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1​ Introduction 
Targeting policies play a central role in today's data-driven marketing, as they 

are vital for optimizing campaigns. Given the diverse preferences and behaviors of 

customers, it is crucial to customize targeting to suit individual responses (Ascarza, 

2018). The goal for campaign managers is to enhance the return on investment (ROI) 

by identifying the most suitable and receptive audience for their marketing campaign 

(Strycharz et al., 2019). To accomplish this, practitioners are now focusing on 

predicting a customer's individual sensitivity to marketing efforts, commonly known 

as the individual treatment effect (ITE) (Simester et al., 2020). 

Companies across various marketing domains, including churn management, 

customer acquisition, or product introductions, are increasingly leveraging ITEs to 

develop highly effective targeting policies. Booking.com showed that implementing 

a personalized targeting policy can transform an underperforming promotional 

campaign into a profitable one by substantially boosting the response rate 

(Goldenberg et al., 2020). Similarly, when launching new products, Uber 

successfully employs targeted cross-selling techniques. By focusing on the 30% of 

most receptive customers, as determined by ITE ranking, they minimize wasted 

targeting efforts while still achieving a conversion increase comparable to targeting 

all customers (Chen et al., 2020). 

These optimized direct marketing policies are enabled by the emerging 

practice of uplift modeling. Uplift modeling is used to identify selected customers 

with the highest positive impact of a treatment denoted by the ITE (Olaya et al., 

2020). It can distinguish between customer segments like "sure things" who 

consistently make purchases regardless of promotions (e.g. auto-response), as well as 

customers who are negatively affected by treatment, referred to as "sleeping dogs" 

(e.g. individuals prone to churn if reminded of a contract by a retention campaign) 

(Devriendt et al., 2018).  

Ideally, to develop a model that predicts ITEs, we would need to 

simultaneously observe a customer receiving a treatment and not receiving a 

treatment, enabling us to measure the causal impact of the treatment. We could then 

train a machine learning model using this data. In reality, it is impossible to make 

both observations for each individual, which is known as the fundamental problem of 
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causal inference (Holland, 1986). This problem arises from the fact that we can never 

definitively analyze the exact impact a treatment had on a single individual, lacking a 

reliable ground truth. Therefore, uplift modeling predicts ITEs by leveraging data 

from randomized controlled experiments (e.g., A/B tests) and employing causal 

inference techniques. 

Multiple researchers showed that in direct marketing contexts like catalogue 

mailing or email promotions, uplift modeling has proven to enhance profits through 

the implementation of personalized targeting strategies (Hitsch et al., 2018; Rößler & 

Schoder, 2022). Additionally, Ascarza et al. (2018) emphasized the concept of 

sleeping dogs in churn management, showing that an uplift modeling-based targeting 

policy, which considers a treatment's negative effects, outperformed the traditional 

approach of targeting customers with the highest risk of churning.  

However, despite research highlighting the vital role of sleeping dogs in 

contractual settings like churn management, they can often be disregarded in 

non-contractual direct marketing contexts, due to infrequent occurrences or minimal 

financial impact. The experimental data from multiple researchers indicates a 

minimal presence of sleeping dogs in non-contractual direct marketing contexts 

(Devriendt et al., 2018; Rößler & Schoder, 2022).  

Thus, ignoring sleeping dogs allows us to introduce the presence of ground 

truth for a subgroup of individuals, thereby simplifying the problem by narrowing 

down the number of subjects to which the fundamental problem of causal inferences 

applies. Utilizing this assumption, we will develop a novel uplift modeling approach 

and demonstrate its effectiveness by applying it to a real-world dataset from a 

renowned international fashion brand. Through a comparison with other state of the 

art uplift modeling approaches, we will demonstrate the superior performance of our 

method. 

We concentrate on data with a binary treatment indicator (i.e., customers 

receive a treatment or not) and a binary response variable (i.e., customers respond or 

do not respond) throughout the paper. Additionally, according to Athey and Imbens 

(2015), we assume that the data come from randomized controlled experiments (i.e., 

A/B testing) or meet the unconfoundedness and stable unit treatment value 

assumptions. 
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2​ Background and Related Work 

2.1​ Prior Works 
The evolution of targeting in marketing had its roots in the early 20th century 

when research revealed distinct reading patterns among men and women in 

newspaper sections (McDonough & Egolf, 2002). By the mid-20th century, the 

growing diversity in products prompted Smith in 1956 to challenge the 

then-prevailing mass marketing strategy, which viewed the market as a homogeneous 

entity. He advocated for a more nuanced approach, proposing a segmentation 

marketing strategy that acknowledged the market's heterogeneity and varying 

customer preferences (Smith, 1956). As product diversity further expanded and 

advancements in Customer Relationship Management (CRM) emerged, the focus 

shifted from a product-centric approach to a customer-centric one (Levitt, 1984). 

As market segmentation has become widely recognized as a critical factor for 

successful advertising (Arens & Weigold, 2017), targeting policies, referring to 

matching different marketing actions to different customers, have become essential 

for the optimization of data-driven marketing campaigns. A consistent finding across 

studies is that more nuanced targeting policies tend to yield better performances if 

the goal is to maximize conversion rates (Hartmann, 2010; Li et al., 2022; Rossi et 

al., 1996). If enough data is available these policies can be optimized to tailor 

specific marketing actions to individual customers, such as serving digital 

advertisements to users, displaying different properties to various homebuyers, or 

offering free trials to new customers (Simester et al., 2020a; Yoganarasimhan et al., 

2023). 

