The Color Signature: Analyzing Art with K-Means clustering

Paloma L. Sett
(PUC-Rio0)

1. Introduction

What makes a Van Gogh painting feel like a Van Gogh? Beyond the iconic
brushstrokes, a huge part of any artist's identity is their unique use of color. An artist's palette
is not just a technical choice; it is the very soul of their work, conveying emotion,
atmosphere, and meaning. But can we analyze this soul with the objective tools of science?

The most common use for Al in the creative world today is content generation.
However, a deeper, less-explored application exists: using Al not as a creator, but as an
instrument of insight, a new lens to understand and appreciate human art.

In this article, it will demonstrate a practical use case for how a simple machine
learning algorithm can act as a bridge between art and science. It will build a Python tool to
extract the quantitative "Color Signature" from any painting and explore what this data
reveals about the emotional tension in some of the world's most famous masterpieces. This is
not about replacing the art critic with an algorithm, but about equipping our curiosity with a
new kind of microscope.

2. The Toolkit: Libraries and Setup

To begin the analysis, it will need a few essential Python libraries, all of which are
staples in the data science and computer vision fields. The toolkit is simple and powerful:

- OpenCV (Bradski, G., 2007): To load and handle the images.

- Scikit-learn (Scikit-Learn, 2011): For its robust implementation of the K-Means
clustering algorithm.

- Matplotlib (J. D. Hunter, 2007): To visualize the final color palettes.

- Numpy (NumPy Documentation — NumPy V2.3 Manual, n.d.): For efficient
numerical operations.

It can be installed easily using pip:

install opencv-python
install scikit-learn

install matplotlib
install numpy

3. The Code: Extracting the Palette Step-by-Step

That’s an intuitive Python script that ingests an image and outputs its dominant color
palette along with the percentage of each color. The logic is straightforward: it will treat
every pixel in the painting as a data point and use the K-Means algorithm to group these
pixels into a small number of color clusters. The center of each cluster will be a dominant
color in the final palette. So, it can be started importing those libraries:

import cv2

import numpy as np

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

from collections import Counter

The core of this project is encapsulated in a single Python function,
extract_color_palette. This function handles everything from loading the image to
displaying the final color signature. Let's break down its internal workings block by block.

First, the function is defined to accept the path to an image and the desired number of
colors for the palette.

def extract_color_palette(image_path, number_of colors, show chart=True):

Extracts and quantifies the dominant color palette from an image using

K-Means clustering.

:param image path: The path to the image file.

:param number_of_colors: The number of dominant colors to extract.

:param show_chart: If True, displays a chart of the color palette.

:return: A dictionary of colors (R, G, B) and their percentage.

3.1. Image Loading and Pre-processing

Before any analysis can occur, the image must be loaded into memory and
prepared for the machine learning algorithm. This involves four key actions: loading,
color correction, resizing, and reshaping.

image = cv2.imread(image_path)

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
resized_image = cv2.resize(image,
(100,100),interpolation=cv2.INTER_AREA)

pixels =resized_image.reshape(-1, 3)

First, the image is loaded from the specified image_path using OpenCV. A
crucial conversion from BGR to RGB color space is performed, as OpenCV defaults

to BGR, while most other image libraries (including Matplotlib for our final chart) use
the standard RGB format.

To ensure efficient processing, the image is then resized to a standard 100x100
pixels. This step significantly speeds up the algorithm's execution time without losing
the essential color information. Finally, the image's 2D structure is flattened into a
one-dimensional list of pixels, which is the required input format for the Scikit-learn
implementation of K-Means.

3.2. Applying the K-Means Algorithm

With the data prepared, the core of the analysis can be performed. The
K-Means clustering algorithm is an unsupervised learning model whose goal is to
partition data points into a predefined number of clusters. In our case, the data points
are the pixels, and the clusters are the dominant colors.

kmeans = KMeans(n_clusters=number_of _colors, random_state=42,
n_init=10)

kmeans.fit(pixels)

An instance of the KMeans model is created with the desired number of

clusters (number_of_colors). The model is then "fitted" to our pixel data. During
this process, the algorithm identifies the centroids—the geometric center of each
cluste—which represent the average color for that group. These centroids will
become the colors of our final palette.

