
Synthesized Targets
Synthetic targets to tie up loose ends

Background
Pants uses dependencies between targets to track relationships between source files and
packaged artifacts. These dependencies form a digraph that is consulted by Pants in order to
determine when an artifact needs to be repackaged as a result of a changed input source file (or
other dependency).

Problem Statement
For Pants to be able to correctly deduce when an artifact has been invalidated, the digraph with
all dependencies must be complete, as any omissions may result in an artifact to not be rebuilt
when it ought to have been when using invalidation (such as the changed since feature).

Due to dependency inference and injection, Pants have a good view of the world with the
notable exception of configuration files and lock files. These are included in the cache key, so
when Pants is asked to actually package an artifact the correct action is taken, but the
invalidation is not (i.e. using –changed-since will not result in the artifact to be rebuilt on config
file changes when it should be).

Proposed Solution
Introduce a new feature that can be used to populate the remaining missing pieces for
configuration files and lock files that Pants may then infer dependencies upon for relevant
targets. These would be “synthetic targets” synthesized from known sources such as the Pants
configuration.

Design

Goals
●​ Unobtrusive (don’t break stuff in case of conflicts)
●​ Overridable/customizable (let’s not assume anything)
●​ Opt-in/Opt-out(?)

non-Goals
●​ TBD..

The implementation for synthesized targets uses unions to request synthetic target adaptors for
injection during BUILD file parsing. That implies that synthetic target adaptors live in the same
space as regular target adaptors. In case of conflicting addresses between a synthetic target
adaptor and one declared in a BUILD file, the declared target adaptor wins (unobtrusive). When
a declared target adaptor wins, the field values from the synthetic target adaptor are used as
defaults for undefined fields in case the declared target provided a _extend_synthetic=True
field (customizable).
Any __defaults__ are applicable also to synthetic targets.

In order to help differentiate between a target that is instantiated from a synthesized source,
there may be an is_synthetic flag on the target address that can be used for filtering and
presentation purposes.

Alternatives considered
New dedicated target types that can be manually added or automatically added by tailor to own
the configuration and lock files, with the undesirable effect of having more boilerplate and noise
in the BUILD files. The one up-side being transparency; less magic going on.

Lessons learned from Pants v1
It would be beneficial to reiterate the design, pros and cons of how this worked in Pants v1 to
help guide this effort.

Benjy: Pants v1 had synthetic targets. They were used primarily during codegen. A
python_library would be synthesized to own the generated .py files, and then stitched into the
dependency graph at the same place as the proto_library from which they were generated. This
caused issues with the dependencies not necessarily making sense. We’ve eliminated this
entire issue in v2, because codegen support is significantly more robust

	Synthesized Targets
	Background
	Problem Statement
	Proposed Solution
	Design
	Goals
	non-Goals

	Alternatives considered
	Lessons learned from Pants v1

