{_> Polkadot

Treasury Proposal: Phink Fuzzer Development

Proponent: 15aPQ8NRfgTHhMV436JZeVGQTCAQrCak7mGCDP3inJjRpV57 (SRLabs)
Beneficiary: 15aPQ8NRfgTHhMV436JZeVGQTCAQrCak7mGCDP3inJjRpV57 (SRLabs)
Date: [02.07.2024]

Requested USDT: 198,100

Short description: Creating an ink! smart contract fuzzer

Project Category/Type: Software development -

Previous trecasury proposails: NA

1. Context of the proposal

1.1.

Background and Motivation

1.2. Team Background and Credentials

2. Problem statement and value proposition

3. Proposal objective(s) or solution(s)

4. Use cases

5. Milestones and Deliverables

M1.

Project Setup

M2.

Base ink! fuzzing harness development

M3.

Runtime support and compatibility

M4.

Invariant development

MS.

Blockchain state tracking

M6.

Performance evaluation

M7.

User interface development

M8.

Documentation and reporting

© |00 100 |00 N IN & o 1o lon [| I IN

6. Timeline

©

7. Budget

—
o

8. Payment conditions

—
—

Payment Installments and Milestones:

BN
—

Treasury Proposal and Reporting:

AN
—

{_> Polkadot

1.

1.1.

Context of the proposal

Background and Motivation

The security of ink! is fundamental for the integrity and reliability of smart contracts
developed within the Polkadot ecosystem. ink! is a domain-specific language
designed for writing smart contracts that run on the Substrate framework. Given its
role in enabling decentralized finance (DeFi) applications, supply chain management
solutions, and other critical blockchain-based services, ensuring the security and
robustness of ink! smart contracts are paramount.

As part of our ongoing commitment to enhancing the security and reliability of the
Polkadot ecosystem, Security Research Labs (SRLabs) proposes the development
of Phink, a next-generation fuzzing tool for ink! smart contracts. This initiative stems
from our extensive experience in blockchain security and our recognition of the
limitations in current smart contract testing methodologies.

Previous efforts, such as the Inkscope-fuzzer, have laid a foundation but fall short in
providing comprehensive code coverage and systematic exploration of smart
contract code paths. Our goal with Phink is to fill these gaps by using a
coverage-guided fuzzing backend and implementing a robust set of smart contract
invariants that can be tested. Phink aims to address these gaps by incorporating
advanced coverage-guided fuzzing techniques and smart mutations to increase the
effectiveness of fuzzing campaigns. By leveraging established fuzzers like AFL++,
Phink will facilitate effective discovery of potential smart contract vulnerabilities. This
tool will support both developer-specific and common smart contract invariant,
allowing for testing of native code conditions and critical inputs.

Value for the Community:

The development of Phink represents a significant advancement in the security
infrastructure of the Polkadot smart contract landscape. By providing a more
comprehensive and systematic approach to ink! contract fuzz testing, Phink will help
developers identify and mitigate vulnerabilities earlier in the development process,
thereby enhancing the overall security and reliability of smart contracts. This will be
particularly beneficial for DeFi applications and supply chain management solutions,
which require the highest level of security. Additionally, Phink will be an open-source
tool, encouraging contributions and usage from the community. We will create
detailed documentation and tutorials to help smart contract developers easily and
effectively test their code.

https://www.srlabs.de/
https://aflplus.plus/

{_> Polkadot

1.2.

Team Background and Credentials

The Phink project is led by an SRLabs team of experienced engineers and security
experts with roots in the blockchain industry. The team has years of experience in
Polkadot blockchain security, with a specific focus on security auditing.

Our security engineers have extensive backgrounds in fuzzing and Rust
programming, having developed numerous fuzzers during audit engagements,
including the prominent open-source substrate-runtime-fuzzer project within the
Polkadot ecosystem. The maintainer of AFL++, the currently most effective fuzzer on
Google’s fuzzbench and one of the most widely used fuzzing tools in the industry is
also a notable addition to the SRLabs Phink engineering team. His expertise in
fuzzing technology and overall contributions to the security industry bring invaluable
insights and capabilities to the Phink project.

SRLabs has extensive experience in end-to-end security assurance, with a
specialized focus on Substrate components. We focus on the security assessment of
all parachain and relay chain components, including runtime (business logic), outer
node services (networking, XCM, bridges, WASM, EVM, Precompiles), consensus
mechanisms, and smart contract audits (ink! and Solidity), as well as their
configuration.

