

David Van Dyke

DIY Spinning Stroboscope

Overview​ 1

Materials and Tools​ 1

Design​ 3
Electrical​ 3
Mechanical​ 5

Code​ 7

Construction​ 7

Image Preparation​ 8

Final Prototype​ 9

Appendix​ 11
A1 - Arduino Code​ 11
A2 - Engineering Drawings​ 16

​

Overview
This report details how to create a spinning stroboscope and was created as a
christmas present for girl scout leader Louisa Ho. A stroboscope is a mechanical device
that uses flash strobe lights over multiple images to make it appear as if it were
moving. This device has 24 images and spins at a rate of 1 rotation per second while
activating a strobe light every 1/24th of a second. To the viewer, each of these images
appears for 1/24th of a second and it looks like a video at 24 frames per second (FPS).
This device can be used to make GIFs in real life and act as a demonstration of
sampling. See Figure 1 below to see the entire device.

Figure 1. The full system assembly for the stroboscope.

The documentation behind this project (this document): can be found here
The source files and code needed to make it can be found here
A walkthrough of how to make one can be found at www.dhvd.net/stroboscope.html

Materials and Tools
This device was designed to be made using simple tools and parts from Amazon. This
was done to keep the budget low and make it accessible people with an ordinary skill
in the art. A full list of the parts purchased can be seen in Table 1 below.

The following tools are required to make this device:

1

https://docs.google.com/document/d/1PPweFZunP_6SlTjMInhWULy4hbzQt_HC-bJDKfUf6Gg/edit?usp=sharing
https://drive.google.com/drive/folders/1TeFS6VrGZhcdhfZX9t7HxQPYFHo-aUcn?usp=sharing
http://www.dhvd.net/stroboscope.html

​

Measuring tools: Yardstick, pencil, protractor
Woodworking: Sandpaper, disc sander (recommended), scrollsaw/bandsaw, drill
Electrical: Soldering iron, solder

Table 1. Parts to purchase for the stroboscope. Wire, glue, 3D printing filament, and
paper are not included in this list.

Name Quantity
Required

Source (12/20/18) Cost

⅛” (0.115”
Actual)
Thickness MDF

4 ft x 8 ft https://www.homedepot.com/p/Hardboard
-Tempered-Panel-Common-1-8-in-4-ft-x-
8-ft-Actual-0-115-in-x-47-7-in-x-95-7-in
-832777/202189720

8.62

Nema 17
Stepper Motor

1 https://www.amazon.com/gp/product/B07
4TCM8ZL/ref=oh_aui_detailpage_o01_s0
0?ie=UTF8&psc=1

21.99

Stepper Motor
Driver

1 Included with stepper motor

M3 x 10mm
Socket Button
Head Screw

78 https://www.amazon.com/gp/product/B01
9ZC3MD0/ref=oh_aui_detailpage_o01_s0
0?ie=UTF8&psc=1

8.67

M3 x 0.5mm
Lock Nut

78 https://www.amazon.com/gp/product/B07
5ZZW7VL/ref=oh_aui_detailpage_o01_s0
0?ie=UTF8&psc=1

7.99

NPN Power
Transistor

1 https://www.amazon.com/gp/product/B01
N9N1RZG/ref=oh_aui_detailpage_o01_s0
0?ie=UTF8&psc=1

7.35

R6-2RS Sealed
Ball Bearing

2 https://www.amazon.com/gp/product/B07
GT82D7P/ref=oh_aui_detailpage_o01_s0
1?ie=UTF8&psc=1

9.45

Arduino Uno 1 https://www.amazon.com/gp/product/B01
EWOE0UU/ref=oh_aui_detailpage_o01_s
02?ie=UTF8&psc=1

10.86

12V Power
Supply

1 https://www.amazon.com/gp/product/B01
461MOGQ/ref=oh_aui_detailpage_o01_s0
2?ie=UTF8&psc=1