3.3. Quantifying The Results

After the model is trained, the next step is to interpret its output. This involves
counting the number of pixels assigned to each color cluster and converting this count
into a percentage, giving us the quantitative distribution of the color signature.

total pixels = len(kmeans.labels)

counts = Counter(kmeans.labels)

sorted counts = sorted(counts.items(), key=lambda x: x[1],

reverse=True)

palette = {}
dominant_colors rgb = []

percentages = []

for cluster_index, count in sorted_counts:
color_rgb =
tuple(kmeans.cluster_centers_[cluster_index].astype('uint8'))
percentage = (count / total pixels) * 100
palette[color_rgb] = percentage
dominant colors _rgb.append(color_rgb)

percentages.append(percentage)

The code first calculates the total number of pixels and counts how many
belong to each cluster identified by the kmeans.labels_. It then iterates through
these clusters, from the most populated to the least, extracting the RGB value of the
centroid and calculating its percentage.

3.4. Visualizing the Color Signature

Finally, data is often most powerful when visualized. This last block of code
uses Matplotlib to generate a clean and intuitive bar chart that displays each dominant
color and its corresponding percentage in the painting.

1f show_chart:

plt.figure(figsize=(10, 5))

bars = plt.bar(range(number_of colors), percentages,
color=[tuple(c/255.0 for c in color) for color in

dominant_colors_rgb])

plt.title(f'Color Signature of:

{image path.split("/")[-11}")
plt.ylabel('Percentage (%)")
plt.xticks([])

for i, bar in enumerate(bars):
plt.text(bar.get x() + bar.get_width() / 2,
bar.get_height() + 1, f'{percentages[i]:.1f}%', ha='center',

va="bottom")

plt.ylim(@, max(percentages) + 10)
plt.show()

return palette

This code generates a bar chart where the color of each bar corresponds to a
dominant color from the palette and its height represents its prevalence in the image.
The percentages are also printed on top of each bar for clarity, creating a complete and
easy-to-read "Color Signature."

4. The Use Case: The Signatures of the Master

To demonstrate the power of this analytical approach, we will apply our Python script
to a few famous paintings, creating a comparative analysis of their unique color signatures.

4.1. Vincent van Gogh's "The Starry Night"

First, the script is applied to one of the most famous and emotionally charged
paintings in history. Van Gogh's work (Vincent Van Gogh. The Starry Night. Saint
Rémy, June 1889, n.d.) is known for its intense energy, and "The Starry Night" is a
prime example of his unique use of color to convey deep feeling.

Figure 1: "The Starry Night" (1889) by Vincent van Gogh (Image from MoMA
Collections).

Running the color_palette_analyzer.py script on this masterpiece
yields a revealing color signature.

https://www.moma.org/collection/works/79802
https://www.moma.org/collection/works/79802

- Color Signature of: Van_Gogh_Starry_Night.jpg

30 A

25.0%

Percentage (%)

Figure 2: The Color Signature of "The Starry Night", showing the 5 most dominant
colors and their percentage (Image by the author).

The bar chart immediately confirms what the eye suspects, but with
mathematical certainty. The painting is overwhelmingly dominated by a triad of dark
tones; nearly 89% of the palette is composed of deep blues and black. This data
quantifies the melancholic atmosphere and the immense, heavy weight of the night
sky that Van Gogh depicted. In stark contrast, the light of the stars and the moon,
represented by the muted yellow-green tone, constitutes a mere 11.1% of the palette.