Since 2019, our team has provided blockchain assurance and collaborated with
various teams within the Polkadot ecosystem through the Substrate Builders
Program Security Assurance Program. We have conducted in-depth audits for
approximately 20 ecosystem teams, including Polkadot, complemented by
continuous security assurance. Our auditing process involves thorough manual code
reviews supported by in-house dynamic and static analysis tools. Over the past few
years, we have developed and maintained zigqy, a fuzzer manager and
orchestration framework for Rust projects, in addition to the substrate-runtime-fuzzer.

Our next goal is to combine our expertise in the Substrate framework and fuzzing
knowledge by developing our in-house fuzzer for ink! smart contracts. Our tool will
address improvement needs identified in ink! fuzzers currently under development,
namely by employing coverage-based fuzzing techniques that develop tested
mutation strategies and test at a fast rate. Through this proposal, we seek funding for
Phink, a fuzzer that will make bug detection more comprehensive and efficient while
being easy to implement at an early stage.

https://github.com/srlabs/substrate-runtime-fuzzer
https://github.com/srlabs/ziggy
https://github.com/srlabs/substrate-runtime-fuzzer

{_> Polkadot

Problem statement and value proposition

The use of ink! in coding smart contracts for sensitive applications such as DeFi and
supply chain management necessitates thorough code auditing to identify logic bugs and
runtime errors. To enhance the accuracy and reliability of testing during the development
phase of ink! smart contracts, the community has turned to developing fuzzing tools.
Despite the progress made by projects like the Inkscope-fuzzer, certain limitations
remain that our proposal aims to address.

Inkscope-fuzzer, as a property-based fuzzing tool, focuses on generating test inputs
based on randomness to validate properties within a scope defined by the tester. While
this approach allows for the verification of special input conditions, it lacks coverage
guidance. Coverage-guided fuzzers have demonstrated significant success in various
applications, including the fuzzer developed for Substrate, by systematically exploring
new code paths and ensuring comprehensive code coverage. By incorporating similar,
non-random input-based methodologies, we aim to enhance overall code coverage and
facilitate the exploration of new code paths, this will effectively help to identify more
security issues.

To further improve upon existing tools, we propose the development of a new fuzzing
tool, Phink, which will address the need for more systematic and adaptive security
testing approaches. Phink will generate smart mutations that build on previous iterations,
periodically eliminating obsolete inputs, and minimizing the prompt fuzzing corpus to
include only relevant inputs. This will allow for both developer-specific and common
smart contract invariants, enabling the testing of native conditions in the code and critical
inputs configurable by smart contract developers. Phink will be open-source,
encouraging community contributions and improvements.

Phink will be implemented in Rust and will leverage fuzzers such as AFL++, libAFL and
Honggfuzz, incorporating the latest coverage-based fuzzing methodologies. Our solution
will be free from ink! version dependencies, allowing developers to use their own
runtime, storage, and state, thus enhancing the tool’s flexibility and applicability.
Additionally, we plan to develop a user interface to extend the tool's ease of use,
enabling visualization of code coverage on smart contracts.

By developing Phink, we want to empower the Polkadot community to automatically
assess their smart contracts through comprehensive and adaptive fuzzing prompts
based on smart mutations and including custom and default invariants. This will
significantly improve the reliability and security of ink! smart contracts in critical
applications.

{_> Polkadot

Proposal objective and solution

The objective of this project is to develop a new fuzzing tool, Phink, for ink! smart
contracts that addresses identified limitations in existing solutions and improves the
detection of security vulnerabilities.

The primary objectives of the Phink project are the following:

Enhanced security testing: Develop a fuzzing tool that improves the detection of
security vulnerabilities in ink! smart contracts through advanced coverage-guided
techniques and smart mutations.

Comprehensive invariant testing: Testing and verifying system invariants are critical
for creating reliable ink! smart contracts. Invariants are conditions that must always hold
true within a protocol. Defining and rigorously testing these invariants helps developers
avoid introducing bugs and enhances long-term code robustness. However, developing
the internal knowledge and processes to create and maintain invariants is challenging,
and only a few development teams have integrated invariants into their lifecycle. In this
light, our proposal includes a dedicated focus on invariant development for ink! smart
contracts.

Broad compatibility: Ensure compatibility with multiple ink! versions and custom
runtimes, providing flexibility and future-proofing.

User-friendly interface: Create an intuitive user interface to facilitate ease of use and
adoption among smart contract developers.

Open source and easily accessible: As an open-source tool, Phink encourages
community contributions and continuous improvement. We create all resources
necessary for developers to start fuzzing without the need for prior experience, including
how-to tutorial and comprehensive documentation.

