y deja que el sistema en
tiempo de ejecucion (en espacio de usuario) asigne hilos a los procesadores.
Este mecanismo también se puede utilizar en un multiprocesador, donde los
procesadores virtuales podrian ser CPUs reales.

La idea basica que hace que este esquema funcione es que, cuando el
kernel sabe que un hilo se ha bloqueado (por ejemplo, al ejecutar una
llamada al sistema de bloqueo o al ocasionar un fallo de pagina), se lo
notifica al sistema en tiempo de ejecucion del proceso, pasandole como
parametros a la pila el numero del hilo en cuestién y una descripcién del
evento que ocurrio. Para realizar la notificacion, el kernel activa el sistema en
tiempo de ejecucidon en una direccion inicial conocida, no muy similar a una

sefial en UNIX. A este mecanismo se le conoce como llamada ascendente
(upcall).

Hilos emergentes

8.1. Los hilos se utilizan con frecuencia en los sistemas distribuidos. Un
importante ejemplo es la forma en que se manejan los mensajes entrantes
(por ejemplo, las peticiones de servicio). EI método tradicional es hacer que
un proceso o hilo, que esta bloqueado en una llamada al sistema receive,
espere un mensaje entrante. Cuando llega un mensaje, lo acepta, lo
desempaqueta, examina su contenido y lo procesa.

8.2. También es posible utilizar un método completamente distinto, en el cual la
llegada de un mensaje hace que el sistema cree un nuevo hilo para manejar
el mensaje. A dicho hilo se le conoce como hilo emergente (pop-up thread)

8.3. Una ventaja clave de los hilos emergentes es que, como son nuevos, no
tienen historial (registros, pila, etcétera) que sea necesario restaurar. Cada
uno empieza desde cero y es idéntico a los demas. Esto hace que sea
posible crear dicho hilo con rapidez. El nuevo hilo recibe el mensaje entrante
que va a procesar. El resultado de utilizar hilos emergentes es que la latencia
entre la llegada del mensaje y el inicio del procesamiento puede ser muy
baja.

Hilo emergente creado
Proceso para manejar el

\ mensaje entrante

Hilo existente

/

¢

Mensaje entrante

Red
(a) (b)

Figura 2.18. Creacion de un nuevo hilo cuando llega un mensaje. (a) Antes de que lle-
gue ¢l mensaje. (b) Después de que llega el mensaje.

Por otro lado, un hilo de kernel con errores puede hacer mas dafo que un
hilo de usuario con errores. Por ejemplo, si se ejecuta durante demasiado
tiempo y no hay manera de quitarlo, los datos entrantes se pueden perder.

Conversion de codigo de hilado simple a multi hilado
9.1. Para empezar, el codigo de un hilo normalmente consiste de varios

procedimientos, al igual que un proceso. Estos pueden tener variables
locales, variables globales y parametros. Las variables y parametros locales

no ocasionan problemas, pero las variables que son globales a un hilo, pero
no globales para todo el programa, son un problema.

Hilo 1 Hilo 2

Access (se asigna errno)

-~—Tiempo

|

Open (se sobrescribe errno)

s

3

Se inspecciona errno

Figura 2-19. Conflictos entre los hilos por el uso de una variable global.

Otra solucién es asignar a cada hilo sus propias variables globales privadas. De esta
forma, cada hilo tiene su propia copia privada de errno y de otras variables globales,
por lo que se evitan los conflictos.

9.2.

9.3.

Al convertir un programa con un solo hilo en un programa con multiples hilos
es que muchos procedimientos de biblioteca no son re-entrantes; es decir, no
se disefiaron para hacer una segunda llamada a cualquier procedimiento
dado mientras que una llamada anterior no haya terminado. Por ejemplo,
podemos programar el envio de un mensaje a través de la red ensamblando
el mensaje en un bufer fijo dentro de la biblioteca, para después hacer un
trap al kernel para enviarlo. ;Qué ocurre si un hilo ha ensamblado su
mensaje en el bufer y después una interrupcion de reloj obliga a que se haga
la conmutacién a un segundo hilo que de inmediato sobrescribe el bufer con
Su propio mensaje?

9.2.1. Para corregir estos problemas de manera efectiva, tal vez sea

necesario reescribir la biblioteca completa, lo que no es insignificante.

9.2.2. Una solucion distinta es proporcionar a cada procedimiento una

envoltura que fije un bit para marcar la libreria como si estuviera en
uso. Si otro hilo intenta usar un procedimiento de biblioteca mientras
no se haya completado una llamada anterior, se bloquea. Aunque se
puede hacer que este método funcione, elimina en gran parte el
paralelismo potencial.

Un ultimo problema que introducen los hilos es la administracion de la pila.
En muchos sistemas, cuando la pila de un proceso se desborda, el kernel
s6lo proporciona mas pila a ese proceso de manera automatica. Cuando un
proceso tiene multiples hilos, también debe tener varias pilas. Si el kernel no
esta al tanto de todas ellas, no puede hacer que su tamano aumente de
manera automatica cuando ocurra un fallo de la pila.De hecho, ni siquiera
puede detectar que un fallo de memoria esta relacionado con el aumento de
tamafio de la pila de algun otro hilo.

COMUNICACION ENTRE PROCESOS

Hay tres cuestiones aqui. La primera se alude a lo anterior: como un proceso puede
pasar informacion a otro. La segunda esta relacionada con hacer que dos o mas
procesos no se interpongan entre si; por ejemplo, dos procesos en un sistema de
reservaciones de una aerolinea, cada uno de los cuales trata de obtener el ultimo
asiento en un avion para un cliente distinto. La tercera trata acerca de obtener la
secuencia apropiada cuando hay dependencias presentes: si el proceso A produce
datos y el proceso B los imprime, B tiene que esperar hasta que A haya producido
algunos datos antes de empezar a imprimir.

Condiciones de carrera

1.1.

1.2.