10.59

2

​

12V 5mm LED
Light

48 https://www.amazon.com/gp/product/B01
MYYUS2R/ref=od_aui_detailpages02?ie=
UTF8&psc=1

8.56

SPST Rocker
Switch

2 https://www.amazon.com/FBApayipa-Sol
der-Rocker-Switch-Toggle/dp/B01N2U8P
K0/ref=sr_1_3?s=industrial&ie=UTF8&qid
=1540956013&sr=1-3&keywords=rocker
+switch&dpID=51fr7fljMyL&preST=_SX3
42_QL70_&dpSrc=srch

6.50

10K
Potentiometer

2 https://www.amazon.com/Uxcell-a15040
700ux0380-Terminals-Linear-Potentiome
ter/dp/B019I13X5K/ref=sr_1_4_acs_ac_1?
s=industrial&ie=UTF8&qid=1539287508
&sr=1-4-acs&keywords=potentiometer#f
eature-bullets-btf

7.20

 Total 107.78

Design

Electrical
The device is spun at a rate of 1 rotation per second using a stepper motor. The motor
driven by a stepper motor driver and controlled by an arduino uno. It receives power
from a 12VDC power supply. The strobe lights are 48 12V LED lights wired in parallel,
powered by the same 12VDC power supply. A NPN transistor controlled by the
arduino turns the circuit on and off to create the strobe effect.

The user interface includes a rocker switch to turn the whole system on and off, a
rocker switch to turn the lights on, a rotary potentiometer to modify the frame rate, and
a rotary potentiometer to alter the brightness (see Figure 2). The first rocker switch
must be set to “1” for the system to operate as this controls the 12VDC power. The
second rocker switch is wired in series with every LED so they will not turn on unless
this switch is flipped. The first potentiometer is wired into an analog pin on the arduino
and will tell the arduino how frequently to active the strobe light (ex. every 1/6th
second instead of every 1/24th). The last potentiometer is wired in series with every
LED which will reduce the current as the resistance increases, causing the LED lights to
decrease in brightness. A full wiring schematic showing how each component must be
connected can be seen in Figure 3 and the code can be found in Appendix A1.

3

​

Figure 2. User interface

Figure 3. Full electrical wiring schematic

4

​

Mechanical
The main body of the stroboscope is constructed of ⅛” thick (0.115” actual) MDF board
which is cheap and easy to machine. The engineering drawings used to create each of
these parts can be found in Appendix A2. These MDF parts are either screwed
together using 3D printed 90 degree tabs or glued together. 24 images must be
positioned along the main disc to create the stroboscopic effect. These images are
printed on paper and is clamped in by two 3D printed pieces which are also screwed
into the base. These 3D printed parts also house the LED lights and point them directly
to the center of the image (see Figure 4).

Figure 4. 3D printed clamps used to securely mount each image to the spinning base

A separate 3D printed part is used to connect the spinning disc to the stepper motor
shaft. Ball bearings are used to support the disc and wires are clamped to these
bearings to transfer power from the 12VDC power supply in the base to the spinning
disc. Two wires are clamped to the outside ring of the bearing, which remains
stationary, and a seperate two are clamped to the inside ring which rotates with the
stepper motor (see Figure 5).

5

​

Figure 5. Cross section for the torque transfering system in the stroboscope. The
housings for the bearings are 3D printed and have wire routing locations so wires can
be routed to the inside and outside faces of the bearing.

Code
The stroboscope uses an Arduino Uno to control the speed of the stepper motor and
frequency of the LED strobes. This code can be seen in Appendix A1.

Construction
Figure 6 below shows how all the parts in the stroboscope are connected. See
www.dhvd.net/stroboscope.html for a full walkthrough of how to build one.

6

http://www.dhvd.net/stroboscope.html

​

Figure 6. Exploded view of the whole assembly.