What this objective data suggests is the profound drama at the heart of Van
Gogh's work. The light, though visually explosive and energetic, is in a constant
struggle against a predominant darkness. The analysis shows how a simple machine
learning model doesn't diminish the art; instead, it provides a new language to
appreciate its emotional tension. We can now objectively measure the beautiful and
desperate struggle between light and dark that makes this painting a timeless
masterpiece.

4.2. Claude Monet's "Impression, Sunrise"

To provide a point of contrast, let's analyze a masterpiece that defined a whole
new movement: Monet's "Impression, Sunrise." (Impression, Soleil Levant (Rising
Sun), 1872 - Claude Monet — Google Arts & Culture, n.d.) While Van Gogh uses
color to express intense emotion, Monet uses it to capture the fleeting qualities of
light.

Figure 3. "Impression, Sunrise" (1872) by Claude Monet (Image from Google Arts &
Culture).

Color Signature of: Monet_Impression_Sunrise.jpg

40 7

o o
35 4 34.0% 33.9%

Percentage (%)

Figure 4. The Color Signature of "Impression, Sunrise" (Image by the author).

The resulting color signature is dramatically different. Where Van Gogh's
palette was dominated by dark, saturated blues, Monet's is a study in subtlety and
light. The signature is composed mainly of muted greys, soft blues, and pastel tones,
which quantitatively represent the hazy, humid atmosphere of the port at dawn.

The most striking feature is the small but vital percentage of vibrant orange.
This single data point is the famous sun, the focal point of the entire painting. Our
analysis shows that its impact is not due to its dominance in quantity, but to its sharp
contrast against the otherwise low-saturation palette. Here, our tool helps us
objectively measure the "impression" that Monet so brilliantly crafted.

4.3. A Personal Study: "Path Under The Flamboyant"

Finally, this tool can be used as a powerful method for self-reflection. To
conclude our analysis, I applied the script to one of my own paintings, a landscape
dominated by the fiery red of a Flamboyant tree (Paloma Sette, 2009).

Figure S: "Path Under The Flamboyant" (2009), Paloma Sette (Image by the
author).

Color Signature of: flamboyant.png

35 1

29.8%

30 A

Percentage (%)
N [\¥]
[w] (%))

=
w
1

10 A
6.4%

Figure 6: The Color Signature of the Path Under The Flamboyant painting (Image by the
author).

The result was fascinating, and quite frankly, surprising. My own perception was that the
painting was dominated by the vibrant reds and greens. However, the data reveals a different
story. The most dominant color, at nearly 30%, is a dark, earthy brown-red, originating from
the deep shadows and tree trunks. The bright red of the flowers, the painting’s focal point,
comes in second at 26.6%.

This discrepancy is the most valuable insight of this entire experiment. It highlights the
difference between objective, computational analysis and subjective, human perception. The
human brain is wired to prioritize high-contrast, high-saturation elements (the red flowers),
giving them more emotional and perceptual "weight." The algorithm, free from this bias,
simply counts the pixels, revealing the foundational role of the dark tones in creating the
painting's structure and depth.

This proves the value of the tool not as a replacement for the artist's eye, but as a surprising

mirror. It can reveal the unconscious choices made, quantifying the hidden architecture of our
own work and uncovering the mathematical truth behind the magic of a painting.

Conclusion

The journey from a philosophical question to a practical Python script demonstrates the
powerful synergy between art and data science. The use cases, from Van Gogh's emotional

intensity to a surprising self-analysis, revealed a key insight: a simple algorithm can offer a
profoundly new perspective on art, not only of the masters but also of our own.

The color signature tool does not tell us if a painting is "good," nor does it explain away its
mystery. Instead, it provides an objective dataset that enriches our subjective interpretation.
The most fascinating discovery was not just quantifying the colors, but revealing our own
perceptual biases. We learned that the colors our brain prioritizes for their emotional impact
are not always the ones that are most mathematically present.

The most exciting future for Artificial Intelligence may not lie in its ability to create
autonomously, but in its potential to augment our own capacity for understanding,
appreciation, and introspection. By building these bridges between the technical and the
artistic, we don't just analyze art; we enrich our dialogue with it, and with ourselves.

