
G++/GCC Command
g++ -g --std=c++0x –fomit–frame–pointer

x86-64 : –fomit–frame–pointer it doesn’t prevent debugging.
-g: debug info

gcc -g -c -fPIC -Wall mod1.c mod2.c mod3.c​#create PIC object files
gcc -g -shared -o libfoo.so mod1.o mod2.o mod3.o​ #create shared library
gcc -g -fPIC -Wall mod1.c mod2.c mod3.c -shared -o libfoo.so #create & compile share library
gcc -g -shared -Wl,-soname,libbar.so -o libfoo.so mod1.o mod2.o mod3.o

#embedded SONAME for libfoo.so

gcc -g -Wall -Wl,-rpath,/home/mtk/pdir -o prog prog.c libdemo.so

–rpath : insert library path into the ELF for runtime lookup

gcc -g -Wall -o prog prog.c -Wl,--enable-new-dtags -Wl,-rpath,/home/mtk/pdir/d1 \
-L/home/mtk/pdir/d1 -lx1 #enable DT_RUNPATH in ELF

gcc -Wl,-rpath,'$ORIGIN'/lib
​ #to locate runtime library based on the application location

gcc –Wl,–znodelete # load and never delete, like dlopen's flag = RTLD_NODELETE

gcc -g -shared -Wl,-Bsymbolic -o libfoo.so foo.o
​ #To let the symbol reference to the symbol in the same library, use -Bsymbolic
​ # like dlopen's flag = RTLD_DEEPBIND

gcc -Wl,--export-dynamic main.c
gcc -export-dynamic main.c
​ #Let the library use symbols in the main program:

gcc -Wl,--version-script,myscriptfile.map …

gcc -g -c -fPIC -Wall sv_lib_v2.c
gcc -g -shared -o libsv.so sv_lib_v2.o -Wl,--version-script,sv_v2.map

AR Command
ar r libdemo.a mod1.o mod2.o mod3.o​ #update
ar tv libdemo.a ​ #list table of content
ar d libdemo.a mod3.o ​ #delete file

NM Command
nm #list symbols of object files
nm mod1.o | grep _GLOBAL_OFFSET_TABLE_ #check if compiled with –fPIC option

nm -A /usr/lib/lib*.so 2> /dev/null | grep ' crypt$'

–A option to nm specifies that the library name should be listed at the start of each line
displaying a symbol.

readelf Command
readelf #displays information about ELF files.
readelf -s mod1.o | grep _GLOBAL_OFFSET_TABLE_ # check if it’s dynamic link file, which

 has GOT
readelf -d libfoo.so | grep TEXTREL

The string TEXTREL indicates the presence of an object module whose text segment
contains a reference that requires run-time relocation.

readelf -d libfoo.so | grep SONAME

readelf ––dynamic #(or, equivalently, readelf –d) command.

readelf --syms --use-dynamic vis.so | grep vis_ #read version script name

objdump Command
objdump​ #display information from object files

objdump --all-headers libfoo.so | grep TEXTREL
readelf -d libfoo.so | grep TEXTREL

objdump -p libfoo.so | grep SONAME
readelf -d libfoo.so | grep SONAME

objdump -p prog | grep PATH # to check rpath in the obj file
readelf ––dynamic #(or, equivalently, readelf –d) command.

objdump -t p1 # display the symbal tables

ldconfig
$ /sbin/ldconfig -nv . #create soname link
.:
libdemo.so.1 -> libdemo.so.1.0.1

ELF file format
DT_NEEDED​ #library name needed
DT_SONAME​# so name injected during the compile time
--
If a shared library has a soname, then, during static linking, the soname is
embedded in the executable file instead of the real name, and subsequently used
by the dynamic linker when searching for the library at run time.

--
Embedding the name of the library inside the executable happens automatically when we link
our program with a shared library.
--
The
/lib/ld-linux.so.2 #dynamic linker
need to know the location of the .so files.