Image Preparation
24 images must be attached across circumference of the disc. These images should be
from a GIF or video as they will be animated on the stroboscope. Ideally, the user will
extract 24 frames from a 1 second GIF/Video. 24 FPS is standard in the film industry
and should be easy to use. Once the frames are extracted, they should be printed on
thick paper on a 3”x3” square with a 0.625” blank space below the image to create
space for clamping (see Figure 7).

7

​

Figure 7. Example of how the images should be printed

Some helpful sources for creating the images:
FInding source GIFs : https://giphy.com/
Editing and extracting frames: https://ezgif.com/split
Image printing and labeling: images → image_template.docx in stroboscope folder

When using the suggested word document for printing the images and labels, the 24
images should be scaled and cropped to a 273x273 px square. This ensures they fit
inside the 3” square.

Final Prototype
A stroboscope prototype was created using this design (see Figure 8). It successfully
animates a 24 frame gif and it can be seen both in the dark and in the light. The frame
rate can be set to 6, 12, or 24 frames per second as an example of how sampling
changes a video. This is adjusted by turning the left potentiometer. The brightness of
the LED strobes can also be adjusted using the right potentiometer.

8

https://giphy.com/
https://ezgif.com/split

​

Figure 8. Final assembled prototype. A video of this device in action can be seen at
https://www.youtube.com/watch?v=FecR3SHmatk&feature=youtu.be

While this prototype works, it is fairly fragile as the large spinning disk is poorly
supported. This makes it very easy to bend the center torque providing shaft while
moving the device. I plan to add a large “lazy susan” bearing to the disk to rigidly
connect it to the base while allowing it to rotate.

9

https://www.youtube.com/watch?v=FecR3SHmatk&feature=youtu.be

​

Appendix

A1 - Arduino Code
//Code to operate the stroboscope
//David Van Dyke- 12/29/18

const int framerate_pin = A1;
int framerate = 24;

const int led_pin = 4;

int rps_speed = 1;

//Initialize stepper motor
const int steps_per_revolution = 1600;
const int ENA = 5; //Enable Pin
const int DIR = 6; //Direction Pin
const int PUL = 7; //Pulse Pin

//Time delay between each step in microseconds
const double timeDelay = ((double)rps_speed)/(double)steps_per_revolution*1000000.0;
const double half_timeDelay = timeDelay/2;

//Current time
//Used to calculate delay
//Warning: May cause errors after 70 min of operation due to overflow
int current_time = 0;
int original_time = 0;

//Locations of frames to light LEDs
int led_locations[24];

//Controls pulse width of the LED
int led_timer = 0;
int led_pulse = 30; //microseconds

void setup() {

 //Start serial, for debugging
 Serial.begin(115200);

 //Initialize motor
 pinMode(ENA, OUTPUT);

10

​

 pinMode(DIR, OUTPUT);
 pinMode(PUL, OUTPUT);

 //Set direction, LOW for Clockwise, HIGH for counterclockwise
 digitalWrite(DIR, LOW);
 //Set ENA
 digitalWrite(ENA, HIGH);
 update_framerate();

 //Initialize LED
 pinMode(led_pin, OUTPUT);Serial.print("Time Delay: ");
 Serial.println(timeDelay);
}

void loop() {
 // put your main code here, to run repeatedly:
 //loop every one revolution
 digitalWrite(led_pin, LOW);
 //take every step
 for(int i = 0; i < steps_per_revolution; ++i){
 //Get current and original
 current_time = micros();
 original_time = current_time;

 //update the framerate reading on rhe first step
 if(i == 0)update_framerate();

 //Start the movement of the motor
 digitalWrite(PUL, HIGH);
 //Check if the LED should be lit up and light it up if it should be
 if(is_present(i)){
 digitalWrite(led_pin, HIGH);
 led_timer = micros();
 }
 //Loop until the time has reached the desired delay
 //Used instead of the delay function due to inherint delay other functions
 current_time = micros();
 while(abs(current_time-original_time) < half_timeDelay){
 current_time = micros();

 }
 /*
 if(current_time > led_timer + led_pulse){
 digitalWrite(led_pin, LOW);
 }*/
 //Stop the motor and turn off the LED
 digitalWrite(PUL, LOW);

