

 ​ SpringRTS Mapping guide for World Machine

●​ By Beherith (mysterme@gmail.com)

If you have questions/comments, use the comments feature of gdocs.
This is a detailed guide and checklist for making half-decent looking maps for SpringRTS. ඞ

Prologue:

THERE IS NO INGAME MAP EDITOR FOR BAR. THIS IS A DIFFICULT BUT REWARDING
JOURNEY.

Watch some videos:

SpringRTS map creation with World Machine Macros (by Beherith)

You can skip straight to the World Machine Usage section in this doc if you are familiar
with the basics.

Prologue:
Recommended
Tools

NVidia Texture Tools Exporter
Generating DNTS Maps from PBR materials

splatDetailNormalTex
Making the DNTS

Regular Map Texture (Main Diffuse Texture):
Format:

specularTex
Format:

detailNormalTex
Example
Format

detailTex
splatDetailTex

splatDetailNormalDiffuseAlpha
Feature Placement

mailto:mysterme@gmail.com
https://www.youtube.com/watch?v=YLVoCoRMra0

Geo Vents
Other Features

Compilation
Decompilation
Mapinfo.lua
World Machine Usage

Very Important UI shortcuts
Set up map size

Scaling
Altitude Scaling
Setting up tiled builds
Render Extents

Creating Your Heightmap
Import existing heightmap​
​
Start off by importing an existing heightmap by adding File Input device, from the Generator
tab group.
Layout Mode: Create or modify an existing heightmap
Making Ramps
Extremely important Layout Mode info:
Breaking up Layout Mode unnatural shapes
Adding detail

Distorted perlin noise generators
Displacement Devices

Verifying passability for kbots and vehicles
Making a symmetrical map

Texturing
Layer Distribution
Layer colorization

Hue-saturation-lightness control (HSL)
DNTS Splatdistribution and Speculartex Generation

Splatdistribution
SpecularTex
Fast splatdistribution, speculartex, and minimap regeneration

Outputs produced by WM
Scaling outputs

Compilation with PyMapConv
Packaging for Testing and Distribution

MapNormals, Specular and Splatdistribution resolutions

Compression to .DDS with NVTT_Export
Inclusion of map source files

Skyboxes
Lighting in BAR
Finishing touches in SpringBoard

Adding Features in SpringBoard
Alternate method of converting SpringBoards Model.lua
Water
Hand-painting Splats in SpringBoard
Verifying and fine-tuning passability in SpringBoard

Additional Details
Sky reflections
Colorizing Features

MapOptions.lua
Final Zipping

Recommended

 Tools
1.​ Windows Texture Viewer

a.​ https://github.com/Beherith/springrts_smf_compiler/blob/master/tools/win/Window
s_Texture_Viewer_v089b.rar

b.​ for viewing .DDS files
c.​ if WTV can’t display it, Spring can’t either!
d.​ Use left-right keys for viewing MIP levels
e.​ Use ARGB keys to view individual channels

2.​ Photoshop or GIMP (optional)
a.​ For miscellaneous fixes, especially for inverting the Green channels of normal

maps
b.​ Good for resizing

3.​ NVidia Texture Tools Exporter (see the image below)
a.​ https://developer.nvidia.com/nvidia-texture-tools-exporter or

https://github.com/Beherith/springrts_smf_compiler/tree/master/tools/win
b.​ Best .dds generator
c.​ Arbitrary sizes (16K+) possible, not just power-of-two!
d.​ Fast enough
e.​ Good preview.
f.​ Has option to flip DDS vertically (needed almost everywhere)
g.​ PyMapConv includes EZ mode .PNG to .DDS converters for mapping.

4.​ World Machine 3.x or World Creator for actually making the map. World Creator is- not
detailed in this document, only World Machine 3+, but the general procedure is similar.

5.​ Pymapconv
a.​ https://github.com/Beherith/springrts_smf_compiler
b.​ The only map compiler/decompiler written, endorsed and supported by me.

6.​ Coffee, preferably plentiful and strong, and some willpower.

https://github.com/Beherith/springrts_smf_compiler/blob/master/tools/win/Windows_Texture_Viewer_v089b.rar
https://github.com/Beherith/springrts_smf_compiler/blob/master/tools/win/Windows_Texture_Viewer_v089b.rar
https://developer.nvidia.com/nvidia-texture-tools-exporter
https://github.com/Beherith/springrts_smf_compiler/tree/master/tools/win
https://github.com/Beherith/springrts_smf_compiler

NVidia Texture Tools Exporter

Generating DNTS Maps from PBR materials
To create a good-looking DNTS splat texture from a PBR material, you need the following
things:

Question: usually you just have a texture you have seen somewhere, how to get the normal and
occlusion ones?
Answer: Normal maps are the most important, if you can't get that, you might as well just look
for a different one, sorry.

Normal Texture

Diffuse Texture Self-ambient occlusion

If it is too clean, use
Shadermap 3 pro to generate
one from the diffuse texture
and mix with the clean one in
photoshop.

We will center this around
grey and squash the range of
the diffuse so that it doesn’t
overpower the normals with
flat shading

Not strictly needed, but very
useful

splatDetailNormalTex
Make sure the directions of the channels are correct. Remember the ‘red is right’ mnemonic,
and the ‘green is up’ mnemonics. To fix this, you may have to invert and or swap the red and
green channels.
The format of the DNTS splat map should be .TGA (this matters because the origins of .DDS
and .TGA are different, thus resulting in flipped green channels of the normal textures). The
example shows the normals of a raised cone, sphere, rounded rectangle and the word ‘UP’, with
a lowered ‘DOWN’ text.
Do NOT use .DDS formats for splatDetailNormalTex, as the mipmapping results in too high
compression, and ugly results. Use .TGA for best results. 1k sized splatDetailNormalTex is
perfectly sufficient.

