MicroProfile approach to reactive
DRAFT - Last updated: 21 March 2018

This document outlines the approach that MicroProfile will use to adopting the reactive
paradigm for programming and architecting microservices.

What is reactive?

Reactive systems are described in The Reactive Manifesto. This calls for a coherent approach
for architecting systems that allows them to be responsive, by creating loosely coupled
components that are resilient to failure and elastic in the face of changing load. At the heart of
the approach to loosely coupling components is the idea of being non blocking, using
asynchronous message passing to ensure components are not impacted by each others
availability.

Reactive is popularly associated with asynchronous programming, using non blocking 10. While
asynchronous programming is certainly an important part of reactive, as it applies to a
microservice platform such as MicroProfile, it is also much bigger than just asynchronous
programming. Reactive impacts the way we architect our systems, and this most prominently
features in the way services communicate with each other - services that communicate
asynchronously, and hence are able to run autonomously, are able to scale, fail and evolve
independently. Not only does this help a system to be reactive, it allows a microservice based
system to realise the full benefits of the microservice architecture, and overcome many of the
problems that microservices introduce when compared to monoliths.

Hence there are two primary concerns when applying reactive to MicroProfile. The first is the
application of reactive programming to the APlIs offered by MicroProfile. The second is in
deciding what new features, APlIs or projects, if any, are needed to allow developers to create
reactive system architectures.

Reactive programming

In order to provide reactive programming APIs, abstractions are required to allow developers to
compose multiple asynchronous operations together.

A naive approach to offering an asynchronous API called Foo may be to offer a way to register
a callback to receive an asynchronously provided value. For example, that callback interface
might look like:


https://www.reactivemanifesto.org/

interface FooEventListener {
void onFooEvent (FooEvent fooEvent) ;

Just considering the above API, there are a number of problems with this:

e This specific API requires specific code to implement it. If | want to connect this API to
the asynchronous API offered by another component, say Bar, | need to write an
adapter that adapts the API offered by Bar to the API offered by Foo. And then | need
another adapter for every permutation of APIs that | might want to integrate each other.
Of course, this isn’t so bad given that FooEventListener isa SAM and so | can use
method references, but...

e The above listener offers no way to handle errors. There are multiple ways that this can
be addressed, but none of them are ideal. For example, we might add another method,
onError (Throwable). The addition of this method means it's no longer a SAM, and
so can no longer exploit the convenience of Java 8 method references, and also means
when connecting two APIs, | now need to adapt the error handling semantics of each
API, which may be subtly different.

e This API offers no mechanism for exerting backpressure asynchronously. The best | can
do is to synchronously block the thread before returning from onFooEvent. If in my
handling of the event | want to use an asynchronous database API to persist something,
there’s no way for me to tell the invoker of the listener to wait until I've finished with my
database call. If my database operation is slower than the incoming events are arriving, |
have two options, buffer the events | receive and risk running out of memory, or drop the
events. Even if it did offer a backpressure mechanism, there are many different ways
that backpressure can be implemented, and adapting them to each other is non trivial.

e This API offers no mechanism for ensuring thread safety, especially if | am integrating
multiple APIs with callbacks registered with all of them. If I'm updating some state using
this API, and | also have a BarEventListener registered that could execute at the
same time to update the state, how do | ensure that these two callbacks execute with
exclusion? How do | ensure that the right memory fences are in place before they are
executed? The use of the synchronized keyword results in blocking, the use of
AtomicReference and other java.util.concurrent constructs is overly
burdensome for an application developer who just wants to solve their domain problem.

e When using Java 8 lambdas to implement an API like this, this API is susceptible to
callback hell. This is a phenomenon that shows itself in two primary ways, firstly the code
becomes unreadable due to sequential operations being spread out through deeply
nested lambdas. Secondly, its very easy to drop signals, particularly error signals, by
forgetting to handle them correctly. The result is that a process just stops mid way
through, leaving the developer with no idea why it stopped, with no way to find out, not
even with a thread dump.



e There is no explicitly defined execution context for this API, and no way to customise
that context. If thread locals are needed, there’s no way to ensure that this API executes
its callbacks with those thread locals.

e Any monitoring solutions that want to trace the flow of control through this API need to
be explicitly aware of the APl and what it does, so they can explicitly instrument it to
carry correlation identifiers.