The dynamic linker(runtime) looks in these places to find the library: (From book
Linkers and Loaders)

●​ If the dynamic segment contains an entry called DT_RPATH, it's a colon-separated list of
directories to search for libraries. This entry is added by a command line switch or
environment variable to the regular (not dynamic) linker at the time a program is linked.
It's mostly used for subsystems like databases that load a collection of programs and
supporting libraries into a single directory.

●​ If there's an environment symbol LD_LIBRARY_PATH, it's treated as a colon-separated
list of directories in which the linker looks for the library. This lets a developer build a new
version of a library, put it in the LD_LIBRARY_PATH and use it with existing linked
programs either to test the new library, or equally well to instrument the behavior of the
program. (It skips this step if the program is set-uid, for security reasons.)

●​ The linker looks in the library cache file /etc/ld.so.conf which contains a list of library
names and paths. If the library name is present, it uses the corresponding path. This is
the usual way that most libraries are found. (The file name at the end of the path need
not be exactly the same as the library name, see the section on library versions, below.)

●​ If all else fails, it looks in the default directory /usr/lib, and if the library's still not found,
displays an error message and exits.

** LIBRARY_PATH is for linking time to search for the library, like -L option for linker!

Static linking is sometimes also referred to as link editing, and a static linker such as ld is
sometimes referred to as a link editor

DYNAMIC Section:
NEEDED: the name of a library this file needs. (Always in programs, sometimes in

libraries when one library is dependend on another, can occur more than once.)
SONAME: "shared object name", the name of the file the linker uses. (Libraries.)
SYMTAB, STRTAB, HASH, SYMENT, STRSZ,: point to the symbol table, associated

string and hash tables, size of a symbol table entry, size of string table. (Both.)
PLTGOT: points to the GOT, or on some architectures to the PLT (Both.)
REL, RELSZ, and RELENT or RELA, RELASZ, and RELAENT: pointer to, number of,

and size of relocation entries. REL entries don't contain addends, RELA entries do. (Both.)
JMPREL, PLTRELSZ, and PLTREL: pointer to, size, and format (REL or RELA) of

relocation table for data referred to by the PLT. (Both.)
I​ NIT and FINI: pointer to initializer and finalizer routines to be called at program startup
and finish. (Optional but usual in both.)

Generate share library
Generate soname inside the library:
gcc -g -c -fPIC -Wall mod1.c mod2.c mod3.c
gcc -g -shared -Wl,-soname,libbar.so -o libfoo.so mod1.o mod2.o mod3.o
Generate soname with link:
ln -s libfoo.so libbar.so
Because any program that link with libfoo.so during the runtime will look for soname : libbar.so

Determine the soname in the library:
objdump -p libfoo.so | grep SONAME
readelf -d libfoo.so | grep SONAME

Check while library the process is using now:
/proc/PID/maps

Share Library Naming Convention
Real names, sonames, and linker names:

real name : libname.so.major-id.minor-id

soname : ibname.so.major-id #link to real name, maintain by ldconfig

linker name : libname.so #link to soname

Static Link
Specify the pathname of the static library (including the .a extension) on the
gcc command line.

●​ Specify the –static option to gcc.
●​ Use the gcc options –Wl,–Bstatic and –Wl,–Bdynamic to explicitly toggle the

linker’s choice between static and shared libraries. These options can be intermingled
with –l options on the gcc command line. The linker processes the options in the order in
which they are specified.

Runtime Library Lookup inside the ELF file

gcc -g -Wall -Wl,-rpath,/home/mtk/pdir -o prog prog.c libdemo.so

–rpath : insert library path into the ELF for runtime lookup

environment variable:

LD_RUN_PATH # used only if -rpath is NOT specified.

** -rpath is runtime library location. -L is link time library location.

objdump -p prog | grep PATH # to check rpath in the obj file
readelf ––dynamic #(or, equivalently, readelf –d) command.

At run time, search for library: (precedence)
DT_RPATH ​ ​ //OLD in ELF
LD_LIBRARY_PATH​ //env variable
DT_RUNPATH ​ //NEW in ELF

gcc -Wl,-rpath,'$ORIGIN'/lib

to locate runtime library based on the application location

** If the executable is a set-user-ID or set-group-ID program, then LD_LIBRARY_PATH is
ignored.

gcc –Wl,–znodelete # load and never delete, like dlopen's flag = RTLD_NODELETE

Symbol Lookup Rule

1. A definition of a global symbol in the main program overrides a definition in
 a library.

2. If a global symbol is defined in multiple libraries, then a reference to that symbol
 is bound to the first definition found by scanning libraries in the left-to-right
 order in which they were listed on the static link command line.

gcc -g -shared -Wl,-Bsymbolic -o libfoo.so foo.o
​ #To let the symbol reference to the symbol in the same library, use -Bsymbolic
​ # like dlopen's flag = RTLD_DEEPBIND

Dynamic Load during the running process

dlopen API on Linux, we must specify the –ldl

void *dlopen(const char *libfilename, int flags); #this function call has reference count

flags:
RTLD_LAZY

RTLD_NOW

environment variable:
LD_BIND_NOW # set this overrides dlopen's flag RTLD_NOW

RTLD_GLOBAL
​ Symbols in this library and its dependency tree are made available for
resolving references in other libraries loaded by this process and also for
lookups via dlsym().

RTLD_LOCAL (Linux default)

This is the converse of RTLD_GLOBAL and the default if neither constant is
specified. It specifies that symbols in this library and its dependency tree
are not available to resolve references in subsequently loaded libraries.

RTLD_NODELETE (since glibc 2.2)

Don’t unload the library during a dlclose(), even if the reference count falls to 0.
This means that the library’s static variables are not reinitialized if the library is
later reloaded by dlopen(). (We can achieve a similar effect for libraries loaded
automatically by the dynamic linker by specifying the gcc –Wl,–znodelete
option when creating the library.)

RTLD_NOLOAD (since glibc 2.2)

Don’t load the library. This serves two purposes. First, we can use this flag to

check if a particular library is currently loaded as part of the process’s
address space. If it is, dlopen() returns the library’s handle; if it is not, dlopen()
returns NULL. Second, we can use this flag to “promote” the flags of an already
loaded library. For example, we can specify RTLD_NOLOAD | RTLD_GLOBAL in flags
when using dlopen() on a library previously opened with RTLD_LOCAL.

RTLD_DEEPBIND (since glibc 2.3.4)

When resolving symbol references made by this library, search for definitions
in the library before searching for definitions in libraries that have
already been loaded. This allows a library to be self-contained, using its
own symbol definitions in preference to global symbols with the same
name defined in other shared libraries that have already been loaded.
(This is similar to the effect of the –Bsymbolic linker option)

If we receive an error return from dlopen() or one of the other functions in the
dlopen API, we can use dlerror() to obtain a pointer to a string that indicates the causeof the
error.

const char *dlerror(void);

void *dlsym(void *handle, char *symbol);

pseudohandles
​ RTLD_DEFAULT

Search for symbol starting with the main program, and then proceeding in
order through the list of all shared libraries loaded, including those libraries
dynamically loaded by dlopen() with the RTLD_GLOBAL flag. This corresponds
to the default search model employed by the dynamic linker.

RTLD_NEXT
Search for symbol in shared libraries loaded after the one invoking dlsym().
This is useful when creating a wrapper function with the same name as a
function defined elsewhere. For example, in our main program, we may
define our own version of malloc() (which perhaps does some bookkeeping
of memory allocation), and this function can invoke the real malloc() by
first obtaining its address via the call func = dlsym(RTLD_NEXT, “malloc”).

To let the dynamic loaded library to call the function inside main program instead of the
function inside the library itself.
gcc -Wl,--export-dynamic main.c (plus further options and arguments)

or
gcc -export-dynamic main.c
​ #Let the library use symbols in the main program:

The following techniques can be used to control the
export of symbols:

●​ In a C program, we can use the static keyword to make a symbol private to a
source-code module, thus rendering it unavailable for binding by other
object files. (Anonymous namespace in C++)

​ As well as making a symbol private to a source-code module, the static keyword
also has a converse effect. If a symbol is marked as static, then all references
to the symbol in the same source file will be bound to that definition of
the symbol. Consequently, these references won’t be subject to run-time interposition
by definitions from other shared libraries. This effect of the static keyword is similar to the
–Bsymbolic linker option described in Section 41.12, with the difference that the static
keyword affects a single symbol within a single source file.

