SPIP: Spark FunctionCatalog API

Author: Ryan Blue

Background and Motivation

Spark has excellent support for writing user-defined functions in Python and Scala, and also
supports Hive’s UDF API. Python and Scala UDFs are easy to write and register from a Spark
app that uses DataFrames, but a purely Spark SQL app has no way to easily register a UDF
except through the the Hive API because there is no way to pass python or Scala code other
than through those languages’.

The Hive UDF APl is capable, but has serious drawbacks for Spark users. UDF evaluation is
slow because Spark must translate values to pass into the UDF, which then uses Hive
inspectors to get Hive representations. Hive’s API for writing a UDF is also complicated and
requires the UDF author to access incoming values using object inspectors for all but very
simple cases.

There is a wide complexity gap between Spark UDFs and Hive UDFs and room for a new option
that allows building and testing UDFs as libraries. In addition to registering anonymous functions
from supported languages, Spark should expose an API for loading UDFs that is independent of
the current environment. Rather than using a complex and slow API for all other uses, Spark
should provide one that is simple to use.

DataSourceV2 introduced the CatalogPlugin API that allows users to easily plug in catalog
implementations, and the TableCatalog API to use a plugin for table operations. Catalogs are
plugged in by setting an implementation class in Spark’s configuration for a catalog name, and
are configured by setting Spark configuration properties in a namespace for the catalog. To
expose tables, a plugin can implement TableCatalog. This approach is established, flexible,
and requires a minimal amount of reflection so this proposal is to add a similar
FunctionCatalog interface to expose function loading to Spark.

Approach

e The existing CatalogPlugin API should be used to dynamically load a
FunctionCatalog that loads functions for Spark. This has several advantages over
existing ways to write UDFs:

o UDF libraries reuse the existing plugin APl and configuration.

' Spark can also load aggregation functions using UserDefinedAggregateFunction from a catalog, but it
requires serialization of state on each update and then passes state as Row. Scalar functions are not
supported. These issues are the reason why Hive UDFs are the primary alternative.


https://issues.apache.org/jira/browse/SPARK-27296

o UDF calls will be namespaced using a configurable library name as a catalog.

o UDF libraries can be plugged in at runtime using only a Jar and configuration.

o UDF interfaces will not require Hive classes and can be simpler than using Hive’s
object inspectors.

Goals

1.

Define a FunctionCatalog API for loading functions to run in Spark that includes:
Support for calling functions with any Spark data types

Support for scalar functions that produce a result for each input row

Support for aggregate functions that produce a result after adding a group of
input rows

Support for efficient partial aggregation

Support for identifying when two functions are identical, when they have been
loaded through different paths.

o

O

o

o

O

Non-goals

Methods to create or modify UDFs in a FunctionCatalog. Spark inherited CREATE
FUNCTION from Hive that can create the metadata for a “permanent” UDF in the Hive
MetaStore. Creating, modifying, or dropping functions in an external catalog is out of
scope.

Function pushdown. Future catalogs may be able to expose functions that Spark can
use to push operations into the data source. This proposal covers only functions that are
intended to run in Spark. Functions that are intended to be pushed to a data source are
out of scope.

Higher-order functions. Lambdas may be supported in the future using new function
interfaces, but this is currently out of scope.

Vectorization or code generation. Interfaces that extend this proposal to support
vectorized function execution or function codegen can be added later, by creating
specialized interfaces that extend BoundFunction.

Target Personas

UDF developers: UDF developers should be able to deploy UDF libraries using a Jar
and the existing catalog registration system. This enables writing UDFs in a JVM
language while not imposing that requirement on downstream users (like Scala UDFs),
or plugging in through a Hive API that is difficult for developers.

Source developers: Data source developers also need to expose function
implementations to Spark so that sources can request custom data ordering or can
implement bucketed joins with custom hash functions that match how data is stored.



e Data engineers: Data engineers need to add function libraries that support UDFs and
UDAFs.