Our research primarily focuses on the application of targeting policies in a 

direct marketing context. In this regard, targeting policies aim to influence customer 

response to marketing initiatives. They play a role in enhancing customer retention in 

churn management (Ascarza, 2018), optimizing the overall conversion rate, and 

thereby improving the ROI (Goldenberg et al., 2020; Liu, 2022; Musalem et al., 

2008). They can also be instrumental in identifying customers particularly likely to 

be receptive to a new product launch (Chen et al., 2020). 

Traditionally, marketers derived targeting policies by predicting a customer’s 

response probability (Coussement et al., 2015; Guido et al., 2011). However, recent 

research indicates that a customer's likelihood to respond may not be the most 

3 
 



Leveraging Sleeping Dogs to Develop a Novel Uplift Modeling Approach 
 

effective criterion for determining which customers to target. Instead, 

customer-specific sensitivity to a particular treatment, in our case a marketing 

initiative, has been identified as a superior factor (Ascarza, 2018). This is due to the 

varied responses across the customer base to certain marketing efforts, demonstrating 

the heterogeneity of customer behavior. As a measure for the customer’s sensitivity 

to a treatment, researchers and practitioners use the ITE, i.e., the causal effect that a 

treatment has on the customer’s response probability (Devriendt et al., 2018). Using 

ITEs instead of response probabilities enables marketers to consider potentially futile 

or adverse effects of marketing efforts (Ascarza, 2018) and to save resources on 

customers with a high response probability but a low treatment sensitivity (Musalem 

et al., 2008). 

When optimizing a targeting policy, the ITE is the difference in response of a 

customer when targeting them compared to not targeting them. As it is impossible to 

make both observations, true ITEs cannot be measured. This is referred to as the 

“fundamental problem of causal inference” (Holland, 1986). Thus, researchers have 

opted to approximate the ITE with a model based on Rubin’s (1974) model to 

approximate the difference in causal effect of two treatments by taking the difference 

of two average treatment effects (ATE). The ITE can be approximated by enriching 

Rubin’s model with attribute or feature vectors of the individuals exposed to the 

treatment to measure the difference in ATE of similar subgroups of individuals. This 

more specific approximation is called conditional average treatment effect (CATE) 

(Imbens & Rubin, 2015) and is used by many marketing researchers to approximate 

ITEs.  

Ellickson et al. (2022) used the CATE to predict customer responses and 

increase the profitability of promotional E-Mail campaigns and Zantedeschi et al. 

(2017) employed an ad-stock model to evaluate customer responses in a 

multi-channel setting involving email and catalog mailing. Smith et al. (2023) used 

the CATE to estimate the effect different targeted pricing policies have per customer 

to determine an optimal pricing policy. Ascarza (2018) predicted customers 

sensitivity to a retention incentive. This approach proved successful in optimizing 

two retention campaigns to minimize customer churn. Yoganarasimhan et al. (2023) 

used the CATE to approximate customers’ responses to different trial lengths of free 

trail promotions in the “Software as a Service” market. These approximations 

allowed them to design and optimize personalized treatment assignment policies. 
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Utilizing ITEs enables the evaluation of an unlimited number of targeting 

policies on a single randomized dataset, as highlighted by Hitsch et al. (2018). This 

technique significantly minimizes expenses when contrasted with conducting distinct 

field experiments for each policy. Hitsch et al., (2018) further showcased the 

applicability of their framework by maintaining consistent results in a campaign for 

the consecutive year using the initial training data, thereby demonstrating its 

robustness and transportability. 

One of these ways to algorithmically estimate ITEs on customer level using 

CATE is the emerging field of uplift modeling. This concept, initially termed 

"differential response modeling," was introduced by Radcliffe and Surry in 1999 

(Radcliffe & Surry, 1999). Unlike traditional response modeling, uplift modeling 

differentiates between responses induced by the treatment and baseline responses 

independent of it, thereby providing a more nuanced representation of 

treatment-induced changes in response likelihood (Rößler et al., 2021). It achieves 

that by leveraging randomized controlled experiments (A/B tests) to estimate a 

customer’s ITE based on the CATE (Gubela et al., 2019). This enables the 

calculation of the CATE by comparing the response of very similar customers from 

the control and treatment group to get a more accurate ITE prediction. 

Uplift modeling approaches can mainly be categorized into three categories: 

two-model, class transformation and direct (Gutierrez & Gerardy, 2016). While 

benchmarkings show that no individual algorithm is universally superior recent 

research indicates that in general direct estimation methods yield the best results 

(Devriendt et al., 2018; Hitsch et al., 2018). In contrast to the two-model approach 

which estimates the uplift by building separate models for the treatment and control 

group (Kane et al., 2014), and the class transformation approach which estimates the 

uplift by transforming the problem into a binary classification task (Kane et al., 

2014), the direct approach builds upon existing machine learning approaches by 

modifying them to train the models uplift directly on the CATE, mostly using 

random forests (RF) as a base model (Guelman et al., 2014; Hansotia & Rukstales, 

2002; Sołtys et al., 2015). 

