MiracleObject

haraken@ / 2023 June
Status: DRAFT

TL:DR of the proposal
Motivation

Mitigating UaFs on on-stack pointers

We have many unknown UaFs
Goals / non-goals

Success metrics
Proposal
#1 Detect more UaFs with the Extreme-LUD
Sampling objects
Capping the quarantine size
Uploading a crash report

#2 Annotate MiracleObject
#3 Mitigate UaFs on on-stack pointers

#4 Enable other advanced memory safety checks
Discussion

The object lifetime after it's freed

The performance overhead on a common path
Three quarantines are in play

Engineering cost

TL;DR of the proposal

MiracleObject proposes a new usage of the Lightweight UaF (Use-after-Free) Detector and
ADVANCED_MEMORY_SAFETY_CHECKS().

1. Run the Lightweight UaF Detector in the wild and detect many UaFs. Actionable crash
reports are NOT needed. It is sufficient to know the object type that caused the UaFs.

2. Add ADVANCED_MEMORY_SAFETY_CHECKS() to the detected object types. We call the
object a MiracleObject.

3. MiracleObjects have not-yet-investigated UaFs (as detected in #1) but the advanced
memory checks make the attacker's exploits on the MiracleObjects significantly
challenging.

The workflow #1 and #2 can be mostly automated.


https://docs.google.com/document/d/1EDHgZC9JUzP_Udi_NtmvMuFNO9wKC63bprx3oyrgupw/edit
https://docs.google.com/document/d/19GNwqFrnC9_bMl_JJQqaa_ci39pfJ-CUeXAq8m-XQ2w/edit?resourcekey=0-bvWjbXn3BsNygpmcHwAZ1Q

[Note: MiracleObject proposes a new usage of the Lightweight UaF Detector. To avoid
confusion, this document refers to the original Lightweight UaF Detector (which is intended to
detect UaFs with actionable crash reports, implemented by Sergei Glazunov ) as the
Original-LUD, and refers to the new usage of the Lightweight UaF Detector (which is intended to
detect UaFs with only the object types) as the Extreme-LUD (meaning an "extremely"
Lightweight UaF Detector).]

Motivation

Mitigating UaFs on on-stack pointers

We launched MiraclePtr to Windows, Mac, Linux, ChromeOS and Android. MiraclePtr replaced
25000+ C++ raw pointers with raw_ptr<> and added security protections without introducing
significant performance / memory cost. According to our survey on the browser process, ~60%
of UaFs are mitigated with MiraclePtr. Not only does this protect users but also will allow us to
downgrade the severity of MiraclePtr-protected UaF bugs by one notch and thus improve our
engineering productivity (read this article to learn more). We are now working to extend the
MiraclePtr support to iOS, LaCrOS, renderer processes and more pointers.

However, the coverage of MiraclePtr won't be 100% due to the performance overhead. For
example, MiraclePtr cannot be enabled on on-stack pointers (T* as local variables, and "this"
pointers). According to Sergei Glazunov 's survey, currently MiraclePtr covers 55% of UaFs on
supported processes. The breakdown of the remaining 45% is:

42% on on-stack pointers

25% on third-party code (we are actively working on supporting some of them)
14% on container<T*> (we are actively working on supporting some of them)
18% on others

Once we support major third-party libraries (e.g., PDFium, Angle, Swiftshader) and
container<T*>, the on-stack pointers will be the majority of the remaining UaFs. We need a
solution for it.

We have many unknown UaFs

As the Chrome Security team has emphasized repeatedly, UaFs we detect with GWP-ASan,
Fuzzers, MiraclePtr and the VRP program are a very small subset of UaFs that exist in the code.
We have three problems here:

e Problem #1: We have many unknown UaFs.

e Problem #2: The Original-LUD and MTE will help detect more UaFs, but UaFs without
actionable crash reports are not useful. To make the crash reports actionable, we need
to collect stack traces of the deallocation and crash. The performance overhead of
collecting the actionable information limits the number of objects we can sample and
decreases the detectability.

e Problem #3: Even if there is a way to detect more UaFs with actionable crash reports, it
is questionable if we want to pay the engineering cost of triaging and fixing all of the
detected UaFs.


mailto:glazunov@google.com
mailto:glazunov@google.com
http://go/miracleptr
https://security.googleblog.com/2022/09/use-after-freedom-miracleptr.html
https://docs.google.com/spreadsheets/d/1_qZIYWMEcOOYmwoScftL5X_Dz9EJ7feHUwqFbq5pMH0/edit#gid=0
https://docs.google.com/document/d/1EDHgZC9JUzP_Udi_NtmvMuFNO9wKC63bprx3oyrgupw/edit

We should definitely improve technologies to detect more UaFs with actionable crash reports
and fix them. However, at the same time, it is important to have a solution that makes the
attacker's exploits on the unknown or known-but-not-yet-investigated UaFs more challenging.
MiracleObject provides a solution to it.