Proposal

Spark will add a FunctionCatalog interface similar to the TableCatalog interface. When a
CatalogPlugin implements FunctionCatalog, Spark will use it to load functions that can
run in Spark plans like UDFs or functions provided by Hive.

Like the TableCatalog interfaces, data will be passed between Spark and function
implementations using Spark’s internal data representations (InternalRow and similar). This
allows implementations to work directly with Spark’s data without costly translation to a different
representation before or after a function call. Spark may later provide a mix-in interface to use
the public Row representation for authors that are already familiar with it from working with
DataFrame functions like map.

FunctionCatalog will support listing functions in a namespace and loading a function.

interface FunctionCatalog extends CatalogPlugin {
Identifier[] listFunctions(String[] namespace);
UnboundFunction loadFunction(Identifier ident);

}

The 1listFunctions method works like 1istTables, but returns identifiers for functions that
can be loaded by loadFunction. FunctionCatalog implementations may also implement
SupportsNamespaces to support namespaces other than the empty namespace.

To load a function, Spark will use multi-part name resolution that is similar to DSv2 table
resolution:

1. If the name is a single identifier part:
a. Ifthe name is a built-in function, load the built-in function
b. Look up the function in the current catalog with the current namespace
2. If the name is multiple parts:
a. If the first part is a registered FunctionCatalog, use that catalog to load an
identifier created from the remaining name parts
b. If the first part is not a registered catalog, use the current catalog to load an
identifier created from all name parts

Note that loading functions from a catalog does not prevent Spark from adding other ways to
load custom functions that use the function interfaces defined in this proposal. For example, a
table API could provide an alternative method to load transform functions that can be used by
Spark.



In the short term, the built-in Spark catalog, spark_catalog, will be used for Hive function
creation and loading. Eventually, function loading can be replaced by an implementation of this
API.

Backward compatibility with function resolution in existing Spark 3.x releases is handled by 2.a
above. Unless the current catalog implements FunctionCatalog, the existing lookup will be

used. Future catalogs can implement FunctionCatalog to expose functions and change this
behavior.

Function binding

The loadFunction method returns an unbound function that must be bound to an input type.
Separate loading and binding steps allows Spark to cache loaded (unbound) functions, and
allows Spark to return better error messages (not found vs. does not support input).

Spark will call bind(StructType) on an UnboundFunction to produce a BoundFunction
that can be used during execution. Both inherit from Function, which exposes basic metadata.

interface UnboundFunction extends Function {
BoundFunction bind(StructType inputType);
String description(); // documentation for DESC FUNCTION

}

interface BoundFunction extends Function {
DataType inputType();
DataType resultType();
default boolean isResultNullable() { return true; }
default boolean isDeterministic() { return true; }
default String canonicalName() { return UUID.randomUUID.toString(); }

}

A function’s result type and nullability are provided by BoundFunction because the result type
is not necessarily known until a function is bound to input types (like, max).

A BoundFunction may be a ScalarFunction or an AggregateFunction. Vectorization,
codegen support, use of Row instead of InternalRow, or other extensions can be added later
by adding more interfaces that augment BoundFunction.

BoundFunction.canonicalName is used to identify the function, regardless of how the
function was loaded. Comparing the canonicalName of two functions can determine whether
they are equivalent. This can be used to compare the partition functions from two tables to
determine if they can be joined using a storage-partitioned join, like a bucketed join. Like the
result type and other information, the canonical name is carried by BoundFunction because it
may depend on the input types.



A BoundFunction will use the inputType method to return the function’s desired input type.
If the returned type is different from type passed to bind, Spark will insert casts before calling the
function. This would optionally allow functions to delegate type coercion to Spark.