In essence, uplift modeling strives to accurately identify persuadable 

customers while actively steering clear of treating sleeping dogs or sure things. As 

Devriendt et al. previously asserted, categorizing customers into these groups can 

greatly depend on the specific campaign (Devriendt et al., 2018). Notably, their 
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benchmarking study revealed a lack of downlift (negative uplift) when contacting a 

larger customer segment in specific marketing campaign data. This suggests that in 

certain campaign contexts “there are no or few do-not-disturbs in the customer 

population” (Devriendt et al., 2018, p. 37). We aim to expand on this observation and 

leverage it to develop a new, more effective uplift modeling approach tailored to 

specific campaign settings. 

2.2​ Gap in Related Literature 
To the best of our knowledge, no scientific work has further investigated the 

claim of a lack of sleeping dogs or another group in a dataset. This establishes a gap 

in the existing uplift modeling literature. To verify the research gap, we conducted an 

examination of the qini curve evaluations across a diverse range of uplift papers, 

encompassing a sample of 133 models trained on both contractual (6 datasets) and 

non-contractual (8 datasets) contexts from 5 distinct studies. We assessed the qini 

curves by examining the uplift values in each decile, noting that a decile can only 

have negative uplift if the control response rate exceeds treatment response rate. 

Based on the assumed quality of the algorithms in the studies, we expected sleeping 

dogs to be positioned towards the curve’s end, leading to uplift values exceeding the 

ATE, with a subsequent decline as the sleeping dogs appear, as shown in Figure 1. 

Recognizing the inherent volatility often associated with uplift algorithms (Rößler et 

al., 2021), a threshold was applied, whereby only models exceeding the ATE by more 

than 10% were classified as detecting negative uplift. 

 

Figure 1 Qini curves displaying negative uplift in the last deciles (De Caigny et al., 
2021). 
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Remarkably, only one out of 90 models trained and evaluated on 

non-contractual datasets exhibited negative uplift prediction, while all 43 models 

trained and evaluated on contractual datasets predicted a significant negative uplift in 

the last deciles. This asymmetry reinforces the idea that sleeping dogs might be 

absent in certain settings, particularly non-contractual ones. Our findings further 

suggest that the observation by Devriendt et al. (2018) about the absence of sleeping 

dogs is not exclusive to their dataset but might be a consistent pattern in 

non-contractual environments. By addressing this gap with our proposed method, we 

believe the performance of current techniques can be improved. 

 

Reference Dataset Description Type Negative Uplift 
(Ascarza, 2018) Free Credit when 

Recharging SIM Card 
contractual x (1/1) 

(Ascarza, 2018) Discount for 
Subscription-Based 
Membership 

contractual x (1/1) 

De Caigny et al., 
2021 

Churn Prevention 
Campaign 

contractual x (4/4) 

(Devriendt et al., 
2018) 

Insurance Campaign contractual x (11/11) 

(Devriendt et al., 
2018) 

Financial Services 
Retention Campaign 

contractual x (11/11) 

Rößler & Schoder, 
2022 

Churn Prevention 
Campaign 

contractual x (15/15) 

Devriendt et al., 
2018 

Online Merchandise non-contractual (0/11) 

Devriendt et al., 
2018 

Retailer E-Mail 
Campaign 

non-contractual (0/11) 

Rößler & Schoder, 
2022 

SMS Marketing 
Campaign 

non-contractual x (1/15) 

Rößler & Schoder, 
2022 

Email Marketing 
Campaign 

non-contractual (0/15) 

Rößler & Schoder, 
2022 

Promotional 
Campaign via Mobile 
App 

non-contractual (0/15) 

Rößler & Schoder, 
2022 

Email Marketing 
Campaign 

non-contractual (0/15) 

Rößler et al., 2022 Print Marketing 
Campaign Offering 
Discounts 

non-contractual (0/4) 
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Rößler et al., 2022 Print Marketing 
Campaign Offering 
Discounts 

non-contractual (0/4) 

Table 1 Studies examined for Qini curves with uplift values exceeding the ATE 

by more than 10%. 

3​ Methodology 
Thus, we developed a new uplift modeling algorithm under the assumption of 

the absence of sleeping dogs within the dataset. The minimal probability of sleeping 

dogs existing within the dataset was corroborated by both the marketing managers of 

the fashion brand and the analysis of traditional uplift modeling qini curves. Based 

on their business knowledge, the marketing managers asserted that the lack of 

negative treatment effects was probably due to the customers not having a direct 

negative effect from a discount coupon. Furthermore, none of the 15 traditional uplift 

modeling algorithms, which were trained on the dataset, demonstrated any decrease 

in uplift when higher percentages of the customer base were contacted. This suggests 

that sleeping dogs were absent (Devriendt et al., 2018). 

This fundamentally shifts the underlying assumption of uplift modeling 

regarding the total absence of ground truth when modeling customer sensitivity. For 

example, in uplift modeling, it is uncertain whether a customer that was treated with 

the marketing intervention but didn’t respond is a lost cause, meaning he is 

indifferent to the treatment, or a whether he is a sleeping dog, meaning he is 

adversely impacted by it. Disregarding sleeping dogs however, we can certainly 

identify these treatment non-responders as lost causes. Using the same logic, we can 

also identify control responders as certain sure things and not potentially sleeping 

dogs. However, for the treatment responders and control non-responders remains the 

problem of causal inference, meaning we can infer ground truth only for a subset of 

the data. 

