humane intelligence Revontulet

Bias Bounty 2 – Counterterrorism Humane Intelligence x Revontulet

Objective

Your task is to build an unsupervised model that can identify extremist content from the unlabelled sample image dataset provided. This competition launches on Thursday September 26th at 9 AM ET, and closes on Thursday November 7th, 2024 at 11:59 PM ET. We will be accepting submissions as of October 28th at 9 AM ET.

Note: to access the data for this challenge, all participants must be 18+ and fill out this waiver form.

Instructions

- 1. Model Development:
 - a. Using the **training data** provided, develop an **unsupervised model to classify images** as hate or non-hate.
 - b. Use the test data provided to validate your model
 - c. Your model should output binary predictions:
 - i. 1 for hate
 - ii. 0 for non-hate
 - d. Intermediate requirements
 - i. Build an unsupervised machine learning model that groups unlabeled images into **2 clusters** to identify whether an image contains extremist content or not
 - e. Advanced requirements
 - i. **Building on top of the intermediate challenge**, create adversarial examples using the **test dataset** to test the robustness of your unsupervised model.
 - ii. Explore different methods for generating adversarial examples with the provided image dataset that could potentially trick the model
 - iii. Use your trained model to make predictions on the perturbed images
- 2. Starter Code to generate unique image identifiers:

import os

def generate_image_ids(image_folder):
image_ids = []
for image_file in os.listdir(image_folder):
 # Get the file name without the extension
 image_id = os.path.splitext(image_file)[0]
 image_ids.append(image_id)

Create a list of image IDs return image_ids

if _____name___ == '____main___':

humane intelligence Revontulet

image_folder = 'path/to/image/folder' # Update with your image folder path image_ids = generate_image_ids(image_folder) #print(image_ids) # This will print the list of image IDs

3. Project Files:

- a. Predictions CSV:
 - i. Your model should output a CSV file with predictions on the $\ensuremath{\textit{test}}\xspace$ dataset
 - ii. The first column in the CSV: "image_id" is the name of the image file, and the second column: "prediction_label" is your model's classification of that image
 - 1. code for creating image_ids is below
- b. Model File:
 - i. Submit the trained model file. This file should be in a "**.pkl" format** *only*, using the **Python Scikit-learn** library
- c. Inference Script in a ".py" format only:
 - i. Provide a script that can:
 - 1. Load the model file
 - 2. Load the sample dataset
 - 3. Generate predictions on the sample dataset
 - 4. Save predictions in the required CSV format
 - ii. Ensure your script is **executable** and includes any **dependencies** and/or **instructions** needed to run it

d. Advanced-only

- i. Submit folder with perturbed images in ".jpg" format only
- ii. Submit an additional CSV file, with the predictions for the perturbed adversarial examples

4. Submission:

- a. Upload your project to GitHub as a private repo, excluding the sample dataset
 - i. add @NicoleScientist as a collaborator to your private repo
 - ii. Due to the sensitivity of the data, participants are not permitted to upload the image data to GitHub
 - **1.** for advanced submissions only: upload your perturbed image dataset to your private repo
- b. We will begin accepting submissions on October 28th at 9 AM ET here.
 - i. We are only accepting 1 submission per participant, please ensure you have all the **required files, and are happy with your solution**

Grading Outline

- 1. We will run your unsupervised model against our **holdout dataset (labelled), to compare** your model's predictions with the ground truth labels
- 2. Your submission **score will be based on accuracy** –calculated as the number of correct predictions divided by the total number of images

humane intelligence Revontulet

- 3. Since your unsupervised model may flip the binary labels, we will evaluate predictions assuming both possible label mappings (i.e., 1 = hate then 1 =non-hate).
 - a. The higher score will be recorded