7. Python 3 — Decision Making

Decision-making is the anticipation of conditions occurring during the execution of a
program and specified actions taken according to the conditions.

Decision structures evaluate multiple expressions, which produce TRUE or FALSE as the
outcome. You need to determine which action to take and which statements to execute if
the outcome is TRUE or FALSE otherwise.

Following is the general form of a typical decision making structure found in most of the
programming languages-

If condition
is false

Yy

Python programming language assumes any non-zero and non-null values as TRUE, and
any zero or null values as FALSE value.

Python programming language provides the following types of decision-making
statements.

An if statement consists of a Boolean expression followed by

if statements one or more statements.

An if statement can be followed by an optional else
if...else statements statement, which executes when the boolean expression is
FALSE.

Python 3

You can use one if or else if statement inside

nested if statements - :
another if or else if statement(s).

Let us go through each decision-making statement quickly.

IF Statement

The IF statement is similar to that of other languages. The if statement contains a logical
expression using which the data is compared and a decision is made based on the result
of the comparison.

Syntax

if expression:

statement(s)

If the boolean expression evaluates to TRUE, then the block of statement(s) inside the if
statement is executed. In Python, statements in a block are uniformly indented after the
: symbaol. If boolean expression evaluates to FALSE, then the first set of code after the
end of block is executed.

Flow Diagram

I condition
is trus

Y
If condition _ i
is false conditional code
L

Example

#!fusr/bin/python3
varl = 188
if varil:
print ("1 - Got a true expression value")

print (varl)

s

Python 3

varz = @

if var2:
print ("2 - Got a true expression value")
print (var2)

print ("Good bye!")

When the above code is executed, it produces the following result —

1 - Got a true expression value
lae
Good bye!

IF...ELIF..ELSE Statements

An else statement can be combined with an if statement. An else statement contains a
block of code that executes if the conditional expression in the if statement resolves to 0
or a FALSE value.

The else statement is an optional statement and there could be at the most only
one else statement following if.

Syntax
The syntax of the if...else statement is-

if expression:
statement(s)
else:

statement(s)

Python 3

Flow Diagram

If condition
is true

If condition
is false

®

Example

#!/usr/bin/python3
amount=int(input("Enter amount: "))
if amount<l880:

discount=amount*e.a5

print ("Discount”,discount})
else:

discount=amount*e.1e

print ("Discount”,discount)

print ("MNet payable:",amount-discount)

In the above example, discount is calculated on the input amount. Rate of discount is 5%,
if the amount is less than 1000, and 10% if it is above 10000. When the above code is
executed, it produces the following result-

Enter amount: 608
Discount 38.8
Net payable: 578.8
Enter amount: 128@
Discount 128.8

AR

Python 3

Net payable: 1888.8

The elif Statement

The elif statement allows you to check multiple expressions for TRUE and execute a block
of code as soon as one of the conditions evaluates to TRUE.

Similar to the else, the elif statement is optional. However, unlike else, for which there
can be at the most one statement, there can be an arbitrary number of elif statements
following an if.

Syntax

if expressionl:
statement(s)
elif expression2:
statement(s)
elif expression3:
statement(s)
else:

statement(s)

Core Python does not provide switch or case statements as in other languages, but we can
use if..elif...statements to simulate switch case as follows-

Example

#! fusr/bin/python3

amount=int{input("Enter amount: "))

if amount<l880:

discount=amount*8.85

print ("Discount”,discount)
elif amount<5868:

discount=amount¥*8.1e

print ("Discount”,discount)
else:

discount=amount*e.15

print ("Discount”,discount)

print ("Net payable:",amount-discount)

When the above code is executed, it produces the following result-

Python 3

Enter amount: 68@
Discount 38.8
Net payable: 57©.@

Enter amount: 3868
Discount 388.8
Net payable: 27e8.8

Enter amount: 6888
Discount 988.8
Net payable: 5188.8

Nested IF Statements

There may be a situation when you want to check for another condition after a condition

resolves to true. In such a situation, you can use the nested if construct.

In a nested if construct, you can have an if...elif...else construct inside another

if...elif...else construct.

Syntax

The syntax of the nested if...elif...else construct may be-

if expressionl:
statement(s)
if expression2:
statement(s)
elif expression3:
statement(s)
else
statement(s)
elif expressiond:
statement(s)
else:

statement(s)

Example

fusr/bin/python3

num=int{input{"enter number"))

48

Python 3

if numiE2==06:
if numi3==8:
print ("Divisible by 3 and 2")
else:
print (“"divisible by 2 not divisible by 3")
else:
if numk3==8:
print ("divisible by 3 not divisible by 2")
else:

print ("not Divisible by 2 not divisible by 3")

When the above code is executed, it produces the following result-

enter numbers

divisible by 2 not divisible by 3

enter numberls

divisible by 3 not divisible by 2

enter numberl2

Divisible by 3 and 2

enter numbers

not Divisible by 2 not divisible by 3

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the

header statement.

Here is an example of a one-line if clause-

#! fusr/bin/python3

var = 188

if (var == 188) : print ("Value of expression is 188")
print ("Good byel!™}

When the above code is executed, it produces the following result-

Value of expression is 108

Good bye!

8. Python 3 —Loops

In general, statements are executed sequentially- The first statement in a function is
executed first, followed by the second, and so on. There may be a situation when you need
to execute a block of code several number of times.

Programming languages provide various control structures that allow more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times.
The following diagram illustrates a loop statement.

T

If condition
is true

If condition
is false

Python programming language provides the following types of loops to handle looping
requirements.

while loop Repeats a statement or group of statements while a given
condition is TRUE. It tests the condition before executing the
loop body.

for loop Executes a sequence of statements multiple times and
abbreviates the code that manages the loop variable.

Python 3

nested loops

You can use one or more loop inside any another while, or
for loop.

while Loop Statements

A while loop statement in Python programming language repeatedly executes a target
statement as long as a given condition is true.

Syntax

The syntax of a while loop in Python programming language is-

while expression:

statement(s)

Here, statement(s) may be a single statement or a block of statements with uniform
indent. The condition may be any expression, and true is any non-zero value. The loop
iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately

following the loop.

In Python, all the statements indented by the same number of character spaces after a
programming construct are considered to be part of a single block of code. Python uses
indentation as its method of grouping statements.

Flow Diagram