This introduction of ground truth enables the use of both traditional 

supervised machine learning techniques and uplift modeling specific techniques in a 

two-step approach. In the following we describe the uplift modeling approach 

implemented based on this assumption, as well as the underlying datasets and 

evaluation metrics. 
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3.1​ Method 
Our proposed uplift modeling method consists of two steps: First, we use a 

classifier to predict lost causes in our dataset. Second, we utilize an uplift modeling 

algorithm to predict the uplift of each individual. Finally, we combine these 

predictions by adjusting the sensitivity values of identified lost causes thus 

representing their low treatment sensitivity. 

In the initial stage of our approach, we employ a RF to train a classifier. This 

classifier's purpose is to identify treatment non-responders, which, in the context of 

our study, can be referred to as a "lost causes classifier". Although we have 

information about the ground truth for sure things to the same extent as for the lost 

causes, it is not feasible to train a classification model on the data in our case, due to 

the low number of sure thing occurrences in the entire dataset. For a given train 

dataset, we create a target variable denoted as “lost cause” which labels each 

treatment non-responder as 1 and every other combination of the treatment and 

response variable as 0. This data is used to train an RF model using scikit-learn’s 

(Pedregosa et al., 2011) implementation of the algorithm. In our hyperparameter 

configuration, we set a maximum depth of 20 nodes per tree to avoid overfitting and 

maintain a manageable computational complexity. Moreover, we use 100 estimators, 

fix the random state at 0 to produce reproducible results and employ the 

“balanced_subsample” method for the class weight, as it is specifically designed to 

account for label imbalances. Following an array of testing iterations, we determined 

that a higher threshold of 0.65, which ensures a higher true positive rate, enhances 

the overall performance of the combined model in the two-step approach. 

Consequently, the trained RF predicts the lost cause class probabilities for each 

record of a given dataset and designates each record with a probability of greater or 

equal to 0.65 as a lost cause. 

For the second step, we use the X-Learner, which was introduced by Künzel 

et al. (2019). It extends the two-model ITE estimation to a three-step ITE estimation. 

First, the method models the conditional expectations of the outcomes for individuals 

subject to a treatment  and not subject to a treatment µ
1
(𝑥) =  Ε[𝑌

𝑖
1( )|𝑋

𝑖
 =  𝑥]

 separately, using the treatment and control group, µ
0
(𝑥) =  Ε[𝑌

𝑖
0( )|𝑋

𝑖
 =  𝑥]

respectively. Second, for each individual it imputes the treatment effect. That is, for 

the individuals in the treatment group, the difference between the true outcome Y(1) 
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and the estimated outcome using the control estimator  is calculated: µ
^

0
(𝑥)

. For the individuals in the control group, the difference 𝐷1 =  𝑌
𝑖

1( ) – µ
^

0
(𝑥)

between the estimated outcome using the treatment estimator  and the true µ
^

1
(𝑥)

outcome Y(0) is calculated: . 𝐷0 =  µ
^

1
(𝑥) – 𝑌

𝑖
(0)

The imputed treatment effects  and  are then used as outcome variables to 𝐷1 𝐷0

estimate  and  using any type of τ
^

1
𝑥( ) =  Ε[𝐷1|𝑋 =  𝑥] τ

^

0
𝑥( ) =  Ε[𝐷0|𝑋 =  𝑥]

base learner (e.g., decision tree, regression model). Third, the ITE is predicted by 

weighting the estimates from the second step with a weight function : 𝑔 ∈  [0, 1]

 where g typically is the propensity score τ
^

𝑥( ) =  𝑔(𝑥) τ
^

0
(𝑥) +  (1 – 𝑔(𝑥)) τ

^

1
(𝑥)

(Künzel et al., 2019). We use AutoUM’s (Rößler & Schoder, 2022) implementation 

of the X-Learner, which uses a RF algorithms for all base learners. 

In our two-step model, the X-Learner initially predicts the uplift scores. 

Subsequently, for each individual classified as a lost cause by the RF classifier, we 

post hoc adjust their uplift, setting it to a value below the minimum predicted uplift 

by the X-Learner. 

3.2​ Dataset 
Our dataset originates from a global fashion brand which regularly conducts 

randomized controlled trials to track the performance of their marketing campaigns. 

We analyze the data of a mail discount campaign conducted in 2020. It contains a 

total of 200,282 data points across 152 distinct features. These features encompass a 

wide range of purchasing behaviors, including order counts, turnover segmented by 

product categories, season-based turnover, and return rates. Additionally, the dataset 

provides metrics such as open rate, click rate and channel affinity, indicating the 

responsiveness to prior marketing initiatives.  

The ratio of treated to control was about 4:1, with 160,004 customers 

receiving a mail coupon as part of the treatment group, while the control group 

consisted of 40,278 customers who received no marketing intervention. A positive 

response was indicated by any recorded purchase made within the four weeks 

following the treatment. In total, 42,834 customers made a purchase during this 

period, whereas 157,448 customers did not. Within the treatment group, the response 
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rate was approximately 21.79%, compared to 19.78% in the control group. This 

resulted in a relatively modest ATE of 2.01% in the initial campaign.  

To ensure the randomization of features across the treatment and control 

groups we test for equal means for the features across the treatment and control 

groups via t-tests. 8.2% of features exhibited a statistically significant difference 

between the treatment and control groups, indicated by a p-value of less than 0.05. 

This is slightly higher than the 5% of features we would expect due to variance in the 

data with an alpha of 0.05. To ensure robustness in our study, we presented the data 

scientist at the fashion company with these findings. This consultation provided 

assurance regarding the randomized assignment of the treatment and control 

conditions given their experience in conduction randomized A/B tests. 