Performance and reliability: Validate the fuzzing tool's effectiveness through
performance evaluation against well-known ink! smart contracts.

Use cases

The proposed fuzzer will have multiple application areas:

e Development: In smart contract development, it will assist developers in
identifying and resolving logic bugs and vulnerabilities during the development
phase. The fuzzer can be used as an additional means of testing smart contract
assertions and properties, as well as offering a different security perspective.

e Auditing: For auditing, it will provide auditors with a powerful tool to uncover
potential security issues in smart contracts, enhancing the auditing process by

{_> Polkadot

automatically testing the smart contract with a variety of inputs and scenarios,
making it easier to identify potential exploits.

e Research: Additionally, it will enable security researchers to explore and improve
smart contract security methodologies.

Milestones and Deliverables

Our team has already developed an initial prototype for Phink. To achieve the objectives
of this project, we will develop the full set of features for Phink. The deliverables will be
organized into the following work packages.

M. Project Setup

Establish the foundational infrastructure and define the project parameters to ensure
smooth project execution.

Deliverables:

e Project repository setup: Create a centralized public repository for collaboration
on GitHub. This will facilitate version tracking, release management, reviews and
seamless collaboration among team members and the community.

e Infrastructure setup: Setup the necessary development and deployment
infrastructure. This includes configuring pipelines for deployment, setting up a
development environment and establishing community communication using
Discord.

M2. Base ink! fuzzing harness development

Develop a baseline ink! smart contract fuzzing harness that can generate mutated
contract inputs based on code coverage and execution data to maximize testing
effectiveness.

Deliverables:

e Fuzz harness implementation: Set up the fuzzing environment and integrate
the ink! smart contract interface with AFL++/libAFL/honggfuzz. This involves
creating a common interface to arbitrary ink! smart contract functions, allowing
mutated inputs from the AFL++, libAFL and Honggfuzz backend to be passed to
smart contract functions. Additionally, implement mechanisms for capturing and
analyzing outputs and state changes to identify potential vulnerabilities.

e Custom WASM instrumentation: Implement custom WASM ink! smart contract
instrumentation to capture coverage information.

https://github.com/kevin-valerio/phink

{_> Polkadot

Invariant interface: Develop an interface within the harness to allow developers
to define and execute custom invariants. This interface will also support the
execution of invariants identified and developed in M4.

Comprehensive bug detection: Detect a wide range of bugs, including runtime
errors. This ensures that Phink can handle a variety of potential issues beyond

just invariants.

M3. Runtime support and compatibility

Ensure that Phink is compatible with a variety of runtime environments, enhancing its
flexibility and future-proofing its use.

Deliverables:

Integration with default minimalistic runtime: Develop compatibility with
Substrate’s default pallet_contract runtime module

Custom runtime compatibility module: Create a module that allows Phink to
be used with custom runtime environments. This will involve developing
interfaces and configuration options to adapt Phink to different runtime setups.

Wide ink! version compatibility: Ensure Phink’s compatibility with multiple
versions of ink!, providing support for previous and current versions.

MA4. Invariant development

Enable systematic identification, development and testing of core ink! smart invariants to
ensure robust ink! smart contracts.

Deliverables:

Invariant identification: Identify potential common invariants at both the ink!
function level and system level. Define pre-conditions for these invariants and
document them.

Invariant implementation: Implement the identified invariants within the fuzzing
harness invariant interface. Develop specific test cases that incorporate these
invariants ensuring that the fuzzing process checks for these conditions.

Invariant testing and refinement: Run the invariants through the fuzzing
process on a base set of ink! smart contracts. Analyze the results and refine the
invariants and test cases based on the findings.

{_> Polkadot

Mb5. Blockchain state tracking

Implement state tracking mechanism to enhance fuzzing accuracy and coverage by
maintaining precise blockchain states.

Deliverables:

e Snapshot-based fuzzing module: Develop a module that uses snapshotting to
allow for efficient state resets for fuzzing. This will increase the speed at which
the fuzzer is able to test the contract under test.

e State management interface: Design and implement an interface to manage
ink! smart contract states within the fuzzing harness. This interface will provide
developers with tools to control the state transition during the fuzzing process.

MG. Performance evaluation

Assess the performance and effectiveness of the Phink fuzzing tool through
benchmarking and analysis.

