
Getting Started with Beancount
Martin Blais, July 2014

http://furius.ca/beancount/doc/getting-started

Introduction
This document is a gentle guide to creating your first Beancount file, initializing it with some
options, some guidelines for how to organize your file, and instructions for declaring accounts and
making sure their initial balance does not raise errors. It also contains some material on configuring
the Emacs text editor, if you use that.

You will probably want to have read some of the User’s Manual first in order to familiarize yourself
with the syntax and kinds of available directives, or move on to the Cookbook if you’ve already setup
a file or know how to do that. If you’re familiar with Ledger, you may want to read up on the
differences between Ledger and Beancount first.

Editor Support
Beancount ledgers are simple text files. You can use any text editor to compose your input file.
However, a good text editor which understands enough of the Beancount syntax to offer focused
facilities like syntax highlighting, autocompletion, and automatic indentation highly has the
potential to greatly increase productivity in compiling and maintaining your ledger.

Emacs
Support for editing Beancount ledger files in Emacs was traditionally distributed with Beancount. It
now lives as its own project in this Github repository.

Vim
Support for editing Beancount ledger files in Vim has been implemented by Nathan Grigg and is
available in this Github repository.

Sublime
Support for editing with Sublime has been contributed by Martin Andreas Andersen and is available
in this github repository or as a Sublime package here.

mailto:blais@furius.ca
http://furius.ca/beancount/doc/getting-started
http://furius.ca/beancount/doc/users-manual
http://furius.ca/beancount/doc/cookbook
http://furius.ca/beancount/doc/comparison
https://github.com/beancount/beancount-mode/
https://github.com/nathangrigg/vim-beancount
https://github.com/draug3n/sublime-beancount
https://packagecontrol.io/packages/Beancount


VSCode
There are a number of plugins for working with Beancount text files including VSCode-Beancount
by Lencerf.

Creating your First Input File
To get started, let’s create a minimal input file with two accounts and a single transaction. Enter or
copy the following input to a text file:

2014-01-01 open Assets:Checking

2014-01-01 open Equity:Opening-Balances

2014-01-02 * "Deposit"

Assets:Checking 100.00 USD

Equity:Opening-Balances

Brief Syntax Overview
A few notes and an ultra brief overview of the Beancount syntax:

● Currencies must be entirely in capital letters (allowing numbers and some special
characters, like “_” or “-”). Currency symbols (such as $ or €) are not supported.

● Account names do not admit spaces (though you can use dashes), and must have at least two
components, separated by colons. Each component of an account name must begin with a
capital letter or number.

● Description strings must be quoted, like this: "AMEX PMNT".
● Dates are only parsed in ISO8601 format, that is, YYYY-MM-DD.
● Tags must begin with “#”, and links with “^”.

For a complete description of the syntax, visit the User’s Manual.

Validating your File
The purpose of Beancount is to produce reports from your input file (either on the console or serve
via its web interface). However, there is a tool that you can use to simply load its contents and make
some validation checks on it, to ensure that your input does not contain errors. Beancount can be
quite strict; this is a tool that you use while you’re entering your data to ensure that your input file
is legal. The tool is called “bean-check” and you invoke it like this:

https://marketplace.visualstudio.com/items?itemName=Lencerf.beancount
http://furius.ca/beancount/doc/users-manual


bean-check /path/to/your/file.beancount

Try it now on the file you just created from the previous section. It should exit with no output. If
there are errors, they will be printed on the console. The errors are printed out in a format that
Emacs recognizes by default, so you can use Emacs’ next-error and previous-error built-in
functions to move the cursor to the location of the problem.

Viewing theWeb Interface
A convenient way to view reports is to bring up the “bean-web” tool on your input file. Try it:

bean-web /path/to/your/file.beancount

You can then point a web browser to http://localhost:8080 and click your way around the various
reports generated by Beancount. You can then modify the input file and reload the web page your
browser is pointing to—bean-web will automatically reload the file contents.

At this point, you should probably read some of the Language Syntax document.

How to Organize your File
In this section we provide general guidelines for how to organize your file. This assumes you’ve read
the Language Syntax document.

Preamble to your Input File
I recommend that you begin with just a single file . My file has a header that tells Emacs what mode1

to open the file with, followed by some common options:

;; -*- mode: beancount; coding: utf-8; fill-column: 400; -*-

option "title" "My Personal Ledger"

option "operating_currency" "USD"

option "operating_currency" "CAD"

The title option is used in reports. The list of “operating currencies” identify those commodities
which you use most commonly as “currencies” and which warrant rendering in their own dedicated
columns in reports (this declaration has no other effect on the behavior of any of the calculations).