To further assess the quantitative significance of these findings we examine 

the covariate balance between the treatment and control samples by calculating the 

standardized mean difference (1) per feature (Hitsch et al., 2018). 

 
 

𝑋
𝑘

1( )−𝑋
𝑘

0( )

𝑠
𝑘
2 0( )+𝑠

𝑘
2 1( )

2

(1) 

  

 represents the mean of the sample for the treatment group , 𝑋
𝑘

1( ) 𝑤 = 1( )

and  represents the mean of the sample for the control group  with 𝑋
𝑘

0( ) 𝑤 = 0( )

. Similarly,  and   are the variances of the treatment and 𝑤 ∈ {0,  1} 𝑠
𝑘
2 0( ) 𝑠

𝑘
2 1( )

control groups, respectively. The median standardized difference of means, 

calculated with the formula representing their corresponding variances, was found to 

be 0.014. This result is specific to the features where we rejected the equality of 

means using the t-test. This suggests that the quantitative difference between the 

treatment and control samples in terms of mean is rather small. Therefore, these 

minor differences can be disregarded for the purpose of our analysis. 

3.2.1​ Data preprocessing 

Since our dataset is organic and stems directly from a conducted marketing 

campaign, we had to perform various preprocessing steps to make it suitable for 

machine learning. First, we split the data into training and testing subsets in a 

randomized 80-20 split, while ensuring stratified sampling based on the treatment 

and outcome variable. In the training dataset, we manually removed features which 
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were not useful, such as customer IDs and redundant information. Next, we removed 

all features with a standard deviation of 0. During these steps, we removed 10 

features. In addition, we deleted 13 features that had more than 50% missing values.  

Up to this point we mirrored the preprocessing steps onto the testing dataset, 

specifically features removed from the training set were correspondingly removed 

from the testing set. In the next step we manually evaluated for each numerical 

feature, whether to treat the missing values as 0, the mean or the maximum of the 

feature’s records and imputed the training dataset based on these rules. Missing 

values of categorical features were imputed with a generic string (“unknown”).  

In our evaluation of potential outliers, we detected that 6.45% of the 

observations featured values outside the range of  for variables representing 0, 1[ ]

turnover shares in the training set. Following a consultation with a Data Scientist 

from the fashion brand, it was confirmed that these were indeed erroneous values. 

Consequently, we made the decision to remove these from the dataset. 

For the encoding of categorical features, we employed backward difference 

encoding which compares the mean of a target variable of each manifestation of the 

feature to the manifestation adjacent to it (Potdar et al., 2017). In our context the 

response column is the target variable, subsequently we trained a backward 

difference encoding model on the training dataset and used this model to encode the 

nominal features for the training and testing dataset. Although backward difference 

encoding is designed for ordinal features, iterative tests showed that our models 

perform best when we choose an arbitrary order for nominal features and encode 

them with backward difference encoding as well. 

Lastly, we employed a ridge regression to assess the relevance of the features 

within our dataset. Based on this analysis, we selected the 60 most relevant features. 

3.3​ Evaluation metrics 
Initially, we train and evaluate traditional uplift modeling methods on the 

train dataset to identify a baseline of uplift modeling performance. During this initial 

training and evaluation, we used a stratified 10-fold cross-validation on the training 

dataset. To ensure the maximum performance of the uplift modeling algorithms we 

conducted hyperparameter tuning using a grid search approach.  

Our uplift modeling approach consists of two progressive modeling stages, 

necessitating both an intermediate for performance evaluation and a final evaluation 
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to compare it with traditional uplift modeling methods. Initially, we must assess the 

performance of our “lost cause classifier”. As previously mentioned, we can assume 

the existence of a definite truth in the target variable within a data subset. Therefore, 

traditional performance evaluations, which involve comparing predicted outcomes 

with actual ones, are applicable. To measure the performance of our classifier, we 

utilize the F1-score class-wise and calculate the weighted F1-score over all class 

labels. The F1-score is the harmonic mean of precision and recall for a specific class 

label (Chinchor & Sundheim, 1993). It is commonly used in the evaluation of 

classification algorithms because it balances the trade-off between precision and 

recall, providing a comprehensive measure of a model’s accuracy, especially in cases 

like ours where the class distribution is imbalanced. The weighted F1-score is the 

weighted average of all class label’s F1 scores, with the weights being the number of 

true instances for each class. 

Finally, we evaluate the performance of our two-step approach in comparison 

with other uplift modeling approaches. In this setting we cannot compare actual 

versus predicted outcomes, due to the absence of ground truth caused by the 

fundamental problem of casual inference, as outlined in the related work section. To 

circumvent this problem researchers commonly evaluate the performance by 

comparing groups of customers rather than individuals (Gubela et al., 2019). This is 

typically achieved with a decile-based qini curve or the unscaled qini coefficient 

(UQC) as an aggregated measure (Ascarza, 2018; Devriendt et al., 2018; Gubela et 

al., 2019; Rößler & Schoder, 2022).  