And that’s just the problems with one possible trivial API for asynchronous programming. In
order to safely provide asynchronous programming features, high level, generally applicable
patterns and components are needed to ensure compatibility, correct error propagation,
backpressure propagation, thread safety, and clean code when using these features.
Unfortunately, there already exist APIs in Java EE (such as JSR 356 WebSockets) that suffer
from many of these problems (and | should point out that APIs like JSR 356 were created before
standard solutions to these problems existed, so they shouldn’t be blamed for this). It's
important that going forward, we ensure that these same problems aren’t reintroduced.

In general, there are two different types of operations that we want to do when doing
asynchronous programming. The first is an operation that produces exactly one value, or fails.
Examples of such operations include:

e Producing an asynchronous response for an incoming HTTP request
e Making HTTP requests on remote systems
e Database queries and updates

The second is an operation that produces many, or a stream of values, with failure and
completion at the stream level. Examples of such operations include:

Sending and receiving messages to/from a message broker
Sending and receiving messages to/from a WebSocket
Streaming results from a large database result set
Streaming bytes to/from an HTTP request/response body

There exist two standard APls in the JDK that provide abstractions for representing these
operations, they are java.util.concurrent.CompletionStage, and Reactive Streams a
la java.util.concurrent.Flow.

CompletionStage

CompletionStage is a great abstraction for handling a single value. It offers the following
features:

e A standard interface that can be shared/passed between many asynchronous APls
e Values can be transformed using thenaApply.



e Multiple CompletionStages produced by different asynchronous APIs can be
composed using thenCompose.

e Error handling is well defined - errors propagate through chains of completion stages,
with features for recovering from and handling errors at any point in the chain.
Thread safety is well defined, with callbacks running between memory fences.
Backpressure inherent in the redemption of the value.
Customizable execution contexts, allowed by passing an explicit executor into methods
like thenApplyAsync, thenComposeAsync

CompletionStage should be used for all APls that asynchronously produce or consume
exactly one value. In some places the CompletionStage may be returned by an API, like so:

CompletionStage<Response> response = someApi.makeRequest();
In other places, a CompletionStage may be returned by application code, like so:

@Path ("/")
class MyResource {
@GET
CompletionStage<Response> handleRequest () {
return someOtherApi.doOperation ()
.thenApply (result -> Response.ok());

The above examples are similar to the way JAX-RS 2.1 handles asynchronous calls.
Sometimes, an API might have an existing blocking variant, and the asynchronous APl is being
added alongside it. To support that, it is recommended that Async be added to the
asynchronous variant of the method, for example:

CompletionStage<Response> response = someApi.makeRequestAsync();

This approach is in line with the approach the JDK9 HTTP client has taken. Note that this differs
from JAX-RS 2.1’s approach of using the name rx. Rx is actually a shortening of the name of a
specific product called Reactive Extensions, originally created for .NET by Microsoft, and later
ported to Java by its creator. The use of this naming is strongly discouraged, as it is a product
name, not a standard or a generally applicable name of a concept.

Reactive Streams

Reactive Streams is an asynchronous streaming API, produced by a collaboration of engineers
representing Netflix, Red Hat, Pivotal, Oracle, Lightbend and others. It was adopted by the JDK
in JDKO.


https://msdn.microsoft.com/en-us/library/hh242985(v=vs.103).aspx
https://github.com/ReactiveX/RxJava

Reactive Streams provides very well defined semantics for data flow, backpressure, error
propagation, completion and cancelling, thread safety, infinite recursion prevention, and other
things, allowing two implementations of Reactive Streams to integrate seamlessly with no
specific support beyond the Reactive Streams specification in either of them. To get a feel for
how well defined the semantics are, read through the spec. It also has a TCK that does a
thorough job of ensuring implementations implement the spec correctly and completely.