1 It is tempting to want to break down a large file into many smaller ones, but especially at first, the
convenience of having everything in a single place is great.

http://localhost:8080
http://furius.ca/beancount/doc/syntax
http://furius.ca/beancount/doc/syntax


Sections & Declaring Accounts
I like to organize my input file in sections that correspond to each real-world account. Each section
defines all the accounts related to this real-world account by using an Open directive. For example,
this is a checking account:

2007-02-01 open Assets:US:BofA:Savings USD

2007-02-01 open Income:US:BofA:Savings:Interest USD

I like to declare the currency constraints as much as possible, to avoid mistakes. Also, note how I
declare an income account specific to this account. This helps break down income in reporting for
taxes, as you will likely receive a tax document in relation to that specific account’s income (in the
US this would be a 1099-INT form produced by your bank).

Here’s what the opening accounts might look like for an investment account:

2012-03-01 open Assets:US:Etrade:Main:Cash USD

2012-03-01 open Assets:US:Etrade:Main:ITOT ITOT

2012-03-01 open Assets:US:Etrade:Main:IXUS IXUS

2012-03-01 open Assets:US:Etrade:Main:IEFA IEFA

2012-03-01 open Income:US:Etrade:Main:Interest USD

2012-03-01 open Income:US:Etrade:Main:PnL USD

2012-03-01 open Income:US:Etrade:Main:Dividend USD

2012-03-01 open Income:US:Etrade:Main:DividendNoTax USD

The point is that all these accounts are related somehow. The various sections of the cookbook will
describe the set of accounts suggested to create for each section.

Not all sections have to be that way. For example, I have the following sections:

• Eternal accounts. I have a section at the top dedicated to contain special and “eternal”
accounts, such as payables and receivables.

• Daybook. I have a “daybook” section at the bottom that contains all cash expenses, in
chronological order.

• Expense accounts. All my expenses accounts (categories) are defined in their own section.
• Employers. For each employer I’ve defined a section where I put the entries for their direct

deposits, and track vacations, stock vesting and other job-related transactions.
• Taxes. I have a section for taxes, organized by taxation year.

You can organize it any way you like, because Beancount doesn’t care about the ordering of
declarations.

Closing Accounts
If a real-world account has closed, or is never going to have any more transactions posted to it, you
can declare it “closed” at a particular date by using a Close directive:



; Moving to another bank.

2013-06-13 close Assets:US:BofA:Savings

This tells Beancount not to show the account in reports that don’t include any date where it was
active. It also avoids errors by triggering an error if you do try to post to it at a later date.

De-duping
One problem that will occur frequently is that once you have some sort of code or process set up to
automatically extract postings from downloaded files, you will end up importing postings which
provide two separate sides of the same transaction. An example is the payment of a credit card
balance via a transfer from a checking account. If you download the transactions for your checking
account, you will extract something like this:

2014-06-08 * "ONLINE PAYMENT - THANK YOU"

Assets:CA:BofA:Checking -923.24 USD

The credit card download will yield you this:

2014-06-10 * "AMEX EPAYMENT ACH PMT"

Liabilities:US:Amex:Platinum 923.24 USD

Many times, transactions from these accounts need to be booked to an expense account, but in this
case, these are two separate legs of the same transaction: a transfer. When you import one of these,
you normally look for the other side and merge them together:

;2014-06-08 * "ONLINE PAYMENT - THANK YOU"

2014-06-10 * "AMEX EPAYMENT ACH PMT"

Liabilities:US:Amex:Platinum 923.24 USD

Assets:CA:BofA:Checking -923.24 USD

I often leave one of the description lines in comments—just my choice, Beancount ignores it. Also
note that I had to choose one of the two dates. I just choose the one I prefer, as long as it does not
break any balance assertion.

In the case that you would forget to merge those two imported transactions, worry not! That’s what
balance assertions are for. Regularly place a balance assertion in either of these accounts, e.g., every
time you import, and you will get a nice error if you end up entering the transaction twice. This is
pretty common and after a while it becomes second nature to interpret that compiler error and fix it
in seconds.

Finally, when I know I import just one side of these, I select the other account manually and I mark
the posting I know will be imported later with a flag, which tells me I haven’t de-duped this
transaction yet:

2014-06-10 * "AMEX EPAYMENT ACH PMT"

Liabilities:US:Amex:Platinum 923.24 USD

! Assets:CA:BofA:Checking

http://furius.ca/beancount/doc/ingest


Later on, when I import the checking account’s transactions and go fishing for the other side of this
payment, I will find this and get a good feeling that the world is operating as it should.

(If you’re interested in more of a discussion around de-duplicating and merging transactions, see
this feature proposal. Also, you might be interested in the “effective_date” plugin external
contribution, which splits transactions in two.)

Which Side?
So if you organize your account in sections the way I suggest above, which section of the file should
you leave such “merged” transactions in, that is, transactions that involve two separate accounts?
Well, it’s your call. For example, in the case of a transfer between two accounts organized such that
they have their own dedicated sections, it would be nice to be able to leave both transactions there
so that when you edit your input file you see them in either section, but unfortunately, the
transaction must occur in only one place in your document. You have to choose one.