The qini curve sets the number of customers targeted in a relation to the 

cumulative incremental number of responses achieved (Radcliffe, 2007). To calculate 

the curve, we first split the entire population of customers  according to their 𝑆

treatment variable into two groups, , corresponding to the treatment and 𝐶,  𝑇 ⊂ 𝑆

control group. This is done to account for imbalances between the number of control 

and treatment samples during the calculation. We proceed by sorting both groups 

according to the customer’s predicted ITEs and calculating for each decile the 

absolute cumulative uplift , i. e. the additional cumulative responses in the given 𝑢

decile. To calculate , we subtract , the number of responders in the 𝑢 (2) 𝑁 𝐶
𝑅( )

control group’s decile, from , the number of responders in the treatment 𝑁 𝑇
𝑅( )

group’s decile. To account for potential imbalances in the sizes of the groups, the 
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control group's responders  are scaled by the ratio of the total number of 𝑁 𝐶
𝑅( )

control samples  to the total treatment samples  within the decile. 𝑁 𝐶( ) 𝑁 𝑇( )

  𝑢 = 𝑁 𝑇
𝑅( ) −

𝑁 𝐶
𝑅( )*𝑁 𝑇( )

𝑁 𝐶( )
(2) 

 

To improve interpretability of the qini curve, we calculate the relative 

cumulative uplift  , by dividing the absolute cumulative uplift by the number of 𝑢
𝑟

(3)

treated samples in the entire population, . 𝑁 𝑆
𝑇( )

  𝑢
𝑟

= 𝑢
𝑆

𝑇
(3) 

 

By plotting the deciles of targeted customers on the x axis and the 

corresponding  values on the y axis, we can draw the qini curve, as shown in 𝑢
𝑟

Figure 2. The figure depicts two curves for comparison: The blue curve represents 

the performance of a sample uplift algorithm, while the black curve, drawing a 

diagonal, indicates the performance achieved through random targeting. 

The UQC combines the evaluation based on deciles into a single metric. The 

UQC is calculated by dividing the area under the uplift curve by the area under the 

diagonal (Radcliffe & Surry, 2011). According to this definition, UQC values greater 

than one indicate superior performance compared to random targeting while those 

lower than one indicate inferior performance. 

As we conduct a 10-fold cross-validation we essentially train 10 models on 

different parts of the data for each approach. Subsequently, we calculate the average 

qini curves and UQCs to assess the overall performance of the model.  

14 
 



Leveraging Sleeping Dogs to Develop a Novel Uplift Modeling Approach 
 

Subsequently, we conduct a final evaluation on the initially set aside test 

dataset to ensure an unbiased assessment. By training the models on the entirety of 

the training dataset, we aim to further improve the performance of both models. We 

then assess the UQC on the full test dataset as a final performance comparison 

between the two approaches.  

 

 

4​ Results 
The two-step approach consists of two separate models: A supervised 

classification model and an uplift modeling model. To achieve the best possible 

performance, we determine for both models the individual best performing 

algorithm, before we evaluate the combined performance, resulting in three distinct 

evaluations. For each evaluation, we use the train dataset and evaluate using the very 

same stratified 10-fold cross-validation across all three evaluations. 

4.1​ Uplift Modeling Algorithm Evaluation 
Initially, we evaluate traditional uplift modeling techniques to establish a 

performance baseline and to identify the most effective algorithms the uplift 

modeling step of the two-step approach. The average qini curves and UQC from the 

10-fold cross-validation are illustrated in Figure 3. In total we evaluated 17 

algorithms1 on the originally separated train dataset. The best UQC was achieved by 

the X-learner with a score of 1.4831 while the S-Learner algorithm performed worst 

with a score of 1.1224. The top three algorithms by UQC were the X-learner, 

Generalized Random Forest (GRF) and Uplift Random Forest with the Interaction 

Tree (IT) with similar scores of 1.4831 and 1.4423.​   

1 We evaluated the algorithms using the AutoUM framework (Rößler & Schoder, 2022). 
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To optimize our model's performance, we undertook a systematic 

hyperparameter tuning process via a grid search for the three algorithms with the 

highest performance. We optimized the following parameters: maximum tree depth, 

number of estimators in the RF, minimum samples for leaf nodes, and minimum 

treatment samples. This led us to assess 1260 unique hyperparameter combinations 

for each of the 17 uplift modeling algorithms. Despite this extensive search, we 

observed no persistent improvement in performance in the respective 10-fold cross 

validations. This suggests our initial parameter selections were quite effective. This 

is to be expected as these hyperparameters stem from the prior research project 

practically applying uplift modeling in cooperation with the global fashion brand. 

Based on these results, we chose the X-Learner for the further analysis. 

4.2​ Classification Algorithm Evaluation 
Upon determining the most effective uplift modeling algorithm, we proceeded 

to evaluate the optimal classifier for the classification step of the two-step approach. 

We examine a range of supervised machine learning classification algorithms to 

pinpoint the optimal one for training on our ground truth data. To ensure a thorough 

assessment, we selected algorithms from three categories: ensemble methods, 

feedforward neural networks, and regression algorithms.  For the ensemble category, 

we selected a Gradient Boosting Machine (GBM) model and a RF model. A 

Multi-layer Perceptron (MLP) model was our choice for the neural network category, 

while a Logistic Regression (LR) model was chosen for the regression category. The 

evaluation of these methods was conducted using the scikit-learn (Pedregosa et al., 

2011) implementations. 