Making the DNTS
Combine the diffuse texture and the self ambient
occlusion textures with multiply. Merge the layers.
Adjust the level to be centered around 128 and with a
small spread, between 100 and 150, to make sure
that the diffuse doesn’t overpower the normal texture.

Copy this squashed diffuse texture to the alpha channel of
the normal texture, and save as a .TGA file for export.

Put the texture in the ./maps folder, and reference it from
mapinfo.lua:

​ resources = {
 ​ specularTex = "spec_large.tga",
 ​ splatDetailTex = "splattex.tga",
​ ​ splatDistrTex = "splatmap.tga", --sand, rock, pebbles, cracks
 ​ --skyReflectModTex = "rrsky.dds",
 ​ splatDetailNormalDiffuseAlpha = 1, -- specifies whether the diffuse
(alpha channel) of splat textures get used
 ​ splatDetailNormalTex1 = "Ground_IcySnowPack_1k_n.tga";
 ​ splatDetailNormalTex2 = "rock_guiAngledRock_1k_dnts.tga";

 ​ splatDetailNormalTex3 = "snow_NORM.tga";
 ​ splatDetailNormalTex4 = "crystal_245_highpass_dnts.tga";
 ​ --splatDetailNormalTex4 = "bump_map_example.dds";
 ​ --detailNormalTex = "twinlakesmodlab_Normal.dds",
 ​ --lightEmissionTex = "",
​ },
​ splats = {
 ​ texScales = {0.002, 0.004, 0.0052, 0.005},
 ​ texMults = {0.72, 0.8, 0.65, 0.8}, --fresh snow, cliffs, packed snow,
metalspots
​ },

Regular Map Texture (Main Diffuse Texture):
Refrain from adding too much ‘noisy’ small details to the map texture in general (like grass,
sand dunes), as these will be done with the DNTS splats, much better than the default map
texture could ever do.

It is also not recommended to do heavy alpha transitions between materials, they look very
fake. Sharp transitions between materials looks best for BAR.This example shows the
pixel-sharp transition between grass, rock and snow.

Format:
8bit RGB. Should only ever contain an Alpha channel if you actually wish to use transparency
via VoidGround tags.

specularTex
This texture must be specified for DNTS to be enabled. At the very least specify a fully black
texture.

Alpha of 255 means the surface is highly polished and reflects only in a specific direction.
Alpha of 0 means the surface is very ‘matte’ and reflects in all directions. The specular exponent
engine side maps alpha [0-255] to [0,16.0], linearly.

This has the unfortunate side effect, that the speculartex is straight ‘emitted’ off of alpha 0 (low
exponent) surfaces, so the speculartex must be premultiplied with alpha :D

A good specularTex contains the albedo (unlit color) of the diffuse texture (ideally picture
example comparing both) in the RGB channels, and contains some material-dependent alpha
channel of shinyness. The RGB should be premultiplied with the alpha channel, avoiding the
overexposure of matte surfaces. Best to have picture examples of what it all looks like and how
to do the process in photoshop

High values of specularTex alpha is a good way of conveying ‘wetness/polishedness’, with low
values meaning ‘dryness/matteness’.

Specular texture example. Note how most areas are very dark, as they will get added to the
regular light. Also note that the metal patches are almost full white, but they won't be too bright
because their high exponent will prevent overbrightness:

Specular alpha example, high values are high exponent (shiny), moderate values are less
polished. Try not to use exponents lower than 16/255, because they will just look like diffuse due
to reflecting light in every direction.

Format:
8 bit RGBA. Speculartex is recommended to be about 2k resolution. DDS compression is good,
BC3 (DXT5) format, which is good for smooth alpha channels. A 1:1 pixel ratio with diffuse
texture can be used, but this becomes prohibitively expensive with large diffuse textures, due to
the size of BC3 compression being twice the size of BC1. Flip image vertically for .DDS
compression.

detailNormalTex
This is one of the keys to an excellent looking map. For best results, this should be identically
sized to the Diffuse texture.

Example
Say you have the following heightmap:

Note that the corresponding detailNormalTex is flipped, and note the orientation of the
green channel (green is UP)

Format
Recommended format is BC1 (DXT1) no alpha. Remember to: Orient the Y (Green) channel
correctly, and to flip the image vertically when creating the .DDS compressed version.

detailTex
Needed for legacy rendering. I recommend sourcing the requisite detailtexblurred.bmp from one
of my maps.

splatDetailTex
A fallback rendering mode, never used and no longer recommended, but must be specified for
DNTS to work.

splatDetailNormalDiffuseAlpha
This boolean mapinfo.lua variable allows you to enable/disable the diffuse color packed into the
alpha channels of the splatDetailTextures.

Feature Placement

Geo Vents
Geovents should be placed within PyMapConv, as it will perform the drawing of the geovent
image as well. Use the relevant part of pymapconv to do this, and pass your lua file to it:

{ name = 'GeoVent', x = 5428, z = 1492, rot = "0" ,scale = 1.000000 },
{ name = 'GeoVent', x = 9332, z = 2668, rot = "0" ,scale = 1.000000 },
{ name = 'GeoVent', x = 2428, z = 3508, rot = "0" ,scale = 1.000000 },
{ name = 'GeoVent', x = 10268, z = 6524, rot = "0" ,scale = 1.000000 },
{ name = 'GeoVent', x = 2124, z = 7396, rot = "0" ,scale = 1.000000 },
{ name = 'GeoVent', x = 8492, z = 9940, rot = "0" ,scale = 1.000000 },
{ name = 'GeoVent', x = 4812, z = 10324, rot = "0" ,scale = 1.000000 },

Other Features
See the relevant info in the SpringBoard part, as that is the recommended method of placing
features for a new map. You can also use the featureplacer method.