Scalar functions

Scalar functions produce a result for every input. The input row passed to the function will
correspond to the struct passed to bind. The output of the function corresponds to its
resultType.

interface ScalarFunction<R> extends BoundFunction {
default R produceResult(InternalRow input) {
throw new UnsupportedOperationException();
b
}

In addition to produceResult(InternalRow), which is optional, functions can define
produceResult methods with arguments that are Spark’s internal data types, like
UTF8String. Spark will prefer these methods when calling the UDF using codgen.

Results must be returned using Spark’s internal representation; for example, if the result type is
timestamp then the value must be a long in microseconds from the unix epoch. If the result
type is a StructType, then the result must be an InternalRow.

The DSv2 table API uses Spark’s InternalRow when passing rows to a writer and expects
InternalRow to be produced by readers. Using Spark’s internal representation for data
passed to a function and for results returned by a function is consistent with the other DSv2
interfaces.

While Spark will not use the return type parameter, R, declaring the type parameter allows
implementations to enforce type safety.

Aggregate functions

Aggregate functions are a little more complicated and produce a result after multiple inputs have
been passed to the function. Aggregations also need to keep state across multiple inputs before
producing a result. To keep function implementations simple and stateless, Spark will control the
lifecycle of the aggregation state.

interface AggregateFunction<S extends Serializable, R>
extends BoundFunction {
S newAggregationState();
default S update(S state, InternalRow input) { throw ... }
S merge(S leftState, S rightState);



R produceResult(S state);
}

For each group, Spark will call newAggregationState to initialize, then pass each input to an
update function along with the state returned by the last input. Finally, when all inputs are
processed, Spark will pass the final state to produceResult to get the result.

In addition to update(InternalRow), which is optional, functions can define update
methods with arguments that are Spark’s internal data types, like UTF8String. Spark will
prefer these methods when calling the UDF using codgen.

Spark will always keep track of the latest aggregation state returned by update.
Implementations should reuse state objects for efficiency, but may need to replace state with a
different instance. For example, the aggregation state for sum is a primitive value.

All functions must support partial aggregation by defining a merge function that merges two
intermediate states. When necessary, Java serialization will be used to serialize intermediate
aggregation state produced by an AggregateFunction. The state produced by an
AggregateFunction is required to implement Serializable.

API

The proposed APl and example aggregate function implementations is available in PR #24559.

Discarded Alternatives

Hive

As discussed in the background section, Hive UDFs are already supported but are complex and
difficult to write. This proposal’s use of StructType and InternalRow (or later Row) to pass
data is much simpler than Hive’s opaque types and object inspectors. And this proposal’s use of
catalog plugins provides an easy way to load a library of functions with an existing and limited
use of reflection.

Trino

Trino functions are injected as plugins, similar to the use of CatalogPlugin in this proposal.
Functions are written using Java annotations to provide description, function type (scalar,
aggregate), return type, and input types. Function inputs are built from rows and functions are
called using Java reflection. This proposal’s use of StructType and InternalRow to call
functions is simpler and mirrors the use of InternalRow to pass data to and from other
catalogs.


https://github.com/apache/spark/pull/24559

Note that Trino’s API for aggregate functions mirrors the one proposed. It exposes input,
combine, and output functions that are equivalent to update, merge, and produceResult.
Trino is more strict because the state object is handled by the framework and cannot change,
but this is a minor difference.

See Presto UDF examples from Qubole.

Implementation Sketch

Integrating FunctionCatalog requires adding a new case to ResolveFunctions. The
existing case to look up functions in the v1 catalog will be updated to run if the function name is
a single identifier (i.e., a built-in function) or if the current catalog is the Spark session catalog.

This will also require new expressions that wrap the function interfaces from this SPIP and
appropriately call the functions.


https://github.com/qubole/presto-udfs

	SPIP: Spark FunctionCatalog API 
	Background and Motivation 
	Approach 
	Goals 
	Non-goals 

	Target Personas 
	Proposal 
	Function binding 
	Scalar functions 
	Aggregate functions 
	API 

	Discarded Alternatives 
	Hive 
	Trino 

	Implementation Sketch 