Again, we evaluated the algorithms using the same stratified 10-fold 

cross-validation as in the previous step. The task was a binary classification for the 

lost cause customer group, either classifying a customer to be a lost cause or not. In 

each fold, we calculated the F1-score for both labels, as well as the weighted 

F1-score for each model. The mean evaluation metrics across all folds are displayed 

in Table 2. As can be observed from the table, each algorithm showcases its strength 

in different categories. The models performed comparably, with the weighted 

F1-score ranging from 0.6469 (MLP) to 0.6581 (RF). Notably, the LR model yielded 

the highest F1 score on the positive label (0.7782), while the RF model achieved the 
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highest F1-score on the negative label (0.5095) and the highest weighted F1-score. 

Thus, the RF classifier was used in the further evaluation. 

 

Algorithm F1_0 F1_1 Weighted F1 
GBM 0.443994 0.772726 0.649280 
LR 0.442943 0.778173 0.652286 
MLP 0.459151 0.759850 0.646930 
RF 0.509456 0.747489 0.658102 

Table 2 Mean evaluation metrics for each model’s best performing threshold. 

4.3​ Combined Two-Step Approach Evaluation 
Subsequently, we proceeded with the final evaluation and comparison of our 

two-step approach with traditional uplift modeling techniques. We build upon the 

results from the uplift modeling and classifier evaluation to maximize performance. 

The classifier was applied in the preliminary stage before implementing the 

traditional uplift modeling algorithm. For the uplift modeling algorithm, we 

employed the X-Learner, which had shown the best performance in the initial 

benchmarking. The focus of this evaluation was not solely on average performance 

but also on robustness, as indicated by the standard deviation measurements. 

As outlined by Table 3, which displays the average UQC across all 10-fold in 

the final column, the two-step approach outperforms the traditional uplift modeling 

approach. The two-step X-learner achieved an average UQC of 1.5624, compared to 

1.5198 of the traditional X-learner. This results in an average performance increase 

of about 4.3% across all folds. Furthermore, on average the two-step approach 

exhibited a reduced volatility with a standard deviation of 0.136 compared to the 

standard deviation of the traditional approach of 0.168. This constitutes a reduction 

in volatility across the folds of about 19% on average. These findings suggest a 

higher robustness in the performance of the two-step approach, underscoring its 

potential utility in real-world applications. 

The fold-wise performance of the traditional and two-step approaches are 

summarized in Table 3. The two-step approach yields superior performance in 70% 

of the folds with worse performance than the traditional X-Learner only in folds 1, 6 

and 7. As is common in uplift modeling the individual fold performances are quite 

volatile. The UQC of the traditional approach range from 1.2673 to 1.777 across the 

10 folds, while those of the two-step approach range from 1.3286 to 1.783. 

Consequently, the overall performance spread of the traditional approach is 0.5097, 
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higher than the spread of the two-step approach of 0.4544. The minimum and 

maximum performance across all folds of the two-step approach is also slightly 

higher than those of the two-step approach.  

 
Algorithm 1 2 3 4 5 6 7 8 9 10 Avg. 

Traditional 1.635 1.267 1.472 1.504 1.754 1.777 1.561 1.281 1.382 1.560 1.520 

Two-Step 1.627 1.329 1.565 1.611 1.783 1.615 1.486 1.414 1.454 1.742 1.563 

Table 3 Unscaled qini coefficients for traditional and two-step uplift modeling 
methods across all 10 folds of the cross-validation. 

An analysis of the qini curve illustrated in Figure 4 clarifies the origin of the 

increased UQC performance. Within the top 30% of the customers with the highest 

predicted sensitivity to treatment both approaches yield almost the same uplift curve. 

This indicates that the initial classification approach does not falsely classify 

persuadable customers with a sensitivity to treatment as lost causes. For the 

following percentages of customers treated, the cumulative relative incremental 

uplift of the two-step approach is consistently higher than the traditional approach. 

Furthermore, the two-step approach achieves the ATE within the dataset of 

0.02 by contacting only 60% of the total customer base while the traditional 

approach does not achieve these scores until the entire customer base is contacted. 

Both approaches the optimal targeting policy in terms of the balance of uplift and 

percentage of customers targeted when treating 60% of the total customer base. 

Based upon the campaign size of 200,000 customers and a profit per conversion of 

€1002 the increased uplift of the two-step approach leads to a modest increase of 

campaign returns of €8000. ​  

To ensure an unbiased evaluation of the performance and robustness of the 

compared approaches, we conducted a final evaluation using the initially set aside 

testing dataset. For optimal performance, algorithms were trained using the entirety 

of the training data set. In these evaluations, the traditional X-Learner yielded an 

UQC of 1.414. In contrast, our two-step approach surpassed this with an UQC of 

1.435. This modest improvement of approximately 1.5% is consistent with the 

superior performance observed during our 10-fold cross-validation. 

 

2 Altered by factor x for confidentiality reasons. 
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5​ Discussion 
In this study, we introduce a new uplift modeling theory challenging the 

assumption of the absence of ground truth currently prevalent in uplift modeling 

research (Radcliffe & Simpson, 2008). Specifically, this theory is based on the 

systematic absence of "sleeping dogs". We demonstrate that our proposed two-step 

approach leveraging this theory by utilizing established supervised machine learning 

algorithms, yields improved performance. 

We found that in recent uplift modeling literature, most uplift modeling 

methods are not able to exceed the ATE on non-contractual datasets. This means 

there is only a negligible number of cases in which the treatment group’s response 

rate is lower than the control group’s response rate. Consequently, this evidence 

suggests a scarcity or even absence of sleeping dogs in non-contractual settings. 