It should be stressed that Reactive Streams is intended to be used as an integration API, not an
application developer API. Libraries are meant to implement Reactive Streams interfaces, not
application developers, the most that application developers should do is pass around instances
of Publisher and Subscriber, and perhaps plumb them together via the subscribe
method. This blog post does a good job of demonstrating why application developers should
never implement their own publishers or subscribers, showing how just implementing an
incredibly simple publisher is incredibly difficult to get right, not just to implement the
requirements of the spec, but to get the thread safety and concurrency concerns correct.

A point of contention among the Reactive Streams community is whether APIs should be
Publisher biased, always accepting publishers, never returning subscribers, or whether
Subscribers should be a first class citizen in end user APIs. To demonstrate the difference,
here’s what a publisher biased API might look like, when plumbing the result of an HTTP client
request to a servlet response (assuming both support reactive streams):

CompletionStage<Response> future = httpClient.makeRequest () :;
future.thenAccept (response ->
servletResponse.send (response.getPublisher()));

In contrast, this is what an API that uses subscribers might look like:

CompletionStage<Void> result = httpClient.makeRequest (response ->
servletResponse.asSusbscriber ());

In some ways, the horse has already bolted here, since the JDK9 HTTP client API uses the
latter pattern, where you are required to return a Subscriber to it when handling the response.
There are advantages and disadvantages to both approaches, the subscriber approach means
that the HTTP client can ensure that its response is always consumed, protecting the developer
potential resource leaks if they forget to consume it, while the publisher biased approach gives a
unified way of always publishing Publishers, and means you’re never left in a situation where
you need to connect an API that requires you to pass subscriber to an API that requires you
to pass a publisher.

It's my opinion that it doesn’t matter which approaches we support, that a decision should be
made on a case by case basis as to what the API should look like based on the concerns of that


https://github.com/reactive-streams/reactive-streams-jvm/blob/master/README.md
https://github.com/reactive-streams/reactive-streams-jvm/blob/master/tck/README.md
https://medium.com/@olehdokuka/mastering-own-reactive-streams-implementation-part-1-publisher-e8eaf928a78c

particular API, for example if resource leaks is a big problem, but | did want to raise this
because there are people in the Reactive Streams community that disagree with this approach.

Byte streams

When offering byte streams, eg, request/response bodies, or database blobs, then
Publisher<ByteBuffer>/Subscriber<ByteBuffer> should be offered as the API. The
byte buffers passed to application developer code should be unpooled, non reusable,
unmodifiable buffers, and byte buffers received from application developer code should not be
mutated by the library.

JDKO9 vs org.reactivestreams strategy

There currently exist two Reactive Streams APIs. The first is provided by
http://www.reactive-streams.ora/, and lives in the org.reactivestreams package. The
second is provided by JDK9, and lives as inner interfaces of the
java.util.concurrent.Flow class. Both APIs are identical in everything but namespace.
The JDK9 one requires MicroProfile to move to a baseline supported JDK version of JDK9
before it can be adopted.

For APIs that are introduced before that happens, we need a strategy for how to support
Reactive Streams using the org. reactivestreamns version that will be backwards
compatible with adding support for the JDK9 version in future, while giving us a path to phase
out, rather than breaking, the org. reactivestream support.

There are a couple of strategies, multiple will likely apply:

e Some CDI based APIs are not strongly typed, eg a user might implement a method that
returns a Publisher, and annotates it to indicate that it's a messaging stream. The
framework interacts with this method using reflection, and so can transparently add
support for JDK9 flows later, with no impact on user code.

e An APl that accepts a Publisher or Subscriber can be overloaded to support the
JDKO types in future.

e An APl that accepts a Publisher or Subscriber as a generic type of another type
can’t be overloaded, since they will have the same binary signature after erasure. For
example, something accepts a Supplier<Subscriber>. A possible option here
would be to accept purpose built SAMs, this solves the binary problem, however in
practice this often doesn’t work well with Java type inference with lambdas, it’s far too
easy for developers to run into edge cases that javac can’t resolve.

e An APl that returns a Publisher or Subscriber can’t be overloaded, as the Java
compiler doesn’t allow overloading by return type.

e When an API has to return a Publisher or Subscriber, or accept a Publisher or
Subscriber type parameter, a way to future proof this is to decide on a way to


http://www.reactive-streams.org/

disambiguate these methods with different names. For example, getFlowPublisher
might be used for JDK9, while getPublisher might be used for
org.reactivestreams. Alternatively, getRsPublisher might be used for
org.reactivestreams, while getPublisher might be used for JDK9.

