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​  
This is where we collectively describe algorithms for these problems.  To see the problem 
statements follow this link.  To see the scoreboard, go to this page and select this contest. 
 
A. Daydreaming Stockbroker 
Think in this way: you are allowed to regret and sell the stock with the highest price after you 
bought it. Then you can always make the optimal moves. O(N) --hpfdf 
 
B. Bacteria Experiment 
 
Consider any vertex v in the graph. After one time step, v has an edge to any vertex that was 
originally distance <= 2 away from v. Then after another time step, v has an edge to any 
vertex that was originally distance <= 4 away from it. In general, after t units of time, v has an 
edge to any vertex of original distance <= 2^t away from v. 
 
We conclude that the number of time units it takes for all edges to be added to the graph is 
determined by the largest distance between two vertices in the graph, or the diameter of the 
graph. If the diameter of the graph is D, then the answer is ceiling(log_2 D). 
  
We can find the diameter of a tree in O(n) time.  
 
One way of finding the diameter in O(n) time: Take any vertex r. BFS from r to find the 
farthest vertex v from r. BFS again from v to find the farthest vertex u from v. It turns out that 
the distance between v and u is maximal. This is sort of annoying to prove, but you can sit 
down and work it out, or look up the proof online. (For the proof... think of the tree as 
consisting of the path from u to v, plus a bunch of stuff that branches off of this main path. If 
there are a pair of vertices that have larger distance apart than u and v, what does the tree 
look like then, and what happens to the BFSs? Drawing pictures may be helpful.) 
 
Another way of finding the diameter, which might be a bit easier to conceptualize: Root the 
tree arbitrarily. It’s not hard to see that the longest distance in the graph will be achieved by a 
pair of leaves. For each vertex v, compute its height h(v) (the length of the longest path from 
v to a leaf). Then for each v, we can compute the longest path between pairs of leaves 
whose LCA is v (it’s h(u) + h(w) + 1 where u, w are the two heightiest children of v). Take the 
max of this over all v to get the longest path overall. This can all be done with one or two 
DFSs. 
 
-- Tom 
 
C. Emptying the Baltic 
BFS from the draining point to find out the drainable altitude of each grid. I used a priority 
queue (by minimal draining altitude). This ensures O(N2logN) time. --hpfdf 
 
D. Fleecing the Raffle 
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Suppose you put your name x times into the box. There are (n+x) names, and p will be 
chosen. The probability of your name being chosen exactly once is 

x * C(n, p-1) / C(n+x, p) 
which can be simplified to 

xp/(n-p+1) * Product[i=1 to x; 1 - p/(n+i) ] 
We can then enumerate x to find the max answer. The target starts to monotonic decrease 
after x is larger than best answer. An early break makes this algorithm O(N).  --hpfdf 
 
Doing some math, we see that the above expression (x * C(n, p-1) / C(n+x, p)) is maximum 
at x = n/(p-1). So, just computing the above product for this particular value of x is also 
sufficient. -- Shreyan 
 
E. Compass Card Sales 
Construct a BST for cards in each color channel by their channel values. The BST must be 
able to find prev/next node. To resolve the cyclic adjacent issue, make the largest node = the 
prev of the smallest node, and vice versa. 
Build another priority queue (or BST) by their calculated uniqueness. Each time after printing 
and removing the most unique card, use the channelwise BST's to find out whose 
uniqueness should be updated after the removal. There should be at most 6 affected cards 
(two adjacents in each of three channels). So this algorithm is O(N log N).  --hpfdf 
 
F. Highest Tower 
 
Build an undirected graph as follows.  Each rectangular dimension defines a vertex.  So if a 
rectangle is a×b with a ≠ b then there are two vertices, one labeled a, the other b.  Connect 
these two vertices with an undirected edge.   (Use a hash table to renumber them from 0 to 
nn-1.)  So there is an edge from i to j if rectangle (i,j) exists.  Note that if it exists twice there 
are two edges between them.  (A multi-edge.) 
 