●​ Version scripts can be used to precisely control symbol visibility and to select the
version of a symbol to which a reference is bound.

●​ When dynamically loading a shared library ,the dlopen()
RTLD_GLOBAL flag can be used to specify that the symbols defined by the
library should be made available for binding by subsequently loaded libraries,
and the ––export–dynamic linker option can be used to make the global symbols
of the main program available to dynamically loaded libraries.

Linker Version Scripts

gcc -Wl,--version-script,vis.map ...

readelf --syms --use-dynamic vis.so | grep vis_

Version script format:
VER_1 {
global:
vis_f1;
vis_f2;

local:
*;
};

Sample Code:

sv_lib_v2.c:

#include <stdio.h>
__asm__(".symver xyz_old,xyz@VER_1");
__asm__(".symver xyz_new,xyz@@VER_2"); //@@ means default when statically linked
against this shared library.
void xyz_old(void) { printf("v1 xyz\n"); }
void xyz_new(void) { printf("v2 xyz\n"); }
void pqr(void) { printf("v2 pqr\n"); }

sv_v2.map:
VER_1 {
global: xyz;
local: *; # Hide all other symbols
};
VER_2 {
global: pqr;
} VER_1;

gcc -g -c -fPIC -Wall sv_lib_v2.c
gcc -g -shared -o libsv.so sv_lib_v2.o -Wl,--version-script,sv_v2.map

objdump -t p1 # display the symbol tables

Initialization and Finalization Functions for Library

void __attribute__ ((constructor)) some_name_load(void)
{
/* Initialization code */
}

void __attribute__ ((destructor)) some_name_unload(void)
{

/* Finalization code */
}

Link Env Variable
LD_PRELOAD=libalt.so ./program
The LD_PRELOAD environment variable controls preloading on a per-process basis.

/etc/ld.so.preload #system wide basis.

LD_PRELOAD >> /etc/ld.so.preload (precedence)
set-user-ID and set-group-ID programs ignore LD_PRELOAD.
LD_DEBUG

Dynamic ELF GOT (GLOBAL_OFFSET_TABLE)

R_386_GOT32: The relative location of the slot in the GOT
where the linker has placed a pointer to the given symbol. Used
for indirectly referenced global data. 即GOT頭到此SLOT的offset 此slot存放symbol的位置

R_386_GOTOFF: The distance from the base of the GOT to the
given symbol or address. Used to address static data relative to the
GOT. 即GOT根部到symbol的距離

R_386_RELATIVE: Used to mark data addresses in a PIC shared
library that need to be relocated at load time. share library內symbol的位置 需被relocate at load
time

uselib()

#system call. uselib() is Linux-specific, and should not be used in programs intended to
be portable.

Procedure Linkage Table (PLT)

References:
Linkers and Loaders
Linking libstdc++ statically
The GCC low-level runtime library
C++ ABI Summary
Linux static linking is dead?
Statically-linking libstdc++ on AIX

http://www.iecc.com/linker/
http://www.trilithium.com/johan/2005/06/static-libstdc/
http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html
http://sourcery.mentor.com/public/cxx-abi/
http://stackoverflow.com/questions/3430400/linux-static-linking-is-dead
http://www.codesynthesis.com/~boris/blog/2006/12/10/statically-linking-on-aix/

Telling gcc directly to link a library statically
Program Library HOWTO
Working with libraries and the linker

http://stackoverflow.com/questions/6578484/telling-gcc-directly-to-link-a-library-statically
http://www.tldp.org/HOWTO/Program-Library-HOWTO/
http://www.bottomupcs.com/libraries_and_the_linker.html