FAQs

1. What is K-Means clustering and why is it used for colors? K-Means is an unsupervised
learning algorithm that groups data points into a specified number of clusters (k). It's an
excellent choice for color quantification because it treats every pixel as a data point and
effectively identifies the most common color groups by finding their average center, which
becomes a dominant color in our palette.

2. Why did you resize the image before processing? Resizing the image to a smaller,
standard size (e.g., 100x100 pixels) drastically speeds up the K-Means algorithm's
computation time. A high-resolution image can have millions of pixels, which would be very
slow to process. For extracting a general color palette, the overall color distribution is more
important than fine detail, making resizing an effective optimization.

3. Can I use this code on my own photos? Absolutely! The script will work on any image
file. It can be a fascinating way to discover the dominant color palette of your own
photography, a brand logo, or even a frame from a movie.

4. How does the number of colors (the 'k' in K-Means) affect the result? The
number_of_colors (k) is a crucial parameter. A small k (like 3 or 4) will give you a very
broad, high-level summary of the color scheme. A larger k (like 8 or 10) will capture more
subtle variations and secondary colors. The ideal number depends on the complexity of the
image and the level of detail you wish to analyze.

5. What is the difference between this method and a "color picker" tool? A color picker
tool manually samples the color of a single pixel you click on. This method, by contrast,
analyzes all the pixels in the image simultaneously and calculates which color groups are the
most statistically significant. It gives you a true representation of the overall color balance,
not just an individual shade.

6. Where can I find high-quality images of artworks to analyze? Great sources for
high-resolution, public-domain images of art include the Google Arts & Culture platform, the
online collections of major museums like The Metropolitan Museum of Art (The Met), the
Rijksmuseum, and the Art Institute of Chicago. Always check the copyright and usage rights
for each image.

References

Bradski, G. (2007). The OpenCV Library. OpenCV - Open Computer Vision Library.
Retrieved September 13, 2025, from http://opencv.org

Impression, Soleil Levant (Rising Sun), 1872 - Claude Monet — Google Arts & Culture.
(n.d.). Google Arts & Culture. Retrieved September 13, 2025, from
https://artsandculture.google.com/asset/impression-soleil-levant-rising-sun-1872-clau
de-monet/awGukZXBk{fTvEQ?hl=en

J. D. Hunter. (2007). Matplotlib: A 2D graphics environment. Matplotlib — Visualization
with Python. Retrieved September 13, 2025, from https://matplotlib.org

NumPy documentation — NumPy v2.3 Manual. (n.d.). NumPy. Retrieved September 13,
2025, from https://numpy.org/doc/stable

OpenCV. (2000). OpenCV - Open Computer Vision Library. Retrieved September 13, 2025,
from http://opencv.org

Paloma Sette. (2009). Path Under The Flamboyant (Caminho sob o Flamboyant). Brazil.

Scikit-Learn. (2011). scikit-learn: machine learning in Python — scikit-learn 1.7.2
documentation. Retrieved September 13, 2025, from http://scikit-learn.org

2.3. Clustering — scikit-learn 1.7.2 documentation. (n.d.). Scikit-learn. Retrieved September
13, 2025, from https://scikit-learn.org/stable/modules/clustering.html

	1.​Introduction
	2.​The Toolkit: Libraries and Setup
	3.​The Code: Extracting the Palette Step-by-Step
	
	3.1.​Image Loading and Pre-processing
	3.2.​Applying the K-Means Algorithm
	3.3.​Quantifying The Results
	3.4.​Visualizing the Color Signature

	4.​The Use Case: The Signatures of the Master
	4.1.​Vincent van Gogh's "The Starry Night"
	4.2.​Claude Monet's "Impression, Sunrise"
	4.3.​A Personal Study: "Path Under The Flamboyant"

	Conclusion
	FAQs
	References

