

Mobile CSP
Solutions to Coin Flip Mini Projects

Solutions to Coin Flip Modeling Creative Projects

Projects Demo
(English)

Mini Projects
(English)

Mini Projects
(Spanish)

Printable

Coin Flip is an app that simulates the flipping of a
two-sided coin. This app uses App Inventor’s
random number generator and two images to
simulate the coin flip.

Objectives: In this lesson you will learn to:

●​ add additional features to an existing

mobile app;

●​ modify some of the code of an existing

app;

●​ improve coding skills by solving simple

and challenging programming problems;

●​ use Math random number blocks to

generate a random value.

Click the image to watch video

Getting Ready

Open App Inventor with the Coin Flip Projects template. This will open the project that we
completed in the Coin Flip Tutorials. Or, if you already have App Inventor open, you can use
your project from the Coin Flip Tutorial. Use the Save As option to rename your project to
CoinFlipV2 or something to indicate that it is version 2 of that app.

If using the template linke, be patient. It sometimes takes a moment to retrieve and open the
project.

https://docs.google.com/document/d/1AKHpiQ87bE4W1YzHlAFh2uNAHuEtdMOCQVV6HfxfDzc/preview
http://www.youtube.com/watch?v=4b4bE2y8NJ8
http://ai2.appinventor.mit.edu/?repo=templates.appinventor.mit.edu/trincoll/csp/unit4/templates/CoinFlipProjects/CoinFlipProjects.asc

Mobile CSP
Solutions to Coin Flip Mini Projects

Coin Flip Mini Projects

Solutions to Mini Projects

Here are some sample solutions.

1. Modify your app so that the user can also shake the phone to flip the coin. (HINT: Use the
Accelerometer Sensor.) NOTE: Instead of copying and pasting the coin-flip algorithm, you'll
want to use a procedure to reduce complexity in your code.

One way to do this is to incorporate an Accelerometer component (sensor drawer) into your
app and then duplicate the code in the When Button.Clicked block in the Accelerometer’s When
Acclerometer.Shaking block:

Procedural Abstraction. But that’s probably not how a computer scientist would do it. They
would want to avoid the duplicate code. So rather than copying and pasting, we can use a
procedure here. Let’s organize the blocks in the do slot into a named procedure, flipTheCoin:

http://ai2.appinventor.mit.edu/reference/components/sensors.html#AccelerometerSensor

Mobile CSP
Solutions to Coin Flip Mini Projects

Then we can simply call this procedure in each of the event handlers.

This is another example of procedural abstraction. Using a procedure in this way helps us
reduce complexity in our code -- it makes the code more readable and easier to modify, as we
will see in some of the subsequent solutions.

The procedure we created is like defining a new word in a language. It represents the process
of flipping a coin and rather than describing the details of the process every time we want to flip
a coin, we can just use the word (call the procedure).

2. Modify your app so that “heads” or “tails” is spoken when the coin is flipped. (HINT: Use the
TextToSpeech component.)

Now that we have defined the flipTheCoin procedure, we need only make a change to that
procedure -- instead of to the two event handlers. This is another benefit of procedural
abstraction -- i.e., modifying and maintaining a program is easier because the code for flipping
a coin is encapsulated in a single named procedure.

3. Modify the event handler in the Coin Flip app to use random fraction instead of random
integer. (HINT: App Inventor’s random fraction block returns a decimal number between 0
and 1, not including 1. Some examples: 0, 0.25, 0.33, 0.5, 0.66, 0,75, 0.99.)

To model the 50:50 behavior of a coin flip, we need to test whether our random fraction is less

http://ai2.appinventor.mit.edu/reference/components/media.html#TextToSpeech

Mobile CSP
Solutions to Coin Flip Mini Projects

than or equal to 0.5. That should happen 50% of the time if App Inventor’s random fraction
block works well.

Procedural abstraction: Here again, we can implement this change by modifying the
flipTheCoin procedure because it completely encapsulates the coin-flipping algorithm. If we
didn’t use a procedure, it would be much more difficult and error-prone to make this kind of
change.

4. If/else Algorithm: You now have an app that can flip a two-sided coin. Modify your app that
so that it can flip a three-sided coin. (Hint: You will need an if/else block with three conditions.
Also, it might be better to use the random integer block for this problem. You’ll need a third
image for this problem; here’s one that is openly licensed: coin on edge.)

For this problem you need to use the mutator widget on the if block (the little blue gear) to
create an if/else block with three possible cases.

5. According to this report, if you stand a bunch of Lincoln pennies on their edge and then bang
the table, they have a strong bias toward coming up heads. Let’s suppose the coin has a 70%
chance of coming up heads (30% tails) in this experiment. Create a model to simulate this
biased coin. (HINT: Use SaveAs to create a new project for this problem.)

https://home.comcast.net/~davejanelle/coin3.htm
http://uncyclopedia.wikia.com/wiki/File:Coin-edge.gif
http://mathtourist.blogspot.com/2011/02/penny-bias.html

Mobile CSP
Solutions to Coin Flip Mini Projects

Here we want to change our condition to <= 0.7.

6. Real-World Simulations: you can use the random fraction block to simulate real world
statistics.

	Solutions to Coin Flip Modeling Creative Projects
	Getting Ready
	
	Coin Flip Mini Projects
	Solutions to Mini Projects