Un spooler de impresion. Cuando un proceso desea imprimir un archivo,
introduce el nombre del archivo en un directorio de spooler especial. Otro
proceso, el demonio de impresion, comprueba en forma periddica si hay
archivos que deban imprimirse y si los hay, los imprime y luego elimina sus
nombres del directorio.

Directorio
de spooler
L

abc | sal=4 |

prog.c
prog.n

Proceso A

~N O O A

| ent=7 I

Proceso B

Figura 2-21. Dos procesos desean acceder a la memoria compartida al mismo tiempo.

Situaciones como ésta, en donde dos o mas procesos estan leyendo o
escribiendo algunos datos compartidos y el resultado final depende de quién
se ejecuta y exactamente cuando lo hace, se conocen como condiciones de
carrera.

Regiones criticas

2.1.

2.2.

. Como evitamos las condiciones de carrera? Lo que necesitamos es
exclusion mutua, cierta forma de asegurar que si un proceso esta utilizando
una variable o archivo compartido, los demas procesos se excluiran de hacer
lo mismo.

Esa parte del programa en la que se accede a la memoria compartida se
conoce como region critica o seccién critica.

3.

2.3.

ProcesoA ——mm

Proceso B

Necesitamos cumplir con cuatro condiciones para tener una buena solucién:

2.3.1.

2.3.2.

2.3.3.

2.34.

1. No puede haber dos procesos de manera simultanea dentro de sus
regiones criticas.

2. No pueden hacerse suposiciones acerca de las velocidades o el
numero de CPUs.

3. Ningun proceso que se ejecute fuera de su region critica puede
bloquear otros procesos.

4. Ningun proceso tiene que esperar para siempre para entrar a su
region critica

A entra a su region critica

/ A sale de su region critica

I

|

: B intenta entrar B entra a su B s_ale de su

| a su region | region critica region critica
critica

| | :/ I/

| '/ |

| | ! 'I

| | 1 |

I 1 Bsebloquea 1]

T T T T

4

Tiempo ——————>»

Figura 2-22. Exclusion mutua mediante el uso de regiones criticas.

Exclusiéon mutua con espera ocupada

3.1.

Deshabilitando interrupciones

3.1.1.

La solucion mas simple es hacer que cada proceso deshabilite todas
las interrupciones justo después de entrar a su region critica y las
rehabilite justo después de salir Con las interrupciones
deshabilitadas, no pueden ocurrir interrupciones de reloj. Después de
todo, la CPU so6lo se conmuta de un proceso a otro como resultado de
una interrupcion del reloj o de otro tipo, y con las interrupciones
desactivadas la CPU no se conmutara a otro proceso. Por ende, una
vez que un proceso ha deshabilitado las interrupciones, puede
examinar y actualizar la memoria compartida sin temor de que algun
otro proceso intervenga.

La posibilidad de lograr la exclusibn mutua al deshabilitar las
interrupciones (incluso dentro del kernel) esta disminuyendo dia con
dia debido al creciente numero de chips multinicleo que se
encuentran hasta en las PCs de bajo rendimiento. Ya es comun que
haya dos nucleos, las maquinas actuales de alto rendimiento tienen
cuatro y dentro de poco habra ocho o 16.

3.2.

3.3.

3.4.

#define TRUE 1

Variables de candado

3.2.1.

3.2.2.

Considere tener una sola variable compartida (de candado), que al
principio es 0. Cuando un proceso desea entrar a su regioén critica
primero evalua el candado. Si este candado es 0, el proceso lo fija en
1 y entra a la region critica. Si el candado ya es 1 solo espera hasta
que el candado se haga 0. Por ende, un 0 significa que ningun
proceso esta en su region critica y un 1 significa que algun proceso
esta en su region critica.

Esta idea contiene exactamente el mismo error fatal que vimos en el
directorio de spooler. Suponga que un proceso lee el candado y ve
que es 0. Antes de que pueda fijar el candado a 1, otro proceso se
planifica para ejecutarse y fija el candado a 1. Cuando el primer
proceso se ejecuta de nuevo, también fija el candado a 1 y por lo
tanto dos procesos se encontraran en sus regiones criticas al mismo
tiempo

Alternancia estricta

3.3.1.

3.3.2.

A la acciéon de evaluar en forma continua una variable hasta que
aparezca cierto valor se le conoce como espera ocupada. Por lo
general se debe evitar, ya que desperdicia tiempo de la CPU. La
espera ocupada solo se utiliza cuando hay una expectativa razonable
de que la espera sera corta. A un candado que utiliza la espera
ocupada se le conoce como candado de giro.

Aunque este algoritmo evita todas las condiciones de carrera, en
realidad no es un candidato serio como solucion, ya que viola la
condicién 3.

Solucién de Peterson
#define FALSE 0

#define N 2 /* nimero de procesos */
int turno; [* ¢de quién es el turno? */
int interesado[N]; /* al principio todos los valores son 0 (FALSE) */
void entrar_region(int proceso); /* el procesoes 00 1%
{ int otro; /* numero del otro proceso */
otro = 1 — proceso; /* el opuesto del proceso */

}

void salir_region(int proceso)

{
}

interesado[proceso] = TRUE;

[* muestra que esta interesado */

turno = proceso; [* establece la bandera */
while (turno == proceso && interesado[otro] == TRUE) /* instruccion nula */;

interesado[proceso] = FALSE;

[* proceso: quién esta saliendo */

/* indica que salio de la region critica */

Figura 2-24. Solucion de Peterson para lograr la exclusion mutua.

entrar_region:

3.5.