Today

Known with
actionable
crash reports

Unknown

Future

Known with
actionable
crash reports

Known but Unknown
not-yet-investigated

We should fix
MiracleObject makes attacker's exploits on these objects harder

Goals / non-goals

From the security perspective, for a given UaF bug, we have three levels of goals (see
B MiraclePtr Security Properties Comparison for the detail):

e Goal X: Reduce real exploitability of the bug for some or all users.

e Goal Y: Eliminate exploitability of the bug for some or all users.

e Goal Z: Eliminate exploitability of the bug for all users with sufficient confidence that
Security Sheriffs can downgrade the bug’s severity.

m e Protect more not-BRP-protected pointers; specifically, achieve Goal X



https://docs.google.com/document/d/1H2LOZEMMnJuUgvg-0vjU_Vr5dwrFSoGVp4dfJhiZ0wQ/edit#heading=h.zhoaa27bkr76

for on-stack pointers pointing to the MiracleObjects

e Automate the process of detecting more UaFs and annotating the
detected objects as MiracleObjects

e Enable GWP-ASan, the Original-LUD and MTE to prioritize the
MiracleObjects when sampling and detect UaFs with actionable crash
reports

Non-goals e Achieve Goal Z for all pointers pointing to the MiracleObjects
e Replace the technologies to detect UaFs with actionable crash reports
(e.g., GWP-ASan, the Original-LUD, MTE) with MiracleObject

Success metrics

e # of UaFs detected by the Extreme-LUD and # of objects annotated as MiracleObjects
e Attacker's responses (e.g., are they moving away from exploiting UaFs in Chromium?)

Proposal

#1 Detect more UaFs with the Extreme-LUD

The Original-LUD is a super lightweight version of GWP-ASan. The philosophy is: It is fine to
miss UaFs as long as it can detect a lot of UaFs with moderately actionable crash reports. The
goal is to minimize the performance overhead of detecting UaFs and collecting the stack traces
and thus massively increase the sampling rate compared to GWP-ASan. Currently the
Original-LUD can report stack traces of the deallocation and the UaF crash.

MiracleObject proposes to use the LUD in a much more lightweight manner, which we call
Extreme-LUD. To achieve the goal of the MiracleObject, we do NOT need to collect the full stack
traces of the deallocation and the UaF crash. It is sufficient to understand the object type that
caused the UaF. This enables us to increase the sampling rate significantly and detect more
UaFs.

The Extreme-LUD works as follows.

Sampling objects

We sample objects in PartitionAlloc::FreeNoHooks. We could add a counter per PartitionRoot,
increment the counter every time an object is freed, and sample objects using the counter (e.qg.,
using counter % 0x1000 == 0 or doing something more advanced like GWP-ASan). Another
option is to use some bits of the address of the freed object to sample objects (e.g., sample
objects when <the address of the freed object> & 0x0000000000000ff00 returns true).

We do not put the sampled objects in the thread cache.

We introduce PartitionRoot::quarantine_head. We move the sampled object to
PartitionRoot::quarantine_head instead of SlotSpanMetadata::freelist_head. This prevents the
object from being reused in future allocations. This should work for both directly-mapped
objects and not-directly-mapped objects.


https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_root.h;l=1238;drc=5d07288021882430d97db7b56e895122b6b81afd;bpv=0;bpt=1
https://source.chromium.org/chromium/chromium/src/+/main:components/gwp_asan/client/sampling_state.h;drc=ef853c78cc0c9b5b51538812e8430123ce852581;l=71
https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_root.h;drc=5d07288021882430d97db7b56e895122b6b81afd;bpv=0;bpt=1;l=1532
https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_page.h;drc=5d07288021882430d97db7b56e895122b6b81afd;bpv=0;bpt=1;l=132

Finally we zap the object payload with Oxefefefefefefefef.

We do not collect stack traces at all at this point.

Capping the quarantine size

When the quarantine size exceeds some threshold (e.g., 2 MB), we move objects in
PartitionRoot::quarantine_head to SlotSpanMetadata::freelist_head until the quarantine size
goes down below e.g., half the threshold.

The threshold prevents the memory cost of the quarantined objects from growing indefinitely.
This keeps the memory overhead of the Extreme-LUD within the threshold and enables us to
launch it to 100% users.