A valid tower corresponds to assigning an orientation to each edge in this graph such that 
the in-degree of each node is at most one.  And this defines which way we will use that 
rectangle (edge).  The dimension to which the arrow points is the horizontal direction for that 
rectangle (edge).  Because the in-degree of a vertex is at most one, it's guaranteed never to 
use two rectangles with the same dimension horizontally.  Thus the tower is possible. 
 
Now each component of this graph is either a tree or a graph with one cycle in it.  If it has 
more than one cycle then the tower is impossible to build -- in any orientation of the edges in 
this case must result in some vertex with in-degree two or more. 
Our job is to orient the edges satisfying the above in-degree ≤ 1 condition and also maximize 
 
   ​ Sum (over all vertices v) of out-degree(v) * value(v) 
 
We process each component separately.  If the component is a tree we just do a DFS 
starting from the vertex of highest value (a high-value node wants a high outdegree).  And in 
the DFS tree we orient edges from parent to child. 
 

 



 

If the component has a cycle we again do a DFS, but this time starting from any vertex on 
the cycle.  The edges are oriented again in the same fashion (parent to child in the DFS 
spanning tree).  We need to make sure to include the edge that closes the cycle. 
  
The algorithm runs in O(n) time.  ---DS 
 
Implementation note: There is a very nice way to implement an undirected graph which 
supports multi-edges and DFS.  The edges are numbered.  If e is an edge, maintain an array 
vertex[e] which stores the sum of the vertex numbers at the two ends of this edge.  Every 
vertex also stores a list of all the edges incident on it.  Now when we are doing a DFS, we 
pass in the vertex we’ve reached along with the edge we used to get there.  So it’s DFS(v,e).  
When scanning the adjacency list of v we skip edge e (we don’t want to follow it backwards 
back to our parent).  For another edge f from vertex v, we call DFS(vertex[f]-v, f).  This gives 
a very elegant way to handle multi-edges, which are needed in this problem, and also to 
prevent the DFS erroneously going backwards.  I didn’t figure this out until I had already 
implemented a much more complex solution. 
 
G. Exponial 
 
Lemma: for all n and m and b >= , then  𝑙𝑜𝑔
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 𝑛𝑏%𝑚 = (𝑛%𝑚)ϕ(𝑚)+𝑏%ϕ(𝑚)%𝑚
where  is Euler’s totient function and is the modulo operation.  ϕ(𝑚) %
 
Let f(n,m) = exponial(n) % m then applying this lemma we know that  
 

 𝑓(𝑛, 𝑚) = (𝑛%𝑚)ϕ(𝑚)+𝑓(𝑛−1,ϕ(𝑚))%𝑚
 

Notice that any number mod 1 is 0. So we can basically recurse until n goes below 5 (where 
we calculate exponial(n) % m directly) or  becomes 1.  ϕ(𝑚)
 
For computing the powers, we can use quick power algorithm that runs in  time. 𝑂(𝑙𝑜𝑔𝑚)
 
So now the problems boils down to find .  ϕ(𝑚)
 
​ ​ ​ ​ ​  ϕ(𝑚) = 𝑚∏

𝑝|𝑚
(1 − 1

𝑝 )
 
We can just use a  factorization algorithm to find all the prime factors of m and then 𝑂( 𝑚)
compute  by the above equation.  ϕ(𝑚)
 
Let T(n,m) denotes the runtime of f(n,m) then we know 
 

​  𝑇(𝑛, 𝑚) = 𝑇(𝑛 − 1, ϕ(𝑚)) + 𝑂( 𝑚)
 

So we know  where  is the number of times we need to apply 𝑇(𝑛, 𝑚) = 𝑂(ϕ*(𝑚) 𝑚) ϕ*(𝑚)
the totient function to get n to 1.  
 

 



 

Now we claim that . And we can prove this by induction noticing the fact that ϕ*(𝑚)≤𝑙𝑜𝑔𝑚
, m is even, .  ∀

𝑚
ϕ(𝑚)≤ 𝑚

2

Thus, this algorithm runs in  overall. ​ ---Tim 𝑂(𝑙𝑜𝑔𝑚 𝑚)

 


