

ActivitySim Strategic Development and
Contribution Plan
The purpose of this document is to describe the ActivitySim interagency collaboration
and software platform strategic development and contribution plan. This plan provides
guidance on coordination and management of the effort as the ActivitySim
activity-based travel demand modeling community continues to grow. This plan is
focused on strategic topics and therefore details such as contracting mechanisms and
guidance for new members is available in other online resources at www.activitysim.org.

This plan discusses the following topics:

●​ The principles and tenets that guide ActivitySim development
●​ The methods for managing contributions from others
●​ The methods for maintaining support for multiple model implementations
●​ The methods for managing issues and requests
●​ The methods for managing and prioritizing future work items

Principles and tenets that guide ActivitySim
development

The original vision for ActivitySim was to develop a common transportation modeling 1

platform. A consolidated platform will reduce the overall costs of maintenance and
development of new model components. Each MPO Partner will have the opportunity to
benefit from enhancements collectively identified by Agency Partners, and a common
platform should expand the modeling knowledge base. The Agency Partners will further
benefit from bug fixes, model enhancements, and performance improvements identified
and completed by their fellow colleagues. From this original mandate, we can identify 2

several principles to guide ActivitySim development that are listed in the table below
and discussed in the following section.

2 Association of Metropolitan Planning Organizations Research Foundation Request for Proposals for
Consolidated Travel Model Software Platform Development and Enhancement 2015.

1 https://github.com/ActivitySim/activitysim/wiki/presentations/AMPORF.pptx

1

Principles and tenets

Principle Brief Description

Collaborative One open common platform / code base that is shared by all users

Cost effective Reduced development and maintenance costs and economies of
scale through pooled funding

Practical Easy for agencies and modelers of different skill levels to use to
produce reasonable and reliable estimates and forecasts

Extensible Can be customized and extended for new features and region specific
needs

Performant Makes efficient use of computing resources, including memory,
storage, and processors

Collaborative

The need for ActivitySim grew from the typical consulting software model of starting a
consulting project by making a copy of an existing code base and then customizing it for
agency needs in a user-friendly manner. While this reduces startup costs, it often
causes more problems in the long run since the software platform appears to be open
and common across projects but is actually diverging over time as improvements for
one user are difficult to share with others. The challenge therefore becomes to truly
share one common platform (i.e. one code base) across all users. This means
establishing an inclusive way of working together, along with a technology / solution,
that operates across projects, agencies, contracts, and schedules for the benefit of
everyone. In addition to the technology, an advanced state of the practice set of
example models that can be customized for user needs is necessary to demonstrate
and test the software. This project also has the benefit of providing best practice
example models, grounded in proven data driven methods, that are informed by the
cumulative efforts of the agency partners. ActivitySim is therefore an agreement by

2

agency partners to develop and maintain a shared common platform for activity-based
travel demand modeling that can be extended and customized based on partner needs.

Cost Effective

It is expensive to develop and maintain high quality complex multithreaded
microsimulation activity-based travel demand models that evolve with agency planning
needs. The founding members of the ActivitySim project spent millions of dollars
developing pioneering custom software tools. In addition, much of the work to develop
these custom software tools was done under consulting projects, which have a clearly
defined beginning and end, which is inconsistent with a software tool in everyday use,
and the need for maintenance and support. As the costs, both in time and money, to
develop and maintain these evolving tools remained significant, the need for a more
financially sustainable business model for an activity-based travel modeling platform
became evident. By pooling funds, agency partners are likely to benefit from
economies of scale and a higher rate of return on investment. In addition, over time it is
expected that agency monetary contributions to develop and maintain the platform will
go down as there are more partners participating, there is less work to do as the
platform matures, and there are code contributions not directly funded by the
consortium.

Practical

The goal of the ActivitySim project is to develop an activity-based travel demand
modeling platform for practice. A practical software platform is used to inform local,
regional, and state transportation planning analysis and is easy for agencies and
modelers of different skill levels to use to produce reasonable forecasts. Several
agencies, including many of the ActivitySim agency partners, have been using
activity-based models for years in practice. At a minimum, ActivitySim must continue to
serve these needs. ActivitySim must also be user friendly. Activity-based travel
demand models are intricate tools with several user inputs, lots of input
settings/parameters, hundreds of data processing / mathematical expressions, plus lots
of big input files, and are therefore ripe for accidental misuse and error. To help
alleviate the risk of accidental misuse and error, ActivitySim was built on top of the
mature and popular open source data science Python libraries pandas and numpy . 3 4

These tools have large user communities and a wealth of online resources to support

4 https://numpy.org/
3 https://pandas.pydata.org/

3

easier use. ActivitySim also took the approach of separating code from model
configuration and utility expression specification in order to separate software
engineering from travel modeling. Easy-to-use software is also well documented,
including any assumptions around inputs, outputs, and methods.

Extensible

An extensible system is one that allows for the addition of new capabilities and
functionality. The transportation and travel modeling industry is full of innovation - new
mobility services, more behaviorally accurate models, more precise treatments of
network impedances by mode and user, etc., and the software tools to support
exploration of these innovations must keep up to satisfy stakeholder needs. At the
same time, developing and maintaining a common platform that is both used in practice
as well as capable of incorporating innovations is challenging. ActivitySim started with
the idea that the MTC (San Francisco Bay Area MPO) CT-RAMP activity-based travel
demand model used for several transportation planning applications could be
re-implemented with modern open source data science libraries, and then extended for
use by other agencies. Previous activity-based modeling software tools often struggled
to support extensible feature specificity, typically due to differences in both model design
and software design. Extensible systems share a core set of functionality used across
implementations, while also providing components and interfaces (or APIs) for
customization. As the ActivitySim user community continues to grow, and diversify, the
challenges of maintaining an extensible system increase. Managing contributions (from
others) is especially important for extensibility.