Uploading a crash report

The Extreme-LUD only zaps freed objects. It is not guaranteed that it can produce a crash report
at the exact point when the UaF happens. For example, you can read the zapped value
(Oxefefefefefefefef) without crashing and hit some unexpected crash when you use the value at
a later point. Or you can overwrite the zapped value without crashing (e.g.,
Oxeeeeeeeeeeeeeeee). On the other hand, a virtual method call on the zapped object will crash
immediately because the vtable is broken. We are fine as long as we can catch (not all but)
many read-after-free + dereferences.

We upload a crash report when the crash happens on the exact zapped value
(oxefefefefefefefef). At this point we collect the stack frames and upload them to the crashpad.
The performance overhead of collecting the stack frames is not a problem because crashing is
a rare event and also the browser is anyway crashing soon...

#2 Annotate MiracleObject

From the crash reports uploaded in the crashpad, we identify the object types that caused the
UaFs [Maybe can we use Bard? )]

We add ADVANCED_MEMORY_SAFETY_CHECKS() to the detected object and make it a

MiracleObject.

class A {
// Do not remove this macro!
// The macro is maintained by the memory safety team.
ADVANCED MEMORY_SAFETY_CHECKS();

ooy

};

The workflow #1 and #2 can be mostly automated. The only not-automatable part is to avoid
adding ADVANCED_MEMORY_SAFETY_CHECKS() to performance-sensitive objects.


https://docs.google.com/document/d/19GNwqFrnC9_bMl_JJQqaa_ci39pfJ-CUeXAq8m-XQ2w/edit?resourcekey=0-bvWjbXn3BsNygpmcHwAZ1Q#heading=h.2r7dtni77yvu

The Extreme-LUD runs on Canary / Dev / Beta / Stable on 100% users [Note: We can configure
the sampling rate depending on the release channels.] and keeps detecting crashes. We should
consider merging the ADVANCED_MEMORY_SAFETY_CHECKS() to previous branches when
necessary.

We can manually add ADVANCED_MEMORY_SAFETY_CHECKS() in advance (i.e., before UaFs
are detected by the Extreme-LUD) to objects that are likely to cause memory safety issues.
Examples are RenderFrameHost, Mojo endpoint objects etc.

We might want to run a clean-up process to remove ADVANCED_MEMORY_SAFETY_CHECKS()
from old objects (after confirming that the UaF concerns about the objects are gone in some
way) once a year. We can worry about the clean-up process later.

#3 Mitigate UaFs on on-stack pointers

We allocate the MiracleObjects in a special partition of PartitionAlloc and guarantee the

following behavior (as discussed in this email thread):

1. When the object is freed by a thread T, the object is zapped and added to T's per-thread
quarantine list instead of the global free list.

2. When the thread T finishes the outermost event loop (i.e., when the stack is emptied),
objects in T's quarantine list are moved to the global free list.

3. If the size of T's quarantine list exceeds some limit (e.g., 10 MB) before T finishes the
outermost event loop [Note: This will be rare.], T runs a conservative stack scan and
finds pointers pointing to objects in the quarantine list. Objects in the quarantine list that
are not pointed to from the stack are moved to the global free list. We can use

Anton Bikineev 's stack scanning (originally implemented for *Scan).

This achieves Goal X for on-stack pointers, even though it does not achieve Goal Z.

Let's see a couple of examples.

class A {
ADVANCED MEMORY_SAFETY_CHECKS();

ooy

};

void A::SomeFunc() {
DeleteThis();
OtherFunc();

}

void A::DeleteThis() {
delete this;

}

void A::0therFunc() {
..; // This does not cause Use-after-Reallocation.

}



mailto:bikineev@google.com
https://groups.google.com/a/google.com/g/chrome-memory-safety/c/ibIobxXDP_M/m/YLsD-rXGAwAJ?hl=en

A::0therFunc() does not cause Use-after-Reallocation because the object is still in the
quarantine and not yet returned to the global free list. The object in the quarantine is moved to
the global free list when the current event loop finishes.

Next example:

class A {
ADVANCED MEMORY_SAFETY_CHECKS();
)
¥
void A::SomeFunc() {
DeleteThis();
OverflowTheQuarantine(); // Attackers may do this intentionally.
OtherFunc();
}

void A::DeleteThis() {
delete this;

}

void A::OverflowTheQuarantine() {
for (int i = 9; i < 1000000; i++) {
new A;
}

}

void A::0therFunc() {
.; // This does not cause Use-after-Reallocation.
}

A::0therFunc() does not cause Use-after-Reallocation because the object is still in the
quarantine and not yet returned to the global free list. A: :OverflowTheQuarantine()
overflows the quarantine and triggers the stack scanning. The stack scanning is highly likely to
find the "this" pointer on the machine stack or the CPU registers and keeps the object in the
quarantine.