11

​

 //Loop until the time has reached the desired delay
 //Used instead of the delay function due to inherint delay other functions
 current_time = micros();
 while(abs(current_time-original_time) < timeDelay){
 current_time = micros();
 }
 digitalWrite(led_pin, LOW);
 }
}

//Updates frame and LED keyframes based on input potentiometer
void update_framerate(){
 int input = analogRead(framerate_pin);

 //The input should be between 0-512 assuming a 10K pot and 10K resistor
 if(input < 128){
 framerate = 6;
 led_locations[0] = 0;
 led_locations[1] = (int)(1.0*(double)steps_per_revolution/(double)framerate);
 led_locations[2] = (int)(2.0*(double)steps_per_revolution/(double)framerate);
 led_locations[3] = (int)(3.0*(double)steps_per_revolution/(double)framerate);
 led_locations[4] = (int)(4.0*(double)steps_per_revolution/(double)framerate);
 led_locations[5] = (int)(5.0*(double)steps_per_revolution/(double)framerate);
 led_locations[6] = 0;
 led_locations[7] = 0;
 led_locations[8] = 0;
 led_locations[9] = 0;
 led_locations[10] = 0;
 led_locations[11] = 0;
 led_locations[12] = 0;
 led_locations[13] = 0;
 led_locations[14] = 0;
 led_locations[15] = 0;
 led_locations[16] = 0;
 led_locations[17] = 0;
 led_locations[18] = 0;
 led_locations[19] = 0;
 led_locations[20] = 0;
 led_locations[21] = 0;
 led_locations[22] = 0;
 led_locations[23] = 0;
 }
 else if(input < 256){
 framerate = 12;
 led_locations[0] = 0;
 led_locations[1] = (int)(1.0*(double)steps_per_revolution/(double)framerate);
 led_locations[2] = (int)(2.0*(double)steps_per_revolution/(double)framerate);

12

​

 led_locations[3] = (int)(3.0*(double)steps_per_revolution/(double)framerate);
 led_locations[4] = (int)(4.0*(double)steps_per_revolution/(double)framerate);
 led_locations[5] = (int)(5.0*(double)steps_per_revolution/(double)framerate);
 led_locations[6] = (int)(6.0*(double)steps_per_revolution/(double)framerate);
 led_locations[7] = (int)(7.0*(double)steps_per_revolution/(double)framerate);
 led_locations[8] = (int)(8.0*(double)steps_per_revolution/(double)framerate);
 led_locations[9] = (int)(9.0*(double)steps_per_revolution/(double)framerate);
 led_locations[10] = (int)(10.0*(double)steps_per_revolution/(double)framerate);
 led_locations[11] = (int)(11.0*(double)steps_per_revolution/(double)framerate);
 led_locations[12] = 0;
 led_locations[13] = 0;
 led_locations[14] = 0;
 led_locations[15] = 0;
 led_locations[16] = 0;
 led_locations[17] = 0;
 led_locations[18] = 0;
 led_locations[19] = 0;
 led_locations[20] = 0;
 led_locations[21] = 0;
 led_locations[22] = 0;
 led_locations[23] = 0;
 }
 else if(input < 384){
 framerate = 18;
 led_locations[0] = 0;
 led_locations[1] = (int)(1.0*(double)steps_per_revolution/(double)framerate);
 led_locations[2] = (int)(2.0*(double)steps_per_revolution/(double)framerate);
 led_locations[3] = (int)(3.0*(double)steps_per_revolution/(double)framerate);
 led_locations[4] = (int)(4.0*(double)steps_per_revolution/(double)framerate);
 led_locations[5] = (int)(5.0*(double)steps_per_revolution/(double)framerate);
 led_locations[6] = (int)(6.0*(double)steps_per_revolution/(double)framerate);
 led_locations[7] = (int)(7.0*(double)steps_per_revolution/(double)framerate);
 led_locations[8] = (int)(8.0*(double)steps_per_revolution/(double)framerate);
 led_locations[9] = (int)(9.0*(double)steps_per_revolution/(double)framerate);
 led_locations[10] = (int)(10.0*(double)steps_per_revolution/(double)framerate);
 led_locations[11] = (int)(11.0*(double)steps_per_revolution/(double)framerate);
 led_locations[12] = (int)(12.0*(double)steps_per_revolution/(double)framerate);
 led_locations[13] = (int)(13.0*(double)steps_per_revolution/(double)framerate);
 led_locations[14] = (int)(14.0*(double)steps_per_revolution/(double)framerate);
 led_locations[15] = (int)(15.0*(double)steps_per_revolution/(double)framerate);
 led_locations[16] = (int)(16.0*(double)steps_per_revolution/(double)framerate);
 led_locations[17] = (int)(17.0*(double)steps_per_revolution/(double)framerate);
 led_locations[18] = 0;
 led_locations[19] = 0;
 led_locations[20] = 0;
 led_locations[21] = 0;
 led_locations[22] = 0;
 led_locations[23] = 0;