Performant

Reasonable model runtime performance and resource utilization is essential for
producing timely analysis. It is common for activity-based travel models to be run
hundreds of times and so efficient use of computing hardware, including memory,
storage, and processors, is a requirement. At the same time, the system must be
reliable, reproducible, transparent, archivable, and dependable so the user has
confidence in application. Finding the right balance of explanatory power versus
stability versus runtime is one of the major challenges in travel modeling, and it is true
for the ActivitySim project as well. The design of ActivitySim, both today and tomorrow,
will always need to balance its ability to reasonably and reliably answer planning
questions with its need to do so in a performant manner.

4

Managing contributions from others

The ActivitySim project welcomes contributions by members and non-members. It is
anticipated, and encouraged, that the community will contribute to the collaborative
platform. As the community is expected to grow, so too will the need and resources to
manage this sophisticated software platform.

Purpose

The purpose of this section of the plan is to describe the methods for managing
contributions from others. Before discussing the approach, we review historic practices
since it helps us better understand how to plan for the future. A summary of the key
aspects of the approach is provided at the end of the section.

Background

For the first few years of the project, the development roadmap centered on re-writing
MTC travel model one, updating it to use modern Python data science tools, and adding
important user functionality. In 2020, some significant new features were added,
including estimation integration inspired by DaySim and support for multiple zone
systems and transit virtual path building inspired by some newer CT-RAMP models.
Looking forward, the development roadmap is less clear, and so contributions that align
with the development roadmap are also less clear. Thus, a clear development roadmap
is desired.

Probably the single most important characteristic of the ActivitySim project is the goal to
establish a collaborative platform for activity-based travel modeling that the community
will improve over time. In order for this principle to succeed, a robust framework for
managing contributions from others is required.

As discussed earlier, previous open source activity-based modeling software projects,
such as CT-RAMP and DaySim, were not built with contributions from others in mind. In
both cases, the code base was typically copied from one region to another with
essentially no mechanism (or link) between the versions for incorporating contributions
from others. More recently, most versions of DaySim have been unified under a new
core version of DaySim maintained on GitHub, whereas the versions of CT-RAMP have
continued to be standalone.

5

With the creation of the ActivitySim project, and the membership of agency partners
including CT-RAMP and DaySim-based model systems, most agency resources geared
toward improving software collaboration and improvements have been oriented toward
the new, more capable, and openly engineered and maintained ActivitySim platform.

As of Fall 2020, the development of ActivitySim has largely been done by one
contributing team at a time. While there have been a few small contributions from
others, the majority of work has been done by the team responsible for also managing
the repository. As a result, it could be argued that ActivitySim is yet to significantly
exercise the principle of a collaborative and extensible platform.

However, ActivitySim has some solid existing infrastructure for managing contributions
from others, including using GitHub Flow for working together in the repository and the 5

existing contribution review criteria , which have both been adopted by other open 6

source efforts. A specific criteria to highlight is the requirement that contributions
implement good methods (i.e. they are consistent with good practices in travel
modeling). This is especially important when reviewing contributions from others as it
reinforces the practical principle. These processes, plus others, serve as the foundation
for the approach.

Approach

The approach for managing contributions from others includes a development roadmap,
repository manager, a collaborative site for tracking third-party contributions, a review
process and agreed upon workflow, and an inclusive contribution community.

Development Roadmap

A formal development roadmap needs to be added to the project’s management
resources and be posted online for potential contributors to review. At a minimum, this
will identify likely future work items, new modeling and software components being
considered, desired timeline for inclusion, approximate level of effort, and any significant
known issues. In conjunction with establishing a roadmap is to make better use of
versioning/releases so designs about “version 2” or “version 3” can more easily take
shape through the collaborative development roadmap. With a development roadmap

6 https://github.com/ActivitySim/activitysim/wiki/Contribution-Review
5 https://guides.github.com/introduction/flow/

6

in place, review and communication around contributions from others will be more
straightforward and less reactive.

Repository Manager

Implementation of the process management starts by appointing a repository manager.
This role on the project is responsible for ensuring the project software repository and
test system is always in good working order. This role is responsible for the following
items and, this role, ultimately reports to the project management committee for final
approval of contributions.

●​ Ensuring the Continuous Integration (CI) test system is always working
●​ Ensuring proper use of GitHub Flow, as described below
●​ Ensuring coding according to pycodestyle, the tool used to check code against

the pycodestyle style conventions
●​ Ensuring good documentation, including all relevant resources such as user

guides, Jupyter notebooks, wikis, etc.
●​ Ensuring good test coverage
●​ Ensuring good modeling practices
●​ Ensuring proper use of GitHub issues for issues, feature requests, questions and

support
●​ Ensuring proper versioning and release procedures, as explained below
●​ Coordination with the project management committee for contribution review and

approval as needed
●​ Ensuring the third-party contributions site is up-to-date, as described next

Third-Party Contributions

Interest in contributing to ActivitySim continues to grow. To assist the project
management committee and ActivitySim users and developers with tracking and
publicizing potential third-party contributions, an online site will be established. The site
would be managed through the GitHub project wiki and include topics such as:

●​ Planned contribution description:
○​ Methods
○​ Potential new dependencies
○​ Alignment