Next example:

class A {
ADVANCED_MEMORY_SAFETY_CHECKS();

°J)

}s

void SomeFunc(A* a) {




delete a;
a->SomeFunc(); // This does not cause Use-after-Realllocation.

a->SomeFunc() does not cause Use-after-Reallocation because the object is still in the
quarantine until the current event loop finishes.

Next example:

class A {
ADVANCED_MEMORY_SAFETY_CHECKS();

ooy

};

void SomeFunc(A* a) {
delete a;
OverflowTheQuarantine(); // Attackers may do this intentionally.
a->SomeFunc(); // This does not cause Use-after-Realllocation if "a"
// is found on the stack.

}

void OverflowTheQuarantine() {
for (int i = @; 1 < 1000000; i++) {
new A;

}

a->SomeFunc () does not cause Use-after-Reallocation only when a is found on the stack (i.e.,
only when you are lucky). This is the reason Goal Z is not achieved.

#4 Enable other advanced memory safety checks

E ADVANCED_MEMORY_SAFETY_CHECKS() lists other ideas to harden the memory safety of
MiracleObijects:

Protect dereference-after-free

Protect extraction-after-free

Enable ENABLE_POINTER_SUBTRACTION_CHECK

Enable BACKUP_REF_PTR_POISON_OOB_PTR

go/initialize (i.e., initialize the object with memset(0) -- I'm not sure how it matters for
MiracleObjects because they are zapped with Oxefefefefefefefef when they get freed.)

We can also teach GWP-ASan and the Original-LUD to prioritize MiracleObjects when
sampling. MiracleObjects are more likely to have UaF bugs than other objects.


https://docs.google.com/document/d/19GNwqFrnC9_bMl_JJQqaa_ci39pfJ-CUeXAq8m-XQ2w/edit?resourcekey=0-bvWjbXn3BsNygpmcHwAZ1Q

Discussion

The object lifetime after it's freed

The object lifetime after it's freed can be illustrated as follows:

Yes No BRP's refcount is
decremented

Yes No

No Yes

When the event loop finishes
or the quarantine size exceeds

the configured threshold When the quarantine size
Y exceeds the threshold

The performance overhead on a common path

Most objects are expected to hit the following path and go to the global free list directly:

a) Is BRP's refcount zero? -> Yes
b) Is this a partition for MiracleObject? -> No
c) Should sample the object? -> No

The performance overhead of doing these checks in PartitioAlloc::Free() will be negligible. a)
already exists. b) can be done at compile time using a C++ template. c) already exists to sample
objects for other purposes and we can merge the sampling logic somehow.

Three quarantines are in play

BRP, the Extreme-LUD and ADVANCED_MEMORY_SAFETY_CHECKS() have their own
quarantines. These three quarantines are different things:



e The quarantine of BRP is used to delay freeing the BRP-protected objects until their
reference count goes down to zero. This happens before the Extreme-LUD or
ADVANCED_MEMORY_SAFETY_CHECKS() comes into play.

e The quarantine of ADVANCED_MEMORY_SAFETY_CHECKS() is used to delay freeing
objects until the current event loop finishes or the quarantine size exceeds the
configured threshold. This prevents objects referenced from on-stack pointers from
getting Use-after-Reallocated.

e The quarantine of the Extreme-LUD is used to delay freeing randomly sampled objects
for a while (until the quarantine size exceeds the configured threshold). This is used to
detect UaF crash reports.

e The Extreme-LUD should be disabled on the special partition for
ADVANCED_MEMORY_SAFETY_CHECKS(). This prevents an object from going to the
two quarantines at the same time.

Engineering cost

Once the Original-LUD is available, it will be ~0.5 SWE quarters to implement the Extreme-LUD,
~1.5 SWE quarters to implement the protection for on-stack pointers behind
ADVANCED_MEMORY_SAFETY_CHECKS(), and ~2 SWE quarters to verify the behavior and
launch it.

Any comments are welcome! &



	MiracleObject 
	TL;DR of the proposal 
	Motivation 
	Mitigating UaFs on on-stack pointers 
	We have many unknown UaFs 

	Goals / non-goals 
	Success metrics 
	Proposal 
	#1 Detect more UaFs with the Extreme-LUD 
	Sampling objects 
	Capping the quarantine size 
	Uploading a crash report 

	#2 Annotate MiracleObject 
	#3 Mitigate UaFs on on-stack pointers 
	#4 Enable other advanced memory safety checks 

	Discussion 
	The object lifetime after it's freed 
	The performance overhead on a common path 
	Three quarantines are in play 
	Engineering cost 