Compilation
You need at least a main texture and a heightmap to compile a map.
Remember that you can save and load compilation settings using the buttons on the bottom.

Z

Decompilation
In order to change or update an existing map, you need to un-7zip it (open the .sdz or .sd7 file
with 7zip) to a folder somewhere. Then start pymapconv, scroll down to the DECOMPILE option,
select the .SMF file from the unzipped /maps/ folder, and click compile.

Mapinfo.lua
For now, refer to
And also, note the rather well documented mapinfo.lua files included in my maps.
Lighting

Map creation is an iterative process. Thanks to Angelwings for the gif of his progress.

World Machine Usage
This tutorial is designed for World Machine build 3026 and up. I will abbreviate World Machine
as WM. All text marked bold appears exactly as the WM user interface. Please take the time to
familiarize yourself a bit with how it works, read up or watch some tutorials. The WM manual is
itself an excellent and short introduction as to how it works. WM is a procedural tool, so all
devices (nodes in the device graph) operate on the entire map at once, with a few exceptions,
and we will use masks to select areas to operate on. Sample WM file available here:
https://github.com/Beherith/springrts_smf_compiler (Crescent Bay Clean V3.tmd)

https://github.com/Beherith/springrts_smf_compiler

In the WM menu, go to Views -> Open new top-level window, and move that window to the
right, while keeping the Device View on the left as this will allow you to see a rapid preview of
your work. In this new window, select Layout View using the tabs at the top.

Selecting any device on the left Device View, will immediately start to render a preview on the
right Layout View.

Very Important UI shortcuts
Selecting a device and hitting the (F) key will Lock Preview onto that device. This means that
all views will show the output of that device, even if you select any other device. This allows you
to view the effect of changing things in a previous device while showing the output of the locked
device. For example, you can see how changing the sand mask areas will affect your final
output directly, by locking onto the final output.

Set up map size

Scaling
We will , that 1 meter in World Machine will be approximately equal to 1 elmo (1 elmo is 1 ‘unit’
in Spring, which you can see in game in the tooltip). In World Machine, we will set up the world
render extents to X by Y kilometers, where 1 kilometer is exactly 1024 elmos. This
conveniently approximates the internal representation that Spring uses. You must use whole
kilometers (multiples of 1024 elmos) for maps.

The first step in all mapping, is deciding on the size of the map that you wish to make. In
general, Spring maps use an internal size calculation, where your average 16x16 sized map will
be exactly 8192 x 8192 elmos in size, 8K by 8K for short, and in WM, we will set this as 8
kilometers by 8 kilometers.

Avoid making a map that is larger than 32x32 spring, 16K x 16K size, as the engine (nor
gameplay) doesnt like it much.

In the WM menu, World Commands -> Project World Parameters, we are setting up the size
of our map. In the above example, we are making a 12x10 Spring map, which will equate to
6km by 5km. Our final output resolution will thus be 6144 x 5120 (e.g. 6*1024 x 5 * 1024). You
can change the width and the height of the map, but also specify the world coordinates. The
resolution specified here in the normal build resolution can be used for medium-resolution
previews of your map, but will be very limited by the amount of RAM you have.

In the General Setup tab, we can adjust the Terrain Altitudes to more closely resemble what
we might encounter ingame. I recommend setting the Maximum Elevation to 1000m, and the
Base Elevation to 0m. This will give us an elevation range of 1km to work with, which will be
plenty, and remember that 1 meter in WM will be 1 elmo in Spring. The ingame tooltip in the
bottom left will show positions and altitude in elmos.

Altitude Scaling
What we set up in the previous section is just a general guideline, and will limit our working
height range to 1000 elmos (1000m in WM). Obviously this is more than what the usual map
uses, and if you want to use a smaller height range, I recommend using Clamp devices,
Keeping the 1000m total height will keep things tidy. This may mean that your final heightmap
won't use the full black-white range, but this is not an issue.

Setting up tiled builds
Tiled builds are essential for making anything but the smallest maps without running out of
RAM. In order to make sure that our output resolutions are correct, set Tiles per Side to 8x8,
and set the Tile Resolution with the slider or the Custom button to ensure that the Final
Resolution is what you desire. Make sure that Merge to single file postbuild is checked.

Render Extents
You can set up additional Render Extents, if you need full resolution previews of small areas of
the map, but they are not required.

Creating Your Heightmap

Import existing heightmap​
​
Start off by importing an existing heightmap by adding File Input device, from the Generator
tab group.

Double click the device, and you are greeted with the file input dialog:

Click on Place into Current view to center the imported heightmap in your world’s render
extents. Also click on Outside Behaviour : Mirror if you want to avoid artifacts on the edges.

To take a look at what your heightmap looks like, select it in the Device view, and it should start
to render in the Layout View. Excellent!

Layout Mode: Create or modify an existing heightmap
Start off by placing a Layout Device in the Generators into your Device view:

Select this new Layout
Generator, right click it, and rename it to something clever like Platforms. Keep it selected.

In the Layout view, select this Platforms tab from the list of tabs. You will now be placing flat
platforms onto this.

Place your first hill from the shapes into the highlighted area of your layout:

You can change the shape of the circle with these handles.

To change the slope type, falloff distance, absolute height, or any other parameter of this shape,
double click the circle to bring up the Shape Properties dialog:

Play with these to get a feel for what they do, but lets make the Falloff Distance of this circle
very small, so we can later add a ramp to this platform.

Also play around with polygons, boxes, bezier polygons, and lines!