Deliverables:

e Benchmarking amongst publicly available Ink! smart contracts: Select a
series of well-known ink! smart contracts and use them to benchmark the
performance of Phink. This will involve setting up test environments and running
the fuzzer against these contracts to collect coverage and general performance
data

e Performance metrics collection: Collect key performance metrics, such as
code coverage, number of unique bugs found and the execution speed. These
metrics will provide insights into the effectiveness and efficiency of Phink.

e Performance evaluation report: Compile the benchmarking results and
performance metrics into a report

M7. User interface development

Develop a user-friendly interface to facilitate ease of use and accessibility for smart
contract developers

Deliverables:

e User interface design: Design an intuitive console-based user interface that
allows developers to interact with Phink easily.

e User Interface Implementation: Develop the designed interface, integrating it
with the backend functionalities of Phink. This will involve coding the front-end

{_> Polkadot

console-based Ul components, setting up data bindings and ensuring a
responsive design.

Visualization component: Incorporate code coverage visualization, state
transitions and invariant testing results within the interface. This component will
provide developers with insights into the fuzzing process and help them identify
optimization potential for their fuzzing campaigns.

MS8. Documentation and reporting

Provide documentation and reporting to support the use and maintenance of Phink

Deliverables:

Complete user manual: Develop a user manual that provides detailed
instructions on how to install, configure and use Phink. This manual will include
step-by-step guides, troubleshooting tips and best practices

Technical documentation: Create technical documentation that details the
internal workings of Phink, including its architecture, modules and interface. This
documentation will be aimed at developers who wish to use the tool or contribute
to it.

Project report and final presentation: Compile the findings, progress and
results of the project into a report. This report will summarize the project’s
achievements, challenges and future directions, providing an overview of the
project’s outcomes. The final outcome will be presented to the community (e.g.
Polkadot Decoded, Sub0, etc.). We will ensure that all documentation and reports
are made publicly available, and the tool will remain open-source to encourage
community contributions and transparency.

Timeline

This section provides a visual representation of the timeline detailing when each of the
project milestones will be achieved. Please note that this timeline is based on our current
estimates and is subject to change as circumstances evolve.

{_> Polkadot

Project milestone Month 1

Month 2

Month 3

Month 4

M1. Project Setup [

M2. Base ink! fuzzing harness development

M3. Runtime support and compatibility S

M4. Invariant development

M5. Blockchain state tracking

7. Budget

M6. Performance evaluation I
MT.Userimorface development e
MBDocumentationandreportng —

The on-chain submission will request funds in USDT.
Tasks Hourly rate | Hours Effort
M1. Project setup 15 $2,100
M2. Base ink! fuzzing harness development 400 $56,000
M3. Runtime support and compatibility 150 $21,000
M4. Invariant development 200 $28,000
$140
MS5. Blockchain state tracking 300 $42,000
M6. Performance evaluation 150 $21,000
M7. User interface development 100 $14,000
M8. Documentation and reporting 100 $14,000
Project total 1,415 $198,100

{_> Polkadot

Payment conditions

This section outlines the specific conditions related to the payment of this proposal to
fund the development of the Phink fuzzer.

Total Amount in USDT:

Total Amount Requested: The total amount requested for the complete

development process is 198,100 USDT.

Payment Installments and Milestones:

Full payment upfront: The full payment of the total amount will be made upfront
upon approval of the proposal. This approach facilitates the immediate
commencement of the development activities by SRLabs, ensuring there are no
delays in the project's timeline.

Commitment to deliver milestones: While the payment is made upfront,
SRLabs commits to delivering all outlined milestones and reports as per the
schedule described in section 5. This ensures that all deliverables are met
according to the agreed timeline and quality standards.

Treasury Proposal and Reporting:

Reporting on Milestones: SRLabs will submit a report summarizing the
milestone achievements upon the completion of the development. This report will
provide detailed insights into the progress and accomplishments of the project.

Public Availability: The report will be made publicly available to ensure
transparency and accountability to the Polkadot community. This openness aligns
with our principle that, as a community-funded project, the outcomes belong to
the community, ensuring that everyone has access to the results and can benefit
from this collective knowledge.

	Treasury Proposal: Phink Fuzzer Development
	
	1.​Context of the proposal
	1.1.​Background and Motivation
	1.2.​Team Background and Credentials

	
	2.​Problem statement and value proposition
	3.​Proposal objective and solution
	4.​Use cases
	5.​Milestones and Deliverables
	M1. Project Setup
	M2. Base ink! fuzzing harness development
	M3. Runtime support and compatibility
	M4. Invariant development
	M5. Blockchain state tracking
	M6. Performance evaluation
	M7. User interface development
	M8. Documentation and reporting

	6.​Timeline
	7.​Budget
	8.​Payment conditions
	Payment Installments and Milestones:
	Treasury Proposal and Reporting:

