Integrating Re-prompting Pipeline into the Python SDK

July 24, 2025
Link to the PR: Coming soon!
Author: Aanya Shah

Objective

Integrate automated re-prompting pipeline into the Python SDK as a configurable API to provide users with a lightweight,

model-agnostic tool to automatically improve instruction adherence and reduce hallucinations.
Motivation

Extracting a fully instruction adherent output from LLM, especially small LLMs with fewer parameters, can be tricky and require
multiple iterations and hallucinations can be easily interpreted as fact. By adding a re-prompting loop to identify and correct
instruction and groundedness violations, we can increase the instruction following rate by an average of ~22% and enable smaller
models to surpass performance of GPT-40. A more in-depth description of the re-prompting pipeline and testing can be found in

this blogpost: “Re-Prompting: A Smarter L.oop for Smarter M

Re-prompting Pipeline

CP, ..CP,
Reprompter {———W
\ ; EO
0 RO

User —=>| Primary LLM —=>| Feedback Model | —=>| Decision Gate —= return best output,
telemetry (Isow)

F R

n

The interaction unfolds as a deterministic loop whose goal is to converge on an error-free answer with the fewest primary LLM

passes:

1. Initial Draft (Po — Ro). The user’s prompt is forwarded untouched to the Primary LLM, which produces Draft Ro.

2. Rapid Evaluation (R0 — Eo). The Feedback Model (IFE) inspects Ro on groundedness, toxicity, and instruction
adherence and emits Error Report Eo. Each entry lists the violated instruction, follow probability, and an explanation.

3. Decision Gate. If there are no instruction violations, R, is returned. If a hard cap of N iterations is reached if the
latency budget is exceeded (or less than 25% remains), the draft among {Ro ... R[]} with the least failed instructions or
lowest residual error score is surfaced to the user along with optional metadata (e.g., “2 iterations, 750 ms”). Otherwise

the Coordinator proceeds to the next step.

https://docs.google.com/document/u/0/d/1MCKD_AnY_2wkUBOppmBhDlcqgdp1V_SJlpBNG7_9GKo/edit

4. Corrective Prompt Generation. The Re-Prompter synthesizes Corrective Prompt P: that embeds the user’s original
message plus a distilled list of violated instructions and explanations.

5. Iterative Refinement. The Corrective Prompt is sent back to the Primary LLM and the loop continues.

User Experience

PO and conﬁgs (n

Re-prompting return best output
U ~o % P 1
ser /k Pipe_hne telemetﬂ/ (ISON), caption

Function Signature:

Return Values:
A dictionary with:

e best_response (str) — Final LLM output selected by the pipeline.

o telemetry (dict, optional) — Per-iteration JSON metadata (if return_telemetry=True)

e summary (str, optional) — Human-readable summary (if return_aimon summary=True).
o E.g.: 2 iterations, 0 failed instructions

o E.g.: 3 iterations, 1 failed instructions

Parameters

Parameters Overview:

(* = required)

Name Type Description

Required. Function to call any primary LLM that takes in
llm_fn* Callable [[str, str, str],[str]] context, user_query, system prompt and returns a string

output.

user_query* str Required. user question

system_prompt str
Context for the query. Only accepts raw text (str)
context str
))) Guidelines for the model (given to the model in the prompt
user_instructions List[str]
and used by IFE to evaluate adherence)
reprompting_config RepromptingConfig Optional. Advanced settings for the pipeline.
RepromptingConfig Overview:
Name Type default Description
aimon_api_key str env:AIMON_API KEY API key to call IFE feedback model
) Flag indicating whether to publish
publish bool no))
the results to app.aimon.ai
))) Max number of LLM calls (1 initial
max_iterations int 2
+ reprompts).
Return a json blob with per-iteration
return_telemetry bool no)
metadata to trace re-prompting
Returns a short caption about
return_aimon_summary bool no re-prompting metadata (e.g., “2
iterations, 0 failed instructions™)
Abort loop and return current best
latency limit ms int none response if total latency exceeds
this.
Defaults to a string based on
model name str "aimon-react-model" concatenated Model name for telemetry.
with a random string.
application_name str Defaults to a string based on Name of the Application name for

"aimon-react-application”

concatenated with a random string.

telemetry.

Exponential backoff based retries

user_model max_retries int 1 the given number of times if llm_fn
fails
Exponential backoff based retries
feedback model max_retries int 1 the given number of times if AlMon

Detect fails

Parameters and Config Breakdown

LIm_fn: User-provided function that takes a single str prompt and returns a str output.
Wrapped in try/except. On failure, the pipeline explicitly throws an error so the user can decide next steps. We will
also implement an exponential backoff based retry up to user model max_retries. Empty or invalid outputs after

retries are treated as failures.

Llm_fn: user-provided llm_fn is defined as a Callable that outputs a string and accepts:
recommended_prompt_template: string. Template
system_prompt: str
context: str

e user_query: str
The initial and corrective prompt will both be provided by the reprompting pipeline in Template form so the user
will have to substitute system_prompt, context, and user _query placeholders in the Template with the values of the
function parameters. These fields can be made optional, but right now run_reprompting_pipeline provides blank
placeholders if the user doesn’t specify a system_prompt or context which can be passed into the llm_fn.
This design requires users to:

e Handle their own LLM calls.

e Build the initial prompt by either concatenating system_prompt, context, and user_query as they please or

substituting appropriate values into the provided recommended prompt_template.

Example implementation:

TOGETHER API KEY = os.environ.get ("T
client = Together (api key=TOGETHER API KEY)

def my llm(recommended prompt template: Template, system prompt, context,

user query) —> str:

10lders in the pipeline-p ded template with

filled prompt = recommended prompt template.substitute (

system prompt=system prompt,
context=context,

user query=user dquery

replace this b with any LLM call you want. (OpenAI, Claude,
HuggingFace, etc.)
response = client.chat.completions.create (
>/gemma-3n-E4B-1t", # this can be y ther-hosted
model (e.g. mistr: /Mistral-7B-Instruct-v0.2")
messages=[{"role": ser", "content": filled prompt}],
max tokens=256, # increase for longer outputs

temperature=0 # raise r more creative outputs

extract and return a string output
output = response.choices[0] .message.content

return output

Context:
Takes in str. Users can extract context using RAG systems like Llamalndex or Langchain independent of the

re-prompting system, normalize it to a str, and pass in their retrieved context from any source.

Latency_limit_ms:
At the start of each iteration, we check the remaining latency budget. If at least 25% of the budget is left, the loop
continues to the next iteration. Otherwise, it terminates and returns the last valid response with a caption (e.g.,

"[Latency limit exceeded on iteration N]"). Telemetry logs stop reason = "latency limit exceeded".

Monitoring and Telemetry

Return_telemetry:

Each iteration outputs a JSON blob with the following information:
e Model name
e application_name

e iteration

e cumulative latency ms

e groundedness_score

e instruction_adherence score

e residual error

e failed instructions count

e Stop reason (one of the following)
o All instructions adhered
o Max iterations reached
o Latency limit exceeded
o Llm_ call failed (explicit error thrown)
o Feedback model failed (explicit error thrown)
o unknown_error

e prompt

e response text

e response_feedback: IFE model feedback on failed instructions

Should I implement native python logging (e.g.: import logging, logger = logging.getLogger()) and log errors,
warnings, or actions or is the json blob return value and in-memory telemetry sufficient? Right now, some errors are

dealt with silently and not surfaced to the user.

Llamalndex and Langchain integration

User-Managed Retrieval

e The user is responsible for retrieving relevant context before calling the pipeline.
e They convert the retrieved content into a str and pass it into the context parameter of
run_reprompting_pipeline().

This is super simple for the pipeline as no added retrieval logic will need to be implemented and the pipeline
remains framework agnostic. Users retain full control over retrieval configs / source but it requires more effort on
their end.

Alternatives Considered
2. Option 2: Retriever in Config and Per-Call Toggle

The user sets indices and initializes a llamaindex_retriever or langchain_retriever and a top_k value that is passed in
the RepromptingConfig. For each call of the re-prompting pipeline, they pass in a bool use llamaindex or
use_langchain. If either are true, the re-prompting pipeline retrieves the context and uses the result as context. If
both are true, the pipeline concatenates context from both retrievals. If use llamaindex or use lanchain is true and
no or an invalid retriever is passed in, the pipeline can terminate with an error message or run without context.

Which do you recommend? There is an optional override to pass llamaindex_retriever/langchain_retriever and top _k
to run_reprompting_pipeline and that one will be used instead of the one in RepromptingConfig.

e Users set up persistent retrievers (Ilamaindex_retriever or langchain_retriever) and a default top_k value in
RepromptingConfig.

e For each call to run_reprompting_pipeline(), they can pass use llamaindex=True and/or
use_langchain=True.
When either is set, the pipeline automatically performs retrieval.
Optional per-call overrides: Users can override llamaindex_retriever, langchain_retriever, and top_k in
the run_reprompting_pipeline() call.

If retrieval fails, should the pipeline

e Terminates with a clear error, or
e Proceeds with no context?

3. Option 3: Per-call Retrieval Config

Users pass llamaindex_retriever/langchain_retriever, use llamaindex/use langchain, and top_k for each pipeline call
which gives them more flexibility versus Option 2. How it works in the pipeline / failure modes are the same as
Option 2.

Example Implementations

[OLD] LIm_fn (Misral7B via TogetherAl):

from together import Together

my llm(prompt:

"""Calls a Mistral mode clp € Cext. """
response = client.chat.

model="mist

messages=[{"role": ; r "content": prompt}],

max tokens=512,

temperature=0
)

return response.choices[0] .message.content

Llamalndex Integration Example:

from llama index.core import VectorStoreIndex, SimpleDirectoryReader

.reprompting api.runner import run reprompting pipeline

.reprompting api.config import RepromptingConfig

import os

from openai import OpenAl

OPENAI API KEY = os.getenv ("OPENAI API KEY")
AIMON API KEY = os.getenv ("AIMON API KEY")

= OpenAl (api key=OPENAI API KEY)

my llm(prompt: str) -> str:

"""1LIM wrapper for use in the pipeline."""

response = client.chat.completions.create (
model="gpt-4o0-mini",
messages=[{"role": : "content": prompt}],
max tokens=500,
temperature=0

)

return response.choices[0] .message.content

config = RepromptingConfig(
aimon api key=AIMON API KEY,
max iterations=2,
return telemetry= v

return aimon summary=

documents = SimpleDirectoryReader (input dir="./docs") .load data ()

index = VectorStoreIndex.from documents (documents)

query engine = index.as query engine ()

user query = "Summarize the company's data retention policies."

retrieved nodes = query engine.query(user query)

context = "\n\n".join([str (node) for node in retrieved nodes])

instructions

"Answer in 3 concise bullet points.",
"Ensure your response is based only on the provided context.",

"Avoid speculative or vague language."

response = run_reprompting pipeline (
user query=user query,
context=context,
1lm fn=my 1lm,
user instructions=instructions,

reprompting config=config

print ("\n=== BEST RESPONS

print (response["bes

"summary" response:
print ("\n=== SUMMARY ===")

rint (response["summary"])
i8] IS Y

"telemetry" response:
print ("\n=== TELEMETRY ===")
for entry in response["telemetry"]:

print (entry)

LangChain Integration Example:

langchain openai import OpenAIEmbeddings
langchain community.vectorstores import FAISS
langchain community.document loaders import TextLoader
langchain text splitters import RecursiveCharacterTextSplitter
aimon.reprompting api.runner import run reprompting pipeline
aimon.reprompting api.config import RepromptingConfig

import os

from openai import OpenAIl

OPENAI API KEY = os.getenv ("OPENAI API KEY")
AIMON API KEY = os.getenv ("AIMON API KEY")

client = OpenAlI (api key=OPENAI API KEY)

my llm(prompt: str)

"""1LIM wrapper for use in the pipeline."""

response = client.chat.completions.create (
model="gpt-4o0-mini",
messages=[{"role": , "content": prompt}],
max tokens=500,
temperature=0

)

return response.choices[0] .message.content

config = RepromptingConfig(
aimon api key=AIMON API KEY,
max iterations=2,
return telemetry= ’

return aimon summary=

loader = TextLoader ("./docs/policies.txt")
docs = loader.load()
splitter = RecursiveCharacterTextSplitter (chunk size=1000, chunk overlap=100)

split docs = splitter.split documents (docs)

OpenAIEmbeddings (openai api key=O0PENAI API KEY)

= FAISS.from documents (split docs, embeddings)

user query = "Summarize the company's data retention policies.

retrieved docs = vectorstore.similarity search (user query, k=3)

context = "\n\n".join ([doc.page content for doc in retrieved docs])

instructions = [
" !

Answer in 3 concise bullet points.",

"Ensure your response is based only on the provided context.",

"

eculative or vague language.

response = run reprompting pipeline (
user query=user query,
context=context,
1lm fn=my 11lm,
user instructions=instructions,

reprompting config=config

print ("\n=== BEST RESPONSE ===")

print (response["best response"])

"summary" response:
print ("\n=== SUMMARY ===")

print (response["summary"])

"telemetry" response:
print ("\n=== TELEMETRY ===")
for entry in response["telemetry"]:

print (entry)

Rough Example Implementation:

from together import Together
from aimon.reprompting api.runner import run reprompting pipeline

from aimon.reprompting api.config import RepromptingConfig

client =

Together (api key="8b6726e35a842117£91077ca78fc69e1ee285c998592£d8356bd4123a63378al")

my llm(prompt: str) -> str:

response = client.chat.completions.create (
model="mistralai/Mistral-7B-Instruct-v0.2",
messages=[{"role": "user", "content": prompt}],

max tokens=512,

temperature=0

)

return response.choices[0] .message.content

config Reprompting
aimon api key="¢
publish= ,
return telemetry=
return_aimon summary=
application name="

tokenizer fn =

context = """ OUC S encryptec ile storage il 5 acto authentication

result = run reprompting pipeline (
user query=user query,
context=context,
1lm fn=my 11lm,

reprompting config=config,

user instructions=user instructions

print ("\nRe-p
print (result ["k
ult.get ("telemetry

sult.get ("sur

Re-prompting Experiment Results

Overall Results
While all models initially underperformed GPT-40, re-prompting allowed every model to surpass GPT-40’s baseline.

Instruction Following Rate by lteration on 1K Samples

== Mistral (7B) Instruct v0.2 == Llama 3.2 3B Instruct == Mistral Small 24B Instruct 2501
== == GPT 40

1.00

0.95

0.90

0.85

0.80

Instruction Following Rate

0.75 | | I

Re-prompting lteration

Instruction-Level Analysis

Fix Rate Per Instruction Category on 1K Dataset

[Mistral Small 24B Instruct 2501 [l Mistral (7B) Instruct v0.2 [l Llama 3.2 3B Instruct

1.00
075
[}
® 050
x
=
0.25
0.00
brand reputation ~ completeness conciseness content requirements formatting groundedness tone
category

Re-prompting was especially effective at resolving groundedness violations (hallucinations), thanks to IA2’s precise
token-level feedback. However, more subjective instructions like conciseness proved harder to fix consistently.

Latency

This graph shows average end-to-end latency (with 95% confidence intervals) across all samples, comparing outputs
without and with use of the re-prompting pipeline. The “after re-prompting” values reflect the overall average across
all queries, including those resolved on the first pass (and thus requiring no re-prompting) and those requiring
multiple iterations.

End-to-End Latency with and without Re-prompting

Before re-prompting I After re-prompting

26000.0
23400.0
20800.0
18200.0

15600.0

~ I

' I 1 I
7800.0
5200.0
2600.0

0.0
Mistral {78) Instruct v0.2 Mistral Small 248 Instruct 2501 Llama 3.2 38 Instruct Gemma 3N E4B Instruct Qwen2.5 78 Instruct Turbo
Primary LLM

Latency (ms)
g
o

§

On average, samples that required re-prompting exhibited a 5,121.2 ms increase in latency (roughly a 47% increase),
reflecting the extra workload of recalling the primary LLM up to two additional times. However, because many
queries will adhere to instructions on the first pass (requiring no re-prompting), the overall impact on large-scale
workloads is much less pronounced. Additionally, the 95% confidence intervals for almost all models overlap,
indicating that this added latency is statistically negligible when viewed across many LLM calls.

Limitations

e Relies on clear, deterministic, and realistic instructions. Vague or contradictory constraints are difficult to
fix.
Subjective attributes (tone, conciseness) show inconsistent improvement.
Relies on TA model’s ability to accurately identify failures
Adds latency and increases cost; trade-offs must be considered for real-time or budget-sensitive
applications.

Milestones

Determine configs / aspects of the pipeline to allow users to alter
Refactor into run_reprompting_pipeline

Clean up RepromptingConfig

Add latency limit logic

Gracefully handle failures

Write tests in Collab Notebook

PR and review

00000000

API description on Docs with clear implementation guidelines, use cases, etc.

	Integrating Re-prompting Pipeline into the Python SDK
	Objective
	Motivation
	Re-prompting Pipeline
	User Experience
	Function Signature:
	Return Values:

	Parameters
	Parameters Overview:
	RepromptingConfig Overview:
	Parameters and Config Breakdown
	Monitoring and Telemetry
	LlamaIndex and Langchain integration
	Alternatives Considered

	Example Implementations
	[OLD] Llm_fn (Misral7B via TogetherAI):
	LlamaIndex Integration Example:
	LangChain Integration Example:
	Rough Example Implementation:

	Re-prompting Experiment Results
	Overall Results
	Instruction-Level Analysis
	Latency
	Limitations

	Milestones