Making Ramps
Making good, pathable ramps in WM is easy, but does involve a bit of setup, but we only have to
do it once, and then all our ramps will be perfect!
Add a new Layout Generator to your device graph, and name it Ramps, and connect it to your
Platforms Layout Generator:

Go into Layout View, and select the Ramps tab, and zoom in on the circle you placed:

Good, now add a line consisting of just a start and end point of where you want your ramp to
start and end:

Ouch, that looks bad, but lets double click the line to bring up the Shape Properties dialog, and
set the Falloff distance to something small. Set the Falloff Profile Curve to the custom button,
and click the Edit button on the falloff profile curve. Now you can Set the falloff of this curve
to a ramp-like profile by clicking inside the curve area and selecting Monotonic Spline from the
Curve Type.

Our last step is to right click on our Line once more, and click Drop curve to surface of
selected device (note that you must have this Layout Generator selected in Device view
for this to work as intended, see the extremely important chapter below to find out why).
You can also play with Use Bezier Path.

The result, a PERFECT linear ramp!

Check it out in 3D view too:

You can always use the Shape Properties brush to copy-paste this ramp style to any Line:

Extremely important Layout Mode info:
What you see in layout mode is the composite of two things:

1.​ The output of whatever device you have selected in Device view.
2.​ The vector graphics (layout) view of whichever tab you have selected in Layout View.

When you place your cursor into a position in the Layout view, it will show you the exact height
at that position.

Breaking up Layout Mode unnatural shapes
Often you’ll get unnaturally regular shapes while working with layout generators. Thankfully WM
offers easy tools to apply fractal breakup to a layout generator:

You can then control the amount of breakup each shape receives with the slider at the bottom of
the shape properties brush seen when you edit the properties of a shape.

Adding detail
At this point you can use the full arsenal of WM to apply any amount of distortion, perlin noise,
erosion or thermal weathering to your map, the more different kinds you use, the better.

Distorted perlin noise generators
These should be some of your best friends when you want nice, varied and natural looking
perlin noise. Combine these to your heart's content with your terrain for nice effects.

Displacement Devices
These can be used to great effect when breaking up steep cliff edges in a million possible ways:

Verifying passability for kbots and vehicles
Use the Spring Passability Map macro for this. Red marks impassable, blue is kbot only, yellow
is hovers/amphib tanks and green is passable by all.

Making a symmetrical map
Some devices in WM are so context dependent, like the flipper device, that they won't work well
in layout mode. Often the solution to using these devices is building them in one go (no tiling!)
and checkpointing them to disk. Making a symmetrical map involves taking your original
heightmap, flipping it, then combining it with the original.

Texturing
Welcome to the meat of the tutorial, where we will investigate the individual different kinds of
terrain layers we can adjust on the map.
The worlds (.tmd files) you see here are included in all of my map releases, which are available
on http://springfiles.springrts.com/ Or you can use Crescent Bay Clean v3 from this repo:
https://github.com/Beherith/springrts_smf_compiler

http://springfiles.springrts.com/
https://github.com/Beherith/springrts_smf_compiler

You can quickly see, that there is a large stack of groups of devices, each with a different color. ​
These mostly correspond to individual terrain type layers, like rock, sand, mud, grass, snow and
metal.

These groups share the following inputs:

-​ Heightmap
-​ Deposition mask (from the Erosion device, to show where ground deposits from erosion)
-​ Occlusion mask - this indicates how much an area is occluded from global light

-​ Metal Mask - this shows where we will have metal spots, this one isn’t strictly needed,

but useful in general
And generates 3 outputs:

-​ A colored texture for that terrain layer
-​ A distribution for that terrain layer
-​ A detail (very small variations) heightmap layer that will be used to generate lighting and

normals

Layer Distribution
Most layers can be adjusted, as to where they can occur on the map, at the start of each terrain
layer box:

You can change the slopes, heights, occlusion, and deposition factors of them, note that they
are usually designed to be AND masks. So that a part of the map must satisfy all 3
requirements of being the selected slope, selected height, and selected occlusion, and can
optionally be modulated with deposition.

These selections are then multiplied together, and often broken up with a bit of high-frequency
noise, to make them a bit more natural. Note that we like to use ‘sharp’ transitions between
terrain types, as smooth alpha transitions usually look bad. Grass doesn’t gradually ‘blend’ into
the side of a mountain, there's a sharp point at where it ends.

Layer colorization
Most color textures for layers (with the notable exception of some straight up PBR textures) are
generated by feeding noise (or derivatives of noise) into Colorizer devices. Colorizers take an
input heightmap, and use it as a lookup table into a gradient of colors. Low values of height will
take from the left of the gradient, high values from the right.

You can define your own color tables here, and
even better, if you suck at choosing more than 1
color, you can use any random image you find
online, and use any one line of it as a color
table.

These colorizers are then mixed together, and
optionally some distorted perlin noise is
rendered from a global light perspective, and
multiplicatively mixed onto them.

You can also just use a file input from any
random tileable texture, and use that instead of
color.

Hue-saturation-lightness control (HSL)
You will often find a lot of HSL macros littered everywhere in the path of color layers. This allows
you to fine tune the appearance of any layer’s color.

You can even mix the results of multiple of these depending on height or slope or anything.

DNTS Splatdistribution and Speculartex Generation
Splatdistribution defines where the individual splatdetailnormals will be placed. There are 4
channels available, the RGBA of the splatdistributiontex.
SpecularTex defines the amount (and color) of light reflected in a specular way in the RGB
channel, and it defines the shinyness of the surface in the A channel.

The speculartex and splatdistributiontex share a lot of common inputs, as they are generated
from the heightmap, the texture map, the materials map, and optionally, the feature distribution
map (to allow you to put splats under trees, for example).