Personally I’m a little careless about being consistent which of the section I choose to leave the
transaction in; sometimes I choose one section of my input file, or that of the other account, for the
same pair of accounts. It hasn’t been a problem, as I use Emacs and i-search liberally which makes it
easy to dig around my gigantic input file. If you want to keep your input more tidy and organized,
you could come up with a rule for yourself, e.g. “credit card payments are always left in the paying
account’s section, not in the credit card account’s section”, or perhaps you could leave the
transaction in both sections and comment one out .2

Padding
If you’re just starting out—and you probably are if you’re reading this—you will have no historical
data. This means that the balances of your Assets and Liabilities accounts in Beancount will all be
zero. But the first thing you should want to do after defining some accounts is establish a balance
sheet and bring those amounts to their actual current value.

Let’s take your checking account as an example, say you opened it a while back. You don’t remember
exactly when, so let’s use an approximate date:

2000-05-28 open Assets:CA:BofA:Checking USD

The next thing you do is look up your current balance and put a balance assertion for the
corresponding amount:

2014-07-01 balance Assets:CA:BofA:Checking 1256.35 USD

2 Some people have suggested that Beancount automatically detect duplicated transactions based on a
heuristic and automatically ignore (remove) one of the two, but this has not been tried out yet. In particular,
this would lend itself well to organizing transactions not just per section, but in separate files, i.e., all files
would contain all the transactions for the accounts they represent. If you’re interested in adding this feature,
you could easily implement this as a plugin, without disrupting the rest of the system.

http://furius.ca/beancount/doc/proposal-dates
https://github.com/redstreet/beancount_plugins_redstreet


Running Beancount on just this will correctly produce an error because Beancount assumes an
implicit balance assertion of “empty” at the time you open an account. You will have to “pad” your
account to today’s balance by inserting a balance adjustment at some point in time between the
opening and the balance, against some equity account, which is an arbitrary place to book “where
you received the initial balance from.” For this purpose, this is usually the
“Equity:Opening-Balances” account. So let’s include this padding transaction and recap what
we have so far:

2000-05-28 open Assets:CA:BofA:Checking USD

2000-05-28 * "Initialize account"

Equity:Opening-Balances -1256.35 USD

Assets:CA:BofA:Checking 1256.35 USD

2014-07-01 balance Assets:CA:BofA:Checking 1256.35 USD

From here onwards, you would start adding entries reflecting everything that happened after 7/1.
However, what if you wanted to go back in time? It is perfectly reasonable that once you’ve got your
chart-of-accounts set up you might want to fill in the missing history until at least the beginning of
this year.

Let’s assume you had a single transaction in June 2014, and let’s add it:

2000-05-28 open Assets:CA:BofA:Checking USD

2000-05-28 * "Initialize account"

Equity:Opening-Balances -1256.35 USD

Assets:CA:BofA:Checking 1256.35 USD

2014-06-28 * "Paid credit card bill"

Assets:CA:BofA:Checking -700.00 USD

Liabilities:US:Amex:Platinum 700.00 USD

2014-07-01 balance Assets:CA:BofA:Checking 1256.35 USD

Now the balance assertion fails! You would need to adjust the initialization entry to fix this:

2000-05-28 open Assets:CA:BofA:Checking USD

2000-05-28 * "Initialize account"

Equity:Opening-Balances -1956.35 USD

Assets:CA:BofA:Checking 1956.35 USD

2014-06-28 * "Paid credit card bill"

Assets:CA:BofA:Checking -700.00 USD

Liabilities:US:Amex:Platinum 700.00 USD

2014-07-01 balance Assets:CA:BofA:Checking 1256.35 USD



Now this works. So basically, every single time you insert an entry in the past, you would have to
adjust the balance. Isn’t this annoying? Well, yes.

Fortunately, we can provide some help: you can use a Pad directive to replace and automatically
synthesize the balance adjustment to match the next balance check, like this:

2000-05-28 open Assets:CA:BofA:Checking USD

2000-05-28 pad Assets:CA:BofA:Checking Equity:Opening-Balances

2014-06-28 * "Paid credit card bill"

Assets:CA:BofA:Checking -700.00 USD

Liabilities:US:Amex:Platinum 700.00 USD

2014-07-01 balance Assets:CA:BofA:Checking 1256.35 USD

Note that this is only needed for balance sheet accounts (Assets and Liabilities) because we don’t
care about the initial balances of the Income and Expenses accounts, we only care about their
transitional value (the changes they post during a period). For example, it makes no sense to bring
up the Expenses:Restaurant account to the sum total value of all the costs of the meals you
consumed since you were born.

So you will probably want to get started with Open & Pad directives for each Assets and Liabilities
accounts.

What’s Next?
At this point you will probably move onwards to the Cookbook, or read the User’s Manual if you
haven’t already done that.

http://furius.ca/beancount/doc/cookbook
http://furius.ca/beancount/doc/users-manual