13

​

 }
 else{
 framerate = 24;
 led_locations[0] = 0;
 led_locations[1] = (int)(1.0*(double)steps_per_revolution/(double)framerate);
 led_locations[2] = (int)(2.0*(double)steps_per_revolution/(double)framerate);
 led_locations[3] = (int)(3.0*(double)steps_per_revolution/(double)framerate);
 led_locations[4] = (int)(4.0*(double)steps_per_revolution/(double)framerate);
 led_locations[5] = (int)(5.0*(double)steps_per_revolution/(double)framerate);
 led_locations[6] = (int)(6.0*(double)steps_per_revolution/(double)framerate);
 led_locations[7] = (int)(7.0*(double)steps_per_revolution/(double)framerate);
 led_locations[8] = (int)(8.0*(double)steps_per_revolution/(double)framerate);
 led_locations[9] = (int)(9.0*(double)steps_per_revolution/(double)framerate);
 led_locations[10] = (int)(10.0*(double)steps_per_revolution/(double)framerate);
 led_locations[11] = (int)(11.0*(double)steps_per_revolution/(double)framerate);
 led_locations[12] = (int)(12.0*(double)steps_per_revolution/(double)framerate);
 led_locations[13] = (int)(13.0*(double)steps_per_revolution/(double)framerate);
 led_locations[14] = (int)(14.0*(double)steps_per_revolution/(double)framerate);
 led_locations[15] = (int)(15.0*(double)steps_per_revolution/(double)framerate);
 led_locations[16] = (int)(16.0*(double)steps_per_revolution/(double)framerate);
 led_locations[17] = (int)(17.0*(double)steps_per_revolution/(double)framerate);
 led_locations[18] = (int)(18.0*(double)steps_per_revolution/(double)framerate);
 led_locations[19] = (int)(19.0*(double)steps_per_revolution/(double)framerate);
 led_locations[20] = (int)(20.0*(double)steps_per_revolution/(double)framerate);
 led_locations[21] = (int)(21.0*(double)steps_per_revolution/(double)framerate);
 led_locations[22] = (int)(22.0*(double)steps_per_revolution/(double)framerate);
 led_locations[23] = (int)(23.0*(double)steps_per_revolution/(double)framerate);
 }
}

//checks if a value is present in the led_locations array
bool is_present(int led_loc){
 for(int i=0; i<24; ++i){
 if(led_loc == led_locations[i]){
 return true;
 }
 }
 return false;
}

14

​

A2 - Engineering Drawings

15

​

16

​

17

​

18

​

19

	DIY Spinning Stroboscope
	
	
	Overview
	
	Materials and Tools
	Design
	Electrical
	Mechanical
	Code

	Construction
	Image Preparation
	Final Prototype
	Appendix
	A1 - Arduino Code
	
	A2 - Engineering Drawings

