
Observability for WebDSL with OpenTelemetry 

Architecture 
Reference architecture 
 
OT Reference Architecture suggests the following deployment scheme. Every WebDSL 
application gets deployed together with an OpenTelemetry Collector [2]. Separately a metrics 
back-end service (such as Prometheus) is deployed. The application.ini file should contain 
the port of the collector, and the collector should be independently configured with a 
back-end address. 
 
For a production build inability to initialize OT library or reach OT Collector should lead to the 
application shutdown because in production the absence of telemetry from an application 
signals it’s not working and needs to be restarted anyway. In a debug run though OT failure 
should not cause the application to stop. 
 
We should decide and make guidelines regarding what metrics collection back-end use for 
debugging and for production and how to set them up. 

Components 

Traces 
Traces are the central concept in OT, they represent a trace of a single request (not 
necessarily Web-request) execution and comprise a tree of spans. Spans represent 
particular operations and encapsulate attributes, events and other spans. 
 
In the context of WebDSL it seems natural to associate a trace with each Web-request. As 
long as at the moment WebDSL applications handle two kinds of requests — page requests 
and AJAX requests — it feels logical to associate the root span of a trace with the page or 
AJAX template respectively. Each template (“usual” one or another AJAX template) invoked 
during a request handling should create its own span. 
 
Minimal user-facing API: emitting a named event in the current span. 
Additional APIs: setting attributes and a status to the current span. 

Metrics 
Default set of metrics is an open question. Performance metrics (request count, request 
latency, DB latency and such) are obvious candidates. 
 
User-facing API to record user-relevant metrics should be designed and implemented. 

https://raw.githubusercontent.com/open-telemetry/opentelemetry.io/main/iconography/Reference_Architecture.svg


Logs 
Existing logging should be migrated to OT API for uniformity. 
Additionally we should adopt structured logging. The (mandatory part of the) structure needs 
to be designed and specified. 
 
 

Implementation considerations 
The natural choice for the implementation “backbone” is the official OT Java library [1]. 

Impact analysis 
●​ OT collector settings should be added to application.ini file and thus the parser and 

settings data structure need to be extended. 
●​ OT library initialization code should be added to the WebDSL runtime initialization 
●​ OT tracer object needs to be created with every request and saved together with the 

request object 
●​ Current OT span needs to be created and saved for each component (page, 

template and so on) 
●​ User-facing API methods should access current span object 

 

References 
1.​ Java library 
2.​ OpenTelemetry Collector 
3.​ Example Collector configuration with Docker Compose 

 

Open questions 
●​ "What telemetry data should be collected by default, what's most useful for all the 

Web applications?" “What telemetry data proved to be actually useful for debugging 
in real-world settings?” It would be nice to see some empirical research into that and 
base decisions on top of it. 

●​ The next question is about a span tree inside a trace. I suggested associating a span 
with every page and every template inside it, but how useful that is or where to stop 
is another open question. 

●​ What useful data WebDSL can already associate with these spans to make 
debugging easier (we generate unique IDs for the template instantiations, how useful 
is that?). 

 

https://opentelemetry.io/docs/java/
https://github.com/open-telemetry/opentelemetry-collector
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/examples/demo

	Observability for WebDSL with OpenTelemetry 
	Architecture 
	Components 
	Traces 
	Metrics 
	Logs 

	Implementation considerations 
	Impact analysis 

	References 
	Open questions 