Splatdistribution
You may know that Spring only supports 4 different splat detail normals, and we are using 7+
different layers of materials, so we will have to share these 4 splat detail normals between the
7+ layers.

Splat distributions are calculated from the material_a and material_b outputs, which essentially
just indicate in masks where each layer is distributed. We take these 7+ layers, and mix them
down into 4 channels, using some of the following ideas:

1.​ Snowy areas are smooth, so we don't really need a splat detail normal here
2.​ Metal patches usually share a splat detail normal with steep cliffs.
3.​ It is recommended to break up (multiply with noise) the DNTS channels, as this hides the

repeating (tiling) nature of the splat detail normals.

SpecularTex
OK I'll be the first to admit this is a monster, but read the general knowledge about it and we’ll
learn how to work with it:
The specular texture defines what color specular (also known as ‘shiny’) reflections individual
areas of the map will have.

●​ The specular color is additive, in a sense that all the color in the specular texture will be
added to the color of the terrain, if the sun is shining at it at just the right angle.

●​ This amount of specular reflection is stored in the RGB channel of the specular texture.
●​ In general, we will use the regular diffuse texture color as the specular texture color, but

since its additive, we will decrease its brightness greatly.
●​ The alpha channel stores the specular power, or shininess, or polishedness of the

surfaces, with full black corresponding to a specular power of 0 (very rough), and full
white being 16 (very polished).

●​ A specular power of 16 is still considered as not very shiny, but emulates wet surfaces
well.

●​ Due to the way Spring’s specular is calculated, terrain with low specular power will show
a lot of additional specular color, and shinier surfaces will emit less light on specular
highlights, and you will need to compensate for this.

●​ Very shiny areas should have a brighter specular color, while very rough (low power)
areas should have very dark specular color textures.

When you want to specify the specular of a layer, think long and hard about how shiny that layer
should be, and how much light that layer should emit.

Each layer has two of its own
sliders:

1.​ Intensity multiplier: how
much light should be
emitted from this layer

2.​ Specular Exponent: how
shiny this layer should be.

Note that if you want a layer to be not shiny, make sure the intensity multiplier is set very
very low, with a low specular exponent.
If you want it metal-like, then crank up the both.
The shinyness of each DNTS splat detail normal is controlled by the speculartex.

Fast splatdistribution, speculartex, and minimap regeneration
This is very advanced magic, feel free to ignore.
WM allows us to take the previously built height,
texture, material, feature distribution and albedo
maps and rebuild splatdistribution, speculartex and
minimap in a few minutes, given enough RAM. For
this to work, you must do the following things:

1.​ Set the Use Prebuilt control to 1.
2.​ Remove the wires connecting the

Checkpoints to all Switches (there’s like 7 of
them)

3.​ Re-load the inputs of the switches (e.g.
Texture In) by opening them and selecting
the previously built images

a.​ Use “Place into current view” for
correct scaling

4.​ In World Commands -> Project World
Parameters :

a.​ set the Normal Build Resolution to
the exact resolution of your main
texture (yes this is huge)

b.​ Check Final Build, unless you want to
run out of RAM immediately.

This rerouting is needed so that WM knows to only
use the prebuilt files, and not rebuild everything.
Now you can adjust the parameters of the
splatdistribution, specular texture and minimap. This
will also make tweaking things quite fast, so you can
view your changes in layout mode rapidly.

When you are ready to re-export one of the outputs from this section:

1.​ SAVE YOUR WORLD
2.​ Select the output device you wish to build,
3.​ Click the yellow Build to Current Device button in the top bar. Ignore the RAM warning.
4.​ Once built, double click the device and click Write Output to Disk!

Outputs produced by WM

Scaling outputs
You can change the resolution of each output, specified as a fraction of the resolution of your
main render. Specifying an exact resolution does not work with tiled builds, as each tile will have
that resolution, which isn't something you really want

Some World Machine layouts have a known bug with Tiled Builds. If the output of any image file
has scrambled tiles, you will need to remove the custom output resolution scale adjustment set
on the file output nodes, build at full resolution, then resize later to the required resolution

By right clicking on an output device, you can override the output. If you want a lower than full
resolution specular, or splat distribution texture for example, you can render it at ½, ¼ or even ⅛
resolution

Compilation with PyMapConv
Get: GitHub - Beherith/springrts_smf_compiler: This tool allows the compilation and
decompilation of maps to springrts's binary smf map format. and unzip the whole thing
somewhere safe.

Pymapconv documents itself:

https://github.com/Beherith/springrts_smf_compiler
https://github.com/Beherith/springrts_smf_compiler

Notes:
You need at least a height and a texture map. You probably also need a metal map.
Make sure maxheight - minheight = 1000. This is because this was our working range in
world machine. If you want spring water level too at height 150 in WM, then set:
Maxheight: -150
Maxheight: 850
But dont worry too much, you can change map heights in mapinfo.lua.

Grab one of my previous maps, unzip into your spring data folder (usually
/data/maps/mymapname.sdd) (.sd7 and .sdz files can be unzipped with 7zip). So that the dir
structure looks like this:

Place the .smf and .smt files made by pymapconv into data/maps/yourmapname.sdd/
Edit mapinfo.lua located in the root.

Packaging for Testing and Distribution
For just testing the map locally, you do not have to zip it up if all the contents are in the
/data/maps/yourmapname.sdd/ directory. You can quickly iterate changes this way.

MapNormals, Specular and Splatdistribution resolutions
The current best practice, and the way the world is set up, is to have identical resolution texture
and mapnormals, and optionally identical resolution specular texture. To save space, and to
allow them to load at 2K+ sizes, they must be converted to .DDS.

So if the texture is 8K, mapnormals should absolutely be 8K in size. Mapnormals is RGB.

Specular can be smaller, to save space, and ideally is an integer fraction of texture, so 8K, 4K,
2K, 1K can be used. Specular is RGBA.

Splatdistribution can usually be smaller, to save some space, so 4K, 2K, or even 1K can be
used if required. Splatdistribution is RGBA.

Compression to .DDS with NVTT_Export
The latest NVTT Export tools allow for the fast, efficient compression of extremely large
textures. I have prepared a set of .bat files to ease their use.

https://github.com/Beherith/springrts_smf_compiler/blob/master/NVTT_DragAndDropConvertTo
DDSTools.7z

Unzip this to where you keep your PyMapConv.exe, the archive is included in the full
PyMapConv github download.

To compress any 8 bit png or bmp image to DDS, you have to drag-and-drop onto the
included .bat files. You can and drop multiple files at the same time, and they will all be
converted. The output .dds file is placed next to the original files by the .bat.

Drag Mapnormals onto NVTT_DragAndDropOnThis_Convert_RGB_To_DXT1C.bat

https://github.com/Beherith/springrts_smf_compiler/blob/master/NVTT_DragAndDropConvertToDDSTools.7z
https://github.com/Beherith/springrts_smf_compiler/blob/master/NVTT_DragAndDropConvertToDDSTools.7z

Drag Specular and Splatdistribution onto
NVTT_DragAndDropOnThis_Convert_RGBA_To_DXT5.bat

Due to where the origin (0,0) point of dds images are, the results will be correctly flipped top to
bottom.
Place the resulting .dds files into the /maps folder next to .smf, and link them in the mapinfo.lua
file.

Inclusion of map source files
If you base your map on a WM macro made by me, please include the map source in the
archive, as required by its CC BY SA NC license. Place the .tmd WM file and any input
images you used during generation into /maps/sources. These will compress well so don’t worry
about file size.

Skyboxes
Skyboxes are easy to do, and add a great touch to any map. The required format is a .dds
cubemap, looking like this skybox cross image:

The recommended skybox resolution is 2k per side of the cube, so the skybox cross source
image should be 8k by 6k.

Due to how PBR materials on units reflect the skyboxes, make the top of the cube much
brighter, and the sides brighter too, as the top wont realistically ever be seen, except on mirror

shiny surfaces.

You can also create a skybox from any image of the sky with a custom world machine macro in
a single click, contact me for details.

Drag your cross image onto NVTT_Export.exe, and set it up as marked on the screenshot.

Click save as, and include it in your /maps folder.

Lighting in BAR
There are a bunch of settings in mapinfo.lua pertaining to the lighting of the map. The most
important ones are:

1.​ GroundAmbientColor, the color of the shadowed or non sun-lit areas. Recommended
0.5, 0.5, 0.5

2.​ GroundDiffuseColor, the color of sun lit terrain: recommended 0.9, 0.9, 0.9
3.​ Groundshadowdensity, how much shadowed terrain gets darkened, default 0.75
4.​ UnitAmbientColor, the color units in shadow, Recommended 0.5, 0.5, 0.5
5.​ UnitDiffuseColor, the color of fully sun lit units, recommended 0.9, 0.9, 0.9
6.​ unitshadowdensity,how much shadowed units get darkened, default 0.75
7.​ sunDir, where the sun shines from, an x, y, z vector that will get normalized, with X

pointing toward player, Z pointing right, and Y pointing up

Load the map up in BAR, and hit Settings (F10), enable advanced, and the dev tab by entering
the /devmode command into the chat prompt. Tweak the following sliders, and type the values
into mapinfo.lua once satisfied:

Finishing touches in SpringBoard
Download and install SpringBoard https://github.com/Spring-SpringBoard/SpringBoard-Core​
Create a directory for maps at​
 C:\users\myusername\AppData\local\Programs\Springboard\data\springboard\maps
Place your maps .sdd folder into SpringBoard\data\springboard\maps\mymap.sdd

Adding Features in SpringBoard
Copy over all three folders (features, Objects3D, Unittextures) from
https://github.com/beyond-all-reason/support/tree/master/MapFeatures
into your mymap.sdd folder, to a path like this:
C:\Users\myusername\AppData\Local\Programs\SpringBoard\data\maps\Throne_v7.sdd

Run SpringBoard, and select New Project on the right, and select your map from the dropdown
menu:

Save your project, and put dbg_feature_dump.lua into: [THIS DOESNT WORK YET]
\SpringBoard\data\springboard\projects\rifted_1.sdd\LuaUI\Widgets

On the features tab on the right, click whichever feature you want, then left click on the map to
‘paint’ the feature you desire, right-click to remove. Adjust your brush size and spread to the
way you want your features to look.

https://github.com/Spring-SpringBoard/SpringBoard-Core
https://github.com/beyond-all-reason/support/tree/master/MapFeatures

Feature visibility in springboard:

/featurefadedistance 32000
/featuredrawdistance 32000

Alternate method of converting SpringBoards Model.lua
Find the model.lua file in the saved springboard project (this contains all features, geos too!)​
Place this python script next to it:
https://github.com/Beherith/springrts_smf_compiler/blob/master/src/springboard_model_lua_to_
set_lua_feature_dumper.py ​
Run the python script.​
Then copy the features from featureplacement_set.lua into /mapconfig/featureplacer/set.lua,
into the objectlist table.

Water
Use only /water 4 (bumpmapped water), all other waters look pretty bad. You can tune the
settings for water in springboard, then copy over the settings into mapinfo.lua. Your easiest bet
however, is to copy over water settings from one of my newer maps: Mediterraneum_v1. Pay
close attention to fresnelmin and fresnelmax, these control the transparency of water surface at
various angles.
https://springrts.com/wiki/Mapdev:mapinfo.lua#water

New info: You can now change bumpwater params live in BAR, enable /devmode and see F10
settings last tab. A great example is now Downs Of Destruction V2.

water = {
 ​ damage = 0,

 ​ repeatX = 10.0,
 ​ repeatY = 10.0,

 ​ absorb​ = { 0.05, 0.005, 0.001 }, --absorption coefficient
per elmo of water depth
 ​ basecolor = { 0.3, 0.5, 0.5 }, -- the color shallow water
starts out at
 ​ mincolor = { 0.0, 0.3, 0.3 },

 ​ ambientFactor = 1.0,

https://github.com/Beherith/springrts_smf_compiler/blob/master/src/springboard_model_lua_to_set_lua_feature_dumper.py
https://github.com/Beherith/springrts_smf_compiler/blob/master/src/springboard_model_lua_to_set_lua_feature_dumper.py
https://springrts.com/wiki/Mapdev:mapinfo.lua#water

 ​ diffuseFactor = 1.0,
 ​ specularFactor = 1.4,
 ​ specularPower = 40.0,

 ​ surfacecolor = { 0.67, 0.8, 1.0 }, --color of the water
texture
 ​ surfaceAlpha = 0.02,
 ​ diffuseColor = {0.0, 0.0, 0.0},
 ​ specularColor = {0.5, 0.5, 0.5},
 ​ --planeColor = {0.00, 0.15, 0.15}, --outside water plane color
--

 ​ fresnelMin = 0.08, --This defines the minimum amount of
light the water surface will reflect when looking vertically down on
it [0-1]
 ​ fresnelMax = 0.5, --Defines the maximum amount of light the
water surface will reflect when looking horizontally across it [0-1]
 ​ fresnelPower = 8.0, --Defines how much

 ​ reflectionDistortion = 1.0,

 ​ blurBase ​ = 2.1,
 ​ blurExponent = 1.5,

 ​ causticsResolution = 100.0,
 ​ causticsStrength = 0.16,

 ​ perlinStartFreq = 8.0,
 ​ perlinLacunarity = 3,
 ​ perlinAmplitude = 0.85,

 ​ shoreWaves = true,
 ​ forceRendering = false,

 ​ numTiles = 4, -- default 1
 ​ windSpeed = 0.5, -- default 1.0
 ​ waveOffsetFactor = 0.3, -- default 0.0
 ​ waveLength = 0.37,
 ​ waveFoamDistortion = 0.10,
 ​ waveFoamIntensity = 1.0,
 ​ normalTexture = "maps/waterbump_4tiles.png",

 ​ --hasWaterPlane = true, --specifies whether the outside of the
map has an extended water plane

 },

This is waterbump_4tiles.png :

Hand-painting Splats in SpringBoard

Once you are satisfied with your painting (it's a really good idea to paint a small patch of DNTS
under features, makes them blend oнh-so-well with the terrain), you need to look into the folder:

\SpringBoard\data\springboard\projects\archsimkat_sb.sdd\sb_project_files\textures\shading-spl
at_distr.png, convert it to DDS with the tools shown above, and link it in mapinfo.lua.
ер

Verifying and fine-tuning passability in SpringBoard
You’ll need to copy over some units into your map. Your best bet is armpw, and armstump, and
armch (construction hovercraft)

Start from the springboard map folder that we’ve been working with so far:
(C:\Users***\AppData\Local\Programs\SpringBoard\data\maps\Archsimkats_Valley_V1.sdd)

Copy the contents of this repo into the map.sdd, and then you can /give these units, select them
and use f2 to view passability:

https://github.com/Beherith/bar_springboard_passability
You don't have to put this in your map.sdd you can just put it in the springboard project and you
don't have to worry about accidentally distributing it

Use the brushes in the terrain tab to fine-tune passability. Once you are done, you can export
your modified heightmap:

https://github.com/Beherith/bar_springboard_passability

Retrieve this heightmap.png, and recompile your map (there is probably an easier way, feel free
to detail it here if you wish).

Additional Details

Sky reflections
You can specify skyreflectmodtex in mapinfo.lua, and it will take that RGB texture, and blend the
color of the map with the skyreflections according to the skyreflectmodtex color. In practice, this
means that black values will result in no sky reflections, white values will result in the diffuse
texture color being fully replaced with the sky reflections (fully metallic surface), and colors in
between will blend between the two. For practical purposes, unless you want to tint the sky
reflections, using low grayscale values give good effects on ice and metal. Note that any
compression or other artefacts in detailNormalTex will be highly amplified by this, so only use it
on surfaces that have DNTS splatted onto them.

It is also important to mention that you need a skybox with at least some detail in the upper sky
portion of it for this to be nice looking. A good example is this skybox: ​

(miramarclouds_v2)
And this skyreflectex:

Colorizing Features
It can often happen that after carefully adjusting the lighting for units and the map to be correct,
the features just don't match as well as one would want. Fixing this can be done by loading up
the feature’s texture 1 in photoshop (e.g. ad0_aleppo2_1.tga), and adjusting the hue, saturation
and lightness values of it, then resaving. Unfortunately this cannot be refreshed while ingame,
so the map has to be reloaded on each adjustment. On newer BAR engines, you can
/reloadtextures s3o to adjust colorization!

Grass in mapinfo
Grass can be tweaked in mapinfo.lua.

--------- HOW TO CONFIGURE GRASS (also important!) -------------------------
local grassConfig = {
 patchResolution = 32, -- distance between patches, default is 32, which matches the
SpringRTS grass map resolution. If using external .tga, you can use any resolution you wish
 patchPlacementJitter = 0.66, -- how much each patch should be randomized in XZ position, in
fraction of patchResolution
 patchSize = 4, -- 1 or 4 clusters of blades, 4 recommended
 grassMinSize = 0.3; --Size for grassmap value of 1 , min and max should be equal for old style
binary grassmap (because its only 0,1)
 grassMaxSize = 1.7; -- Size for grassmap value of 254
 grassShaderParams = { -- allcaps because thats how i know
 MAPCOLORFACTOR = 0.6, -- how much effect the minimapcolor has
 MAPCOLORBASE = 1.0, --how much more to blend the bottom of the grass patches into
map color
 ALPHATHRESHOLD = 0.01,--alpha limit under which to discard a fragment
 WINDSTRENGTH = 0.1, -- how much the wind will blow the grass
 WINDSCALE = 0.33, -- how fast the wind texture moves
 WINDSAMPLESCALE = 0.001, -- tiling resolution of the noise texture
 FADESTART = 5000,-- distance at which grass starts to fade
 FADEEND = 8000,--distance at which grass completely fades out
 SHADOWFACTOR = 0.25, -- how much shadowed grass gets darkened, lower values mean
more shadows
 HASSHADOWS = 1, -- 0 for disable, no real difference in this (does not work yet)
 GRASSBRIGHTNESS = 1.0; -- this is for future dark mode
 },
 grassBladeColorTex = "LuaUI/Images/luagrass/grass_field_medit_flowering.dds.cached.dds",
-- rgb + alpha transp
 mapGrassColorModTex = "$grass", -- by default this means that grass will be colorized with
the minimap
 grassWindPerturbTex = "bitmaps/Lups/perlin_noise.jpg", -- rgba of various frequencies of
perlin noise?
 grassWindMult = 4.5, -- how 'strong' the perturbation effect is
 maxWindSpeed = 20, -- the fastest the wind noise texture will ever move,
 -- The grassdisttex overrides the default map grass, if specified!
 grassDistTGA = "", -- MUST BE 8 bit uncompressed TGA, sized Game.mapSize* /
patchResolution, where 0 is no grass, and 1<= controls grass size.
}

Load the map up in BAR, and hit Settings (F10), enable advanced, and the dev tab by entering
the /devmode command into the chat prompt. Tweak the following sliders, and type the values
into mapinfo.lua once satisfied:

MapOptions.lua
You can set various map level options, like should there be speed bonuses for roads, should the
water be acidic, and how high the water level should be (for a dry/wet) version of the same map.
This is a little bit involved, and I recommend taking a look at mapoptions.lua inside of
Throne_V8, with the corresponding mapconfig/mapinfo/0_apply_options.lua file. Currently,
sanely testing any of these requires SpringLobby, and in skirmish mode. Select the game and
map, then select the Game Options tab. Resize the window to see the scrollbar appear and to
be able to see the map options at the bottom of the options tab.
Very important: To change/reload mapoptions for Springlobby, you must delete the cached
mapoptions file for the map! E.g. delete:
C:\Users***\AppData\Roaming\springlobby\cache\Throne_V8-2318621211.mapoptions.json

Final Zipping
Use the official 7zip client to compress the contents of the .sdd folder, and make sure to set the
archive to non-solid for faster loading. Rename from .7z to .sd7 when you are done.
Compress the contents of your map inside the .sdd, do not include the .sdd folder.

	 ​ SpringRTS Mapping guide for World Machine
	Prologue:
	THERE IS NO INGAME MAP EDITOR FOR BAR. THIS IS A DIFFICULT BUT REWARDING JOURNEY.
	Watch some videos:
	SpringRTS map creation with World Machine Macros (by Beherith)
	
	Recommended
	 Tools
	NVidia Texture Tools Exporter

	
	
	
	
	Generating DNTS Maps from PBR materials
	
	splatDetailNormalTex
	Making the DNTS

	Regular Map Texture (Main Diffuse Texture):
	Format:

	specularTex
	Format:

	detailNormalTex
	Example
	Format

	detailTex
	splatDetailTex
	splatDetailNormalDiffuseAlpha

	Feature Placement
	Geo Vents
	Other Features

	Compilation
	Decompilation
	Mapinfo.lua
	World Machine Usage
	Very Important UI shortcuts

	Set up map size
	Scaling
	Altitude Scaling
	Setting up tiled builds
	Render Extents

	Creating Your Heightmap
	Import existing heightmap​​Start off by importing an existing heightmap by adding File Input device, from the Generator tab group.
	
	
	Layout Mode: Create or modify an existing heightmap
	Making Ramps
	Extremely important Layout Mode info:
	Breaking up Layout Mode unnatural shapes
	Adding detail
	Distorted perlin noise generators

	
	
	Displacement Devices

	Verifying passability for kbots and vehicles
	Making a symmetrical map

	
	Texturing
	Layer Distribution
	Layer colorization
	Hue-saturation-lightness control (HSL)

	DNTS Splatdistribution and Speculartex Generation
	Splatdistribution
	
	SpecularTex
	Fast splatdistribution, speculartex, and minimap regeneration

	Outputs produced by WM
	Scaling outputs

	Compilation with PyMapConv
	
	Packaging for Testing and Distribution
	MapNormals, Specular and Splatdistribution resolutions
	Compression to .DDS with NVTT_Export
	Inclusion of map source files

	Skyboxes
	Lighting in BAR
	Finishing touches in SpringBoard
	Adding Features in SpringBoard
	Alternate method of converting SpringBoards Model.lua
	Water
	Hand-painting Splats in SpringBoard
	Verifying and fine-tuning passability in SpringBoard

	Additional Details
	Sky reflections
	Colorizing Features
	Grass in mapinfo

	MapOptions.lua
	Final Zipping