La instruccion TSL

3.5.1. Lee el contenido de la palabra de memoria candado y lo guarda en el

registro RX, y después almacena un valor distinto de cero en la
direccién de memoria candado. Se garantiza que las operaciones de
leer la palabra y almacenar un valor en ella seran indivisibles; ningun
otro procesador puede acceder a la palabra de memoria sino hasta
que termine la instruccién. La CPU que ejecuta la instruccion TSL
bloquea el bus de memoria para impedir que otras CPUs accedan a la
memoria hasta que termine

3.5.2. Para usar la instruccion TSL necesitamos una variable compartida

(candado) que coordine el acceso a la memoria compartida. Cuando
el candado es 0, cualquier proceso lo puede fijar en 1 mediante el uso
de la instruccién TSL y después una lectura o escritura en la memoria
compartida. Cuando termina, el proceso establece candado de vuelta
a 0 mediante una instruccion move ordinaria.

TSL REGISTRO,CANDADO |copia candado al registro y fija candado a 1

CMP REGISTRO#0 |¢,era candado cero?

JNE entrar_region |si era distinto de cero, el candado esta cerrado, y se repite
RET |[regresa al llamador; entra a region critica

salir_region:
MOVE CANDADO,#0 |almacena 0 en candado
RET [regresa al llamador

4.

Figura 2-25. Como entrar y salir de una region critica mediante la instruccién TSL.

Dormir y despertar

41.

4.2.

4.3.

Tanto la solucion de Peterson como las soluciones mediante TSL o XCHG
son correctas, pero todas tienen el defecto de requerir la espera ocupada

Una de las mas simples es el par sleep (dormir) y wakeup (despertar). Sleep
es una llamada al sistema que hace que el proceso que llama se bloquee o
desactive, es decir, que se suspenda hasta que otro proceso lo despierte. La
llamada wakeup tiene un parametro, el proceso que se va a despertar o
activar. De manera alternativa, tanto sleep como wakeup tienen un
parametro, una direccion de memoria que se utiliza para asociar las llamadas
a sleep con las llamadas a wakeup.

El problema del productor-consumidor

4.3.1. El problema surge cuando el productor desea colocar un nuevo

elemento en el bufer, pero éste ya se encuentra lleno. La solucion es
que el productor se vaya a dormir (se desactiva) y que se despierte
(se active) cuando el consumidor haya quitado uno o mas elementos.

4.4.

De manera similar, si el consumidor desea quitar un elemento del
bufer y ve que éste se encuentra vacio, se duerme hasta que el
productor coloca algo en el bufer y lo despierta.

#define N 100
int cuenta = 0;

void productor(void)
{

int elemento;

while (TRUE) {

" nimero de ranuras en el bufer */
[* nimero de elementos en el bufer */

* se repite en forma indefinida */

elemento = producir_elemento();

if (cuenta == N) sleep();
insertar_elemento(elemento);

cuenta = cuenta + 1;

if (cuenta == 1) wakeup(consumidor);

" genera el siguiente elemento */

I* si el bafer esta lleno, pasa a inactivo */

I* coloca elemento en blfer */

[* incrementa cuenta de elementos en bufer */
I* ¢ estaba vacio el bifer? */

void consumidor(void)

int elemento;

while (TRUE) {
if (cuenta == Q) sleep();
elemento = quitar_elemento();
cuenta = cuenta — 1;
if (cuenta==N-1) wakeup(productor);
consumir_elemento(elementa);

* se repite en forma indefinida */

* si bafer esta vacio, pasa a inactivo */

* saca el elemento del bufer */

* disminuye cuenta de elementos en bufer */
* ¢ estaba lleno el bafer? */

[* imprime el elemento */

Figura 2-27. El problema del productor-consumidor con una condicion de carrera fatal.

Ahora regresemos a la condicion de carrera. Puede ocurrir debido a que el
acceso a cuenta no esta restringido. Una solucion rapida es modificar las
reglas para agregar al panorama un bit de espera de despertar. Cuando se
envia una sefial de despertar a un proceso que sigue todavia despierto, se
fija este bit.

Semaforos

5.1.

5.2.

En su propuesta introdujo un nuevo tipo de variable, al cual él llamé
semaforo. Un semaforo podria tener el valor 0, indicando que no se
guardaron sefales de despertar o algun valor positivo si estuvieran
pendientes una o mas sefales de despertar

La operacion down en un semaforo comprueba si el valor es mayor que 0.
De ser asi, disminuye el valor y soélo contintia. Si el valor es 0, el proceso se
pone a dormir sin completar la operacion down por el momento. Las acciones
de comprobar el valor, modificarlo y posiblemente pasar a dormir, se realizan
en conjunto como una sola accion atémica indivisible.

6.

5.3.

Coémo resolver el problema del productor-consumidor mediante el uso de

semaforos

5.3.1.

#define N 100

typedef int semaforo;
semaforo mutex = 1;
semaforo vacias = N;
semaforo llenas = 0;

void productor(void)
{

int elemento;

while(TRUE){

elemento = producir_elemento();

down(&vacias);
down(&mutex);
insertar_elemento(elemento);
up(&mutex);

up(&llenas);

void consumidor(void)

{

int elemento;

while(TRUE){
down(&llenas);
down(&mutex);
elemento = quitar_elemento();
up(&mutex);
up(&vacias);
consumir_elemento(elemento);

Esta solucién utiliza tres semaforos:
contabilizar el numero de ranuras llenas, otro llamado vacias para
contabilizar el numero de ranuras vacias y el ultimo llamado mutex,
para asegurar que el productor y el consumidor no tengan acceso al
bafer al mismo tiempo.

/* nimero de ranuras en el blfer */

[* los semaforos son un tipo especial de int */
/* controla el acceso a la region critica */

/* cuenta las ranuras vacias del bufer */

[* cuenta las ranuras llenas del bufer */

/* TRUE es la constante 1 */

/* genera algo para colocar en el bufer */

/* disminuye la cuenta de ranuras vacias */
/* entra a la region critica */

/* coloca el nuevo elemento en el bufer */
* sale de la region critica */

/* incrementa la cuenta de ranuras llenas */

/* ciclo infinito */

/* disminuye la cuenta de ranuras llenas */
/* entra a la region critica */

* saca el elemento del bufer */

* sale de la region critica */

/* incrementa la cuenta de ranuras vacias */
/* hace algo con el elemento */

Figura 2-28. El problema del productor-consumidor mediante el uso de semaforos.

