Observability for WebDSL with OpenTelemetry

Architecture

Reference architecture

OT Reference Architecture suggests the following deployment scheme. Every WebDSL
application gets deployed together with an OpenTelemetry Collector [2]. Separately a metrics
back-end service (such as Prometheus) is deployed. The application.ini file should contain
the port of the collector, and the collector should be independently configured with a
back-end address.

For a production build inability to initialize OT library or reach OT Collector should lead to the
application shutdown because in production the absence of telemetry from an application
signals it's not working and needs to be restarted anyway. In a debug run though OT failure
should not cause the application to stop.

We should decide and make guidelines regarding what metrics collection back-end use for
debugging and for production and how to set them up.

Components

Traces

Traces are the central concept in OT, they represent a trace of a single request (not
necessarily Web-request) execution and comprise a tree of spans. Spans represent
particular operations and encapsulate attributes, events and other spans.

In the context of WebDSL it seems natural to associate a trace with each Web-request. As
long as at the moment WebDSL applications handle two kinds of requests — page requests
and AJAX requests — it feels logical to associate the root span of a trace with the page or
AJAX template respectively. Each template (“usual” one or another AJAX template) invoked
during a request handling should create its own span.

Minimal user-facing API: emitting a named event in the current span.
Additional APls: setting attributes and a status to the current span.

Metrics

Default set of metrics is an open question. Performance metrics (request count, request
latency, DB latency and such) are obvious candidates.

User-facing API to record user-relevant metrics should be designed and implemented.


https://raw.githubusercontent.com/open-telemetry/opentelemetry.io/main/iconography/Reference_Architecture.svg

Logs

Existing logging should be migrated to OT API for uniformity.
Additionally we should adopt structured logging. The (mandatory part of the) structure needs
to be designed and specified.

Implementation considerations

The natural choice for the implementation “backbone” is the official OT Java library [1].

Impact analysis

e OT collector settings should be added to application.ini file and thus the parser and
settings data structure need to be extended.
OT library initialization code should be added to the WebDSL runtime initialization
OT tracer object needs to be created with every request and saved together with the
request object

e Current OT span needs to be created and saved for each component (page,
template and so on)

e User-facing APl methods should access current span object

References

1. Java library
2. OpenTelemetry Collector

3. Example Collector configuration with Docker Compose

Open questions

e "What telemetry data should be collected by default, what's most useful for all the
Web applications?" “What telemetry data proved to be actually useful for debugging
in real-world settings?” It would be nice to see some empirical research into that and
base decisions on top of it.

e The next question is about a span tree inside a trace. | suggested associating a span
with every page and every template inside it, but how useful that is or where to stop
is another open question.

e What useful data WebDSL can already associate with these spans to make
debugging easier (we generate unique IDs for the template instantiations, how useful
is that?).


https://opentelemetry.io/docs/java/
https://github.com/open-telemetry/opentelemetry-collector
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/examples/demo

	Observability for WebDSL with OpenTelemetry 
	Architecture 
	Components 
	Traces 
	Metrics 
	Logs 

	Implementation considerations 
	Impact analysis 

	References 
	Open questions 