Representatives of the fashion brand our dataset originates from confirmed to us that 

this is due to the minimal adverse reactions to marketing efforts such as coupons and 

discounts in their non-contractual settings, as these treatments present no potential 

downside for the customer. 

Furthermore, we showed that the absence of sleeping dogs enables the 

identification of a subset of lost causes and sure things in the dataset. By using this 

information as ground truth, we partially changed the underlying problem type to a 

classification problem that can be addressed using supervised classification 

algorithms. We capitalized on this by building a lost cause classifier to identify the 

lost causes in a separate step before we apply an uplift modeling model. Our findings 

show that the UQC of the best performing uplift modeling algorithm on our dataset 

can be improved when using the lost cause classification to adjust the predicted uplift 

scores. The weighted F1-score of approximately 0.66 of the classifier leaves room 

for even more precise lost cause classification, suggesting that our approach can be 

further enhanced to yield even better performance.  

In line with our initial assumption, our results validate that introducing partial 

ground truth to the uplift modeling problem enhances performance. Moreover, 

traditional uplift modeling algorithms may not be optimally suited for 

non-contractual settings. In these particular scenarios, our proposed method 

demonstrates superior performance, emphasizing the importance of tailoring 

methodologies to the specific characteristics of the problem domain. 
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Or study investigates Devriendt et al.’s (2018) statement about a possible 

absence of sleeping dogs in a dataset, extends it, and generalizes it to an entire 

category of marketing settings. This stands contrary to the assumption of four groups 

being present, which underlies uplift modeling research (Radcliffe & Simpson, 

2008). Furthermore, it adds two new aspects to Devriendt et al.’s (2018) statement 

that, in uplift modeling, the classification is dependent on the campaign 

characteristics. First, our findings show that the campaign characteristic can have a 

significant impact on the uplift prediction, as it can lead to fewer customer groups 

and second, it can cause more information to be available during training, due to the 

inferred ground truth about lost causes and sure things. 

In a practical dimension, our research mostly impacts marketing managers 

and data scientists as we provide a new model to create targeting policies. Our 

method increases the targeting performance, especially in non-contractual direct 

marketing contexts. Thus, to achieve optimal targeting performance via algorithmic 

targeting policies the campaign manager must first identify the setting in which the 

campaign will be conducted. The setting of non-contractual direct marketing 

provides a strong indication that no sleeping dogs are present within the targeted 

customer group, thus enabling two-step uplift modeling to provide maximum 

performance. Additionally, the data scientist creating sensitivity ranking for the 

targeting policy can examine the dataset for negative lift with traditional uplift 

modeling algorithms to assess the applicability of two-step uplift modeling.  

When then applying two-step uplift modeling in a suitable environment, 

campaign managers can then expect higher response rates within the treated 

customer group as well as smaller overall treatment group sizes as evidenced by the 

evaluation above. Thus, both campaign conversions and contact costs are reduced, 

increasing the overall ROI of the campaign.  

We first introduce the new theory of the absence of sleeping dogs in 

non-contractual direct marketing settings and indicate that building upon this theory 

increases targeting performance. This theory yields potential for further technical 

exploration, as well as application and evaluation in other marketing contexts and 

datasets. In terms of technical exploration, the assumption of ground truth introduces 

a large variety of new machine learning methods to the domain of uplift modeling. 

Therefore, many opportunities exist for fellow scholars to build upon the no sleeping 
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dogs assumption by applying different machine learning methods and architectures 

to increase targeting performance.  

We are aware that our research exhibits some limitations that provide 

opportunities for future research. First, the training and evaluation of the two-step 

approach was conducted on a single dataset in the fashion industry. Thus, 

generalizability of the findings is limited in the current state of evaluation. This 

presents the opportunity to apply and evaluate the two-step approach to more 

non-contractual datasets both within and beyond the fashion industry to benchmark 

performance and establish robustness of the novel approach.  

Second, in this paper, we had to omit the classification of sure things as the 

infrequent frequency did not allow for accurate identification. The field of sure thing 

classification exhibits significant potential for evaluation on a different dataset. On a 

dataset with more occurrences of sure things, this classifier might however be 

feasible and further increase performance. 

Third, our current methodology is limited to specific input data, namely 

binary treatment, and response variables. We encourage other researchers to adapt 

and expand this approach to accommodate continuous response variables and 

multiple treatment variables. 
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6​ Conclusion 
This study addressed a specific gap in uplift modeling within non-contractual 

direct marketing contexts. Our findings confirmed the negligible presence of sleeping 

dogs in such settings, which aligns with prior research from Devriendt et al. (2018). 

This confirmation allowed us to introduce the presence of ground truth for a 

designated subgroup, offering a potential resolution to the fundamental problem of 

causal inference for that group. 

Based on this insight, we developed a new uplift modeling approach. When 

tested on a real-world dataset from a notable international fashion brand, our 

approach demonstrated superior performance compared to other current uplift 

modeling methods. This result highlights the importance of adapting modeling 

methodologies to specific characteristics of different marketing contexts. 

In the broader context of data-driven marketing and its emphasis on 

personalized targeting strategies, uplift modeling has become increasingly vital for 

achieving improved ROI (Goldenberg et al., 2020). By contributing a new method 

and providing empirical evidence of its efficacy, our study offers a valuable resource 

for researchers and practitioners in the field. 

In summary, our research provides both a deeper understanding of uplift 

modeling in non-contractual settings and a practical advancement in the 

methodology, aligning closely with the objectives set out in the introduction of this 

paper. 
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