Mutexes

6.1.

6.2.

Cuando no se necesita la habilidad del semaforo de contar, algunas veces se
utiliza una version simplificada, llamada mutex. Los mutexes son buenos sélo
para administrar la exclusién mutua para cierto recurso compartido o pieza

de cadigo.

Un mutex es una variable que puede estar en uno de dos estados: abierto
(desbloqueado) o cerrado (bloqueado). En consecuencia, se requiere soélo 1
bit para representarla, pero en la practica se utiliza con frecuencia un entero,
en donde O indica que esta abierto y todos los demas valores indican que

esta cerrado.

uno llamado llenas para

6.3.

6.4.

mutex_lock:

ok:

TSL REGISTRO,MUTEX |copia el mutex al registro y establece mutex a 1

CMP REGISTRO,#0 |¢,el mutex era 07

JZE ok |si era cero, el mutex estaba abierto, entonces regresa
CALL thread_yield |el mutex esta ocupado; planifica otro hilo

JMP mutex_lock lintenta de nuevo

RET |regresa al procedimiento llamador; entra a la regién critica

mutex_unlock:

MOVE MUTEX #0 |]almacena un 0 en el mutex
RET |regresa al procedimiento llamador

Figura 2-29. Implementaciones de mutex lock y mutex unlock.

Mutexes en Pthread: Pthreads proporciona varias funciones que se pueden
utilizar para sincronizar los hilos. El mecanismo basico utiliza una variable
mutex, cerrada o abierta, para resguardar cada region critica.

Llamada de hilo Descripcion
Pthread_mutex_init Crea un mutex
Pthread_mutex_destroy Destruye un mutex existente
Pthread_mutex_lock Adquiere un mutex o se bloquea
Pthread_mutex_trylock Adquiere un mutex o falla
Pthread_mutex_unlock Libera un mutex

Figura 2-30. Algunas de las llamadas de Pthreads relacionadas con mutexes.

Ademas de los mutexes, pthreads ofrece un segundo mecanismo de
sincronizacion: las variables de condicion. Las variables de condicion
permiten que los hilos se bloqueen debido a que cierta condiciéon no se esta
cumpliendo. Casi siempre se utilizan los dos métodos juntos.

Llamada de hilo Descripcion

Pthread_cond_init Crea una variable de condicién
Pthread_cond_destroy Destruye una variable de condicion
Pthread_cond_wait Bloquea en espera de una sefial
Pthread_cond_signal Envia sefial a otro hilo y lo despierta
Pthread_cond_broadcast Envia sefial a varios hilos y los despierta

Figura 2-31. Algunas de las llamadas a Pthreads que se relacionan con las variables
de condicion.

7. Monitores

7.1.

propusieron una primitiva de sincronizacion de mayor nivel, conocida como
monitor. Sus proposiciones tienen ligeras variaciones, como se describe a
continuaciéon. Un monitor es una coleccién de procedimientos, variables y
estructuras de datos que se agrupan en un tipo especial de modulo o
paquete. Los procesos pueden llamar a los procedimientos en un monitor
cada vez que lo desean, pero no pueden acceder de manera directa a las
estructuras de datos internas del monitor desde procedimientos declarados
fuera de éste.

7.2.

7.3.

7.4.

Los monitores tienen una importante propiedad que los hace Uutiles para
lograr la exclusion mutua: sélo puede haber un proceso activo en un monitor
en cualquier instante. Los monitores son una construccién del lenguaje de
programacion, por lo que el compilador sabe que son especiales y puede
manejar las llamadas a los procedimientos del monitor en forma distinta a las
llamadas a otros procedimientos.

También necesitamos una forma en la que los procesos se bloqueen cuando
no puedan continuar: La solucién esta en la introducciéon de las variables de
condiciéon, junto con dos operaciones de éstas: wait y signal. Cuando un
procedimiento de monitor descubre que no puede continuar realiza una
operacién wait en alguna variable de condicion. La operacién wait debe ir
antes de la operacién signal. Esta regla facilita la implementacién en forma
considerable. En la practica no es un problema debido a que es facil llevar el
registro del estado de cada proceso con variables, si es necesario.

Al automatizar la exclusion mutua de las regiones criticas, los monitores
hacen que la programacion en paralelo sea mucho menos propensa a
errores que con los semaforos.

Pasaje (transmisién) de mensajes

8.1. Ese “algo mas” es el pasaje de mensajes (message passing). Este método
de comunicacion entre procesos utiliza dos primitivas (send y receive) que, al
igual que los semaforos y a diferencia de los monitores, son llamadas al
sistema en vez de construcciones del lenguaje.

Barreras

9.1. Algunas aplicaciones se dividen en fases y tienen la regla de que ningun

proceso puede continuar a la siguiente fase sino hasta que todos los
procesos estén listos para hacerlo. Para lograr este comportamiento, se
coloca una barrera al final de cada fase. Cuando un proceso llega a la
barrera, se bloquea hasta que todos los procesos han llegado a ella.

.......................... @ @

Proceso - --------------- { @ © ©
o o o

©)-- - o ©-| B 23|©

® ®
Tiempo— Tiempo— Tiempo—
(a) (b) (c)

Figura 2-37. Uso de una barrera. (a) Procesos acercandose a una barrera. (b) Todos los
procesos, excepto uno, bloqueados en la barrera. (¢) Cuando el ultimo proceso llega a
la barrera, todos se dejan pasar.

1.

PLANIFICACION

Introduccién a la planificacion

1.1.

1.2.

1.3.

Comportamiento de un proceso

1.1.1.

(b)

Casi todos los procesos alternan rafagas de calculos con peticiones
de E/S (de disco). Por lo general la CPU opera durante cierto tiempo
sin detenerse, después se realiza una llamada al sistema para leer
datos de un archivo o escribirlos en el mismo. Cuando se completa la
llamada al sistema, la CPU realiza calculos de nuevo hasta que
necesita mas datos o tiene que escribir mas datos y asi
sucesivamente.

| F— F—{ F——

/

Rafaga de CPU larga

Esperando la E/S
Rafaga de CPU corta

/

D 1 Iyl Il Il Il 1
|- u u |5} | S|

C
I:l:l

C

Tiempo
_—

Figura 2-38. Las rafagas de uso de la CPU se alternan con los periodos de espera por
la E/S. (a) Un proceso ligado a la CPU. (b) Un proceso ligado a la E/S.

Cuando planificar procesos

1.2.1. En primer lugar, cuando se crea un nuevo proceso se debe tomar una
decisidbn en cuanto a si se debe ejecutar el proceso padre o el
proceso hijo.

1.2.2. En segundo lugar, se debe tomar una decision de planificacion
cuando un proceso termina.

1.2.3. En tercer lugar, cuando un proceso se bloquea por esperar una
operacion de E/S, un semaforo o por alguna otra razén, hay que
elegir otro proceso para ejecutarlo.

1.2.4. En cuarto lugar, cuando ocurre una interrupcion de E/S tal vez haya
qgue tomar una decision de planificacion.

No Apropiativos
1.3.1. Un algoritmo de programacion no apropiativo (nonpreemptive)

selecciona un proceso para ejecutarlo y después sélo deja que se
ejecute hasta que el mismo se bloqueao hasta que libera la CPU en
forma voluntaria.

1.4. Apropiativos

1.4.1. Un algoritmo de planificacién apropiativa selecciona un proceso y deja
que se ejecute por un maximo de tiempo fijo. Si sigue en ejecucion al
final del intervalo de tiempo, se suspende y el planificador selecciona
otro proceso para ejecutarlo

1.5. Categorias de los algoritmos de planificacion

1.5.1. 1. Procesamiento por lotes: En consecuencia, son aceptables los
algoritmos no apropiativos. Este método reduce la conmutacion de
procesos y por ende, mejora el rendimiento.

1.5.2. 2. Interactivo: La apropiacién es esencial para evitar que un proceso
acapara la CPU y niegue el servicio a los demas. Los servidores
también entran en esta categoria, ya que por lo general dan servicio a
varios usuarios (remotos), todos los cuales siempre tienen mucha
prisa.

1.5.3. 3. De tiempo real: La apropiacion a veces es no necesaria debido a
que los procesos saben que no se pueden ejecutar durante periodos
extensos, que por lo general realizan su trabajo y se bloquean con
rapidez.

1.6. Metas de los algoritmos de planificacion

Todos los sistemas
Equidad - Otorgar a cada proceso una parte justa de la CPU
Aplicacion de politicas - Verificar que se lleven a cabo las politicas establecidas
Balance - Mantener ocupadas todas las partes del sistema

Sistemas de procesamiento por lotes
Rendimiento - Maximizar el nimero de trabajos por hora
Tiempo de retorno - Minimizar el tiempo entre la entrega y la terminacion
Utilizacion de la CPU - Mantener ocupada la CPU todo el tiempo

Sistemas interactivos
Tiempo de respuesta - Responder a las peticiones con rapidez
Proporcionalidad - Cumplir las expectativas de los usuarios
Sistemas de tiempo real

Cumplir con los plazos - Evitar perder datos
Predictibilidad - Evitar la degradacion de la calidad en los sistemas multimedia

Figura 2-39. Algunas metas del algoritmo de planificacion bajo distintas circunstancias.

2. Planificacion en sistemas de procesamiento por lotes

2.1. FCFS, (First-Come First-Served) (primero en entrar primero en ser atendido)
(no apropiativo):

2.1.1. La CPU se asigna a los procesos en el orden en el que la solicitan.
No se interrumpe debido a que se ha ejecutado demasiado tiempo. A

medida que van entrando otros trabajos, se colocan al final de la cola.
Si el proceso en ejecucion se bloquea, el primer proceso en la cola se
ejecuta a continuacion. Cuando un proceso bloqueado pasa al estado
listo, al igual que un trabajo recién llegado, se coloca al final de la

cola.
Ejemplo practico:
PROCESO LLEGADA DURACION
P1 0 5
P2 4 2
P3 1 T
P4 2 il
P5 3 8
0 5 12 13 21 23
Pl P3 P4 PS P2
Tiempos de espera: Tiempos de retorno:
Pl (0-0)=0 P1=%
P2 21-4)=17 P2=23
P3 (5-1)=4 P3=12
P4 (12-2)=10 P4=13
P5 (13-3)=10 P5 =21

Tiempo medio de espera: (0+17+4+ 10+ 10)/5=8.2
Tiempo medio de retorno: (5 +23 + 12+ 13 +21)/5=14.8

2.2. SJF (Shortest Job First) (el trabajo mas corto primero) (no apropiativo):

2.2.1. En este algoritmo , da bastante prioridad a los procesos mas cortos a
la hora de ejecucion y los coloca en la cola. Selecciona el proceso
con el proximo tiempo de ejecucion mas corto y lo ejecuta hasta que
finaliza el proceso. Si hay dos procesos cuyas rafagas de la CPU
tiene la misma duracién, se emplea el algoritmo FCFS o FIFO para
romper el empate.

Ejemplo practico:

PROCESO LLEGADA | DURACION
4| 0 5
P2 4 2
P3 1 7
P4 2 1
i) 3 8
0 5 6 8 15 23
LT T e [[[[[[[]
Pl P4 2 P3 P5
Tiempos de espera: Tiempos de retorno:
P1 (0-0)=0 P1=5
P2 (6-4)=2 2=8
P3 (8-1)=7 P3=15
P4 (5-2)=3 P4=6
P5 (15-3)=12 P5=23

Tiempo medio de espera: (0 +2+7+3+12)/5=48
Tiempo medio de retorno: (5+8+15+6+23)/5=114

3.

2.3.

SRTN (Shortest Remaining Time Next) (el menor tiempo restante a
continuacion) (apropiativa):

2.3.1.

Con este algoritmo, el planificador siempre selecciona el proceso
cuyo tiempo restante de ejecucion sea el mas corto. Cuando llega un
nuevo trabajo, su tiempo total se compara con el tiempo restante del
proceso actual. Si el nuevo trabajo necesita menos tiempo para
terminar que el proceso actual, éste se suspende y el nuevo trabajo
se inicia. Ese esquema permite que los trabajos cortos nuevos
obtengan un buen servicio.

Ejemplo practico:

PROCESO LLEGADA DURACION
P1 0 o
P2 4 2
P3 1 7
P4 2 1
P5 3 8
0 3 6 8 15 23
L] B [[DO | [| [[[[]
Pl P4 P1 P2 P3 P5
Tiempos de espera: Tiempos de retorno:
Pl (0-0)=0 P1=6
P2 (6-4)=2 P2=8
P3 (8-1)=7 P3=15
P4 (2-2=0 P4=3

P5 (15-3)=12 P5=23

Tiempo medio de espera: (0 +2+7+0+12)/5=4.2
Tiempo medio de retomo: (6 +8+15+3+23)/5=11

Planificacion en sistemas interactivos

3.1.

round-robin (turno circular) (apropiativo): Uno de los algoritmos mas antiguos,
simples, equitativos y de mayor uso

3.1.1.

A cada proceso se le asigna un intervalo de tiempo, conocido como
quantum, durante el cual se le permite ejecutarse. Si el proceso se
sigue ejecutando al final del cuento, la CPU es apropiada para
darsela a otro proceso. Si el proceso se bloquea o termina antes de
que haya transcurrido el quantum, la conmutacion de la CPU se
realiza cuando el proceso se bloquea, desde luego. La cola de
procesos se estructura como una cola circular. La organizacion de la
cola es FIFO.

Suponga que esta conmutacion de proceso o conmutacion de
contexto requiere 1 mseg, incluyendo el cambio de los mapas de
memoria, el vaciado y recarga de la caché, etc. Suponga ademas que
el quantum se establece a 4 mseg. Con estos parametros, después
de realizar 4 mseg de trabajo util, la CPU tendra que gastar (es decir,
desperdiciar) 1 mseg en la conmutacion de procesos.

3.1.3.

Ejemplo practico:

20 por ciento de la CPU se desperdiciard por sobrecarga
administrativa.

PROCESO LLEGADA | DURACION
P1 0
P2
P3
P4
Ps

RSN S
G| ||

P1 P3 P4 P5 P2 P1 P3 P5 P3 P5
Tiempos de espera: Tiempos de retorno:
Pl (0-0)=0 P1=14
P2 (10-4)=6 P2=12
P3 (3-1)=2 P3=21
P4 (6-2)=4 P4=7

PS (7-3)=4 P5=23

Tiempo medio de espera: (0 +6+2+4+4)/5=32
Tiempo medio de retorno: (14 +12+21+7+23)/5=154

3.2. Planificacion por prioridad:

3.2.1.

3.2.2.

La idea basica es simple: a cada proceso se le asigna una prioridad y
el proceso ejecutable con la prioridad mas alta es el que se puede
ejecutar.

Para evitar que los procesos con alta prioridad se ejecuten de manera
indefinida, el planificador puede reducir la prioridad del proceso actual
en ejecucién en cada pulso del reloj. Si esta accion hace que su
prioridad se reduzca a un valor menor que la del proceso con la
siguiente prioridad mas alta, ocurre una conmutacion de procesos. De
manera alternativa, a cada proceso se le puede asignar un quantum
de tiempo maximo que tiene permitido ejecutarse. Cuando este
quantum se utiliza, el siguiente proceso con la prioridad mas alta
recibe la oportunidad de ejecutarse.

3.3. Multiples colas

3.3.1.

3.3.2.

Su solucién fue la de establecer clases de prioridades. Los procesos

en la clase mas alta se ejecutaban durante un quantum. Los procesos
en la siguiente clase mas alta se ejecutaban por dos quantums. Los
procesos en la siguiente clase se ejecutaban por cuatro quantums, y
asi sucesivamente. Cada vez que un proceso utilizaba todos los
quantums que tenia asignados, se movia una clase hacia abajo en la
jerarquia

Cuando un proceso en espera de un bloque de disco pasaba al
estado listo, se enviaba a la segunda clase. Cuando a un proceso que
estaba todavia en ejecucién se le agotaba su quantum, al principio se
colocaba en la tercera clase. No obstante, si un proceso utilizaba todo
su quantum demasiadas veces seguidas sin bloquearse en espera de
la terminal o de otro tipo de E/S, se movia hacia abajo hasta la ultima

3.4.

3.5.

3.6.

cola. Muchos otros sistemas utilizan algo similar para favorecer a los
usuarios y procesos interactivos en vez de los que se ejecutan en
segundo plano.

El proceso mas corto a continuacion:

3.4.1.

3.4.2.

Si consideramos la ejecucién de cada comando como un “trabajo”
separado, entonces podriamos minimizar el tiempo de respuesta total
mediante la ejecucién del mas corto primero. El unico problema es
averiguar cual de los procesos actuales ejecutables es el mas corto.

La técnica de estimar el siguiente valor en una serie mediante la
obtencion del promedio ponderado del valor actual medido y la
estimacion anterior se conoce algunas veces como envejecimiento.

Planificacion garantizada:

3.5.1.

3.5.2.

Un método completamente distinto para la planificacion es hacer
promesas reales a los usuarios acerca del rendimiento y después
cumplirlas.

Para cumplir esta promesa, el sistema debe llevar la cuenta de cuanta
potencia de CPU ha tenido cada proceso desde su creacion. Después
calcula cuanto poder de la CPU debe asignarse a cada proceso, a
saber el tiempo desde que se cred dividido entre n.

Planificacioén por sorteo:

3.6.1.

3.6.2.

3.6.3.

3.6.4.

Aunque hacer promesas a los usuarios y cumplirlas es una buena
idea, es algo dificil de implementar. Este algoritmo se conoce como
planificacion por sorteo

La idea basica es dar a los procesos boletos de loteria para diversos
recursos del sistema, como el tiempo de la CPU. Cada vez que hay
que tomar una decision de planificacion, se selecciona un boleto de
loteria al azar y el proceso que tiene ese boleto obtiene el
recurso.Cuando se aplica a la planificacion de la CPU, el sistema
podria realizar un sorteo 50 veces por segundo y cada ganador
obtendria 20 mseg de tiempo de la CPU como premio.

La planificacion por loteria tiene un alto grado de respuesta.

Los procesos cooperativos pueden intercambiar boletos si lo desean.
Por ejemplo, cuando un proceso cliente envia un mensaje a un
proceso servidor y después se bloquea, puede dar todos sus boletos
al servidor para incrementar la probabilidad de que éste se ejecute a
continuacion.

3.7. Planificacion por partes equitativas:

3.7.1. Si el usuario 1 inicia 9 procesos y el usuario 2 inicia 1 proceso, con la
planificaciéon por turno circular o por prioridades iguales, el usuario 1
obtendra 90 por ciento del tiempo de la CPU y el usuario 2 sélo
recibira 10 por ciento.

3.7.2. En este modelo, a cada usuario se le asigna cierta fraccion de la CPU
y el planificador selecciona procesos de tal forma que se cumpla con
este modelo. Por ende, si a dos usuarios se les prometié 50 por
ciento del tiempo de la CPU para cada uno, eso es lo que obtendran
sin importar cuantos procesos tengan en existencia.

4. Planificacion en sistemas de tiempo real

4.1. Por ejemplo, la computadora en un reproductor de disco compacto recibe los
bits a medida que provienen de la unidad y debe convertirlos en musica, en
un intervalo de tiempo muy estrecho. Si el calculo tarda demasiado, la
musica tendra un sonido peculiar.

4.2. En general, los sistemas de tiempo real se categorizan como de tiempo real
duro, lo cual significa que hay tiempos limite absolutos que se deben cumpilir,
y como de tiempo real suave, lo cual significa que no es conveniente fallar en
un tiempo limite en ocasiones, pero sin embargo es tolerable.

4.3. En ambos casos, el comportamiento en tiempo real se logra dividiendo el
programa en varios procesos, donde el comportamiento de cada uno de
éstos es predecible y se conoce de antemano. Por lo general, estos procesos
tienen tiempos de vida cortos y pueden ejecutarse hasta completarse en
mucho menos de 1 segundo.

44. Los algoritmos de planificacion en tiempo real pueden ser estaticos o
dinamicos.

44.1. Los primeros toman sus decisiones de planificacion antes de que el
sistema empiece a ejecutarse. La planificaciéon estatica sélo funciona
cuando hay informacién perfecta disponible de antemano acerca del
trabajo que se va a realizar y los tiempos limite que se tienen que
cumplir.

442. Los segundos lo hacen durante el tiempo de ejecucion. Los
algoritmos de planificacion dinamicos no tienen estas restricciones.

5. Politica contra mecanismo
5.1. Por desgracia, ninguno de los planificadores antes descritos acepta entrada
de los procesos de usuario acerca de las decisiones de planificacion. Como
resultado, raras veces el planificador toma la mejor decision.

5.2. La solucién a este problema es separar el mecanismo de planificacion de la
politica de planificacion, un principio establecido desde hace tiempo (Leviny
colaboradores, 1975). Esto significa que el algoritmo de planificacion esta
parametrizado de cierta forma, pero los procesos de usuario pueden llenar
los parametros.

Planificacion de hilos

6.1. Cuando varios procesos tienen multiples hilos cada uno, tenemos dos niveles
de paralelismo presentes: procesos e hilos. La planificacién en tales sistemas
difiere en forma considerable, dependiendo de si hay soporte para hilos a
nivel usuario o para hilos a nivel kernel (o ambos).

6.2. Consideremos primero los hilos a nivel usuario. Como el kernel no esta
consciente de la existencia de los hilos, opera de la misma forma de siempre.
El algoritmo de planificacion utilizado por el sistema en tiempo de ejecucion
puede ser cualquiera de los antes descritos. La uUnica restriccion es la
ausencia de un reloj para interrumpir a un proceso que se ha ejecutado por
mucho tiempo

6.3. Ahora considere la situacion con hilos a nivel kernel. Aqui el kernel
selecciona un hilo especifico para ejecutarlo. No tiene que tomar en cuenta a
cual proceso pertenece el hilo, pero puede hacerlo si lo desea. El hilo recibe
un quantum y se suspende obligatoriamente si se excede de este quantum.

Proceso A Proceso B Proceso A Proceso B
Orden en el que se

ejecutan los hilos \

2. El sistema 1 @2 3

en tiempo

de ejecucion —

selecciona =| | El

un hilo *___/' ~—

1. El kernel selecciona un proceso 1. El kemnel selecciona un hilo

Posible: A1,A2, A3, A1, A2, A3 Posible: A1, A2, A3, A1, A2, A3
Imposible: A1, B1,A2, B2, A3, B3 También posible: A1, B1, A2, B2, A3, B3

(@) (b)

Figura 2-43. (a) Posible planificacion de hilos a nivel usuario con un quiantum de
50 mseg para cada proceso e hilos que se ejecutan durante 5 mseg por cada rafaga de
la CPU. (b) Posible planificacion de hilos a nivel kernel con las mismas caracteristi-
cas que (a).

Una diferencia importante entre los hilos a nivel usuario y los hilos a nivel kernel es
el rendimiento. Para realizar un conmutacion de hilos con hilos a nivel usuario se
requiere de muchas instrucciones de maquina. Con hilos a nivel kernel se requiere
una conmutacion de contexto total, cambiar el mapa de memoria e invalidar la
caché, lo cual es varias 6rdenes de magnitud mas lento. Por otro lado, con los hilos
a nivel kernel, cuando un hilo se bloquea en espera de E/S no se suspende todo el
proceso, como con los hilos a nivel usuario.

e PROBLEMAS CLASICOS DE COMUNICACION ENTRE PROCESOS (IPC)
1. El problema de los fildsofos comelones

Sistemas Operativos, Interbloqueo 5 El problema de los fildsofos

2. El problema de los lectores y escritores

Sistemas Operativos. Problema de la concurrencia 29 Lectores escritores, prioridad
a los escritores

e EXTRAS SEMAFOROS

Herramienta de sincronizacion que provee el sistema operativo que no
requiere espera ocupada

Un semaforo S es una variable que, aparte de la inicializacion, solo se puede
acceder por medio de 2 operaciones atdmicas y mutuamente exclusivas:

wait(s) P=Péra’tek signal(S) V=Vete
* P(s), Down(s) * V(s), Up(s), Post(s) o Release(s)

Para evitar la espera ocupada: cuando un proceso tiene que esperar, se
pondra en una cola de procesos bloqueados esperando un evento

e MUTEX

Semaforo binario Semaéforo general o entero

* Solo puede tener dos valores, Oy 1. * Pueden tomar muchos valores
* en Windows se llaman mutex positivos.

SEMAFORO BINARIO

WaitB(s):
if s.valor=1
s.valor=0
else { > Atomica
poner este proceso en s.cola de bloqueados;

bloquear este proceso
struct SEMAPHORE { 1%

int valor; (0,1) =
queue cola_de_bloqueados;

}ss SignalB(s):
If s.cola_de_bloqueados esta vacia
s.valor=1
else { - Atomica
quitar un proceso P de s.cola_de_bloqueados;
poner el proceso P en la cola de listos

s

https://www.youtube.com/watch?v=yFoq8mTL9RE
https://www.youtube.com/watch?v=6DFwZnERjko
https://www.youtube.com/watch?v=6DFwZnERjko

SEMAFORO ENTERO

1. Para semaforos que pueden tomar valores negativos

Wait(s):
s.contador--;
if s.contador<® then
{ > Atémica
poner este proceso en s.cola_de_bloqueados;

bloquear este proceso
struct SEMAPHORE { }

Si contador >=0 ,el nUmero de
procesos que pueden ejecutar
wait(S) sin que se bloqueen es =
contador

int contador; -
queue cola_de_bloqueados;
} s; Signal(s): =
s.contador++;
Si contador<0, el nimero de SR LA
{ > Atémica

procesos que estan esperando

x quitar un proceso P de s.cola_de_bloqueados;
en el semaforo es = | contador|

poner el proceso P en 1%cola de listos

) |

2. Para semaforos que no pueden tomar valores negativos

Wait(s): M)
contador es el nimero de ? s.contador==0 then
pro.cesos. que pueden ejecutar T, e e
wait(s) sin que se bloqueen poner este proceso en s.cola_de_bloqueados; > Atomica
bloquear este proceso;
struct SEMAPHORE { lee
unSJ..gned :.Lnt contador; s.contador--;
unsigned int bloqueados; <
queue cola_de_bloqueados; Signal(s):
} ss if s.bloqueados==0 then
s.contador++;
bloqueados el nimero de else -
procesos que estdn esperando { i > Atémica
| SErT e quitar un proceso P de s.cola_de_bloqueados;
poner el proceso P en la cohla de listos
s.bloqueados--;
}
-

e MONITORES

Los monitores son estructuras de un lenguaje de programacion que ofrecen una
funcionalidad equivalente a la de los semaforos y son mas faciles de controlar.

Un monitor es un tipo de objeto que tiene la caracteristica de que solo un proceso puede
estar ejecutando cualquiera de sus métodos.
» Otro proceso que haya invocado al monitor quedara bloqueado mientras espera a que

L3

el monitor esté disponible

Funciones para operar las colas de condicion

Csignal(condicion)
Reaunuda la ejecucion de algun proceso
suspendido por un cwait con la misma
condicion.
Si hay varios procesos elige uno de ellos

Cwait(condicion)
* Suspende la ejecucion del proceso llamado bajo

la condicion.
El monitor esta disponible para ser usado por
otro proceso.

Si no hay ninguno no hace nada.

* Siun proceso de un monitor ejecuta un
csignal y no hay tareas esperando en la
variable de condicidn, el csignal se
pierde.

monitor buffer_acotado

{
char buffer[TAM_BUFFER]; // Espacio para N elementos
int sigent,sigsal; // Apuntadores al buffer
int contador; // Numero de elementos en el buffer

condition no_lleno,no_vacio; // Para sincronizacion

afiadir(char x) {
if (contador==TAM_BUFFER) cwait(no_lligo);
// Buffer lleno; se impide producir
buffer[sigent]=x;
sigent=sigent+l % TAM_BUFFER;
contador++;// Un elemento mas en el buffer

csignal(no_vacio);// Reanudar un consumidor en espera

}
tomar (char x)
{ N
if (contador==0) cwait(no_vacio);
// Buffer vacio; se impide consumir
x=pbuffer([sigsal];
sigsal=(sigsal+l) % TAM BUFFER;
contador—--;
// Un elemento menos en el buffer
csignal (no_lleno) ; // Reanudar un productor en espera
}
initialize
{ // Cuerpo del monitor

sigent=0;sigsal=0;contador=0; // Buffer inicia wvacio
}

} // Termina el monitor