Reactive Streams manipulation strategy

One of the major shortcomings of Reactive Streams at present is the lack of a standard API for
manipulating them. Consider a use case where we want to connect a source,
Publisher<Foo> to a sink, Subscriber<Bar>, and we have a function, Function<Foo,
Bar> to do the transformation. There doesn’t exist any method in Reactive Streams that allows
a developer to apply that transformation function to each element. Instead, they would have to
write their own Publisher/Subscriber that wrapped the provided publisher/subscriber to do the
transformation, which not only is a lot of boilerplate, it's strongly discouraged that users write
their own implementations of Publisher and Subscriber. A simple map transformation may be
trivial to write, but it gets far more complex with things like filter, where you drop elements and
so need to work with demand, and then substreams, asynchronous mappings, etc, get even
worse.

Of course, this isn’'t a problem for most existing users of Reactive Streams, because there exist
a number of third party libraries that provide these transformations, such as map/filter/flatMap.
These libraries include Akka Streams, RxJava 2 and Reactor. However, for a Java standard like
MicroProfile, requiring developers to bring in a third party library to do these elementary
operations is not acceptable.

Fortunately there is a solution in the works, a standard library is currently being developed for
the JDK, with strong interest from key JCP members for its inclusion in a future JDK version. Of
course, the absolute earliest that such an API could be included in the JDK is JDK11, and it’s
likely to be much later than that, so it's going to be some time before MicroProfile moves to a
baseline JDK version that can take advantage of that API.

https://github.com/lightbend/reactive-streams-utils

In the meantime, there are a number of strategies that we could take:

e Always provide variants of APIs that don’t require reactive streams manipulation. For
example, a messaging APl may provide a way of subscribing using a Subscriber, as
well as a way of subscribing using a callback that returns CompletionStage<void>.

e Have libraries provide their own utilities for the most common use cases. The JDK9
HTTP client does this, it provides built in Subscribers that save request bodies to a file,
aggregate them in memory, as well as adapts it to a blocking OutputStream.


http://mail.openjdk.java.net/pipermail/core-libs-dev/2018-March/051799.html
https://github.com/lightbend/reactive-streams-utils

e Adopt a port of the JDK library Reactive Streams utility library for MicroProfile, which can
be offered to developers before the JDK version is available, and then deprecated once
MicroProfile moves to a baseline JDK that supports the library. This is probably the best
option, however it is contingent on being confident that that library will eventually
materialize in the JDK, and that it won’t be significantly different to the form that
MicroProfile adopts it in.

Reactive system architecture features

Messaging API

In order for services to be autonomous, they need to be able to communicate with each other
asynchronously. The term synchronous means “at the same time”, and as applied to
communication, means that both parties must be involved in the communication at the same
time for the communication to be successful, they need to synchronize to communicate. An
example of this is HTTP, service A cannot communicate with service B using HTTP if service B
has crashed, is overloaded, or if there is a network partition between them. In contrast,
asynchronous communication allows two parties to communicate without them both being active
participants at the same time. If service A asynchronously sends a message to service B,
service B can be crashed, overloaded, or there can be a network partition between them, and
this won’t impact the success of the communication. Service B can consume that message at a
later point in time, when it has recovered from whatever problems it had, no synchronization is
needed.

Hence, in order to allow developers to build reactive microservices with MicroProfile,
MicroProfile needs an API for asynchronous messaging.



	MicroProfile approach to reactive 
	What is reactive? 
	Reactive programming 
	CompletionStage 
	Reactive Streams 
	Byte streams 
	JDK9 vs org.reactivestreams strategy 
	Reactive Streams manipulation strategy 


	Reactive system architecture features 
	Messaging API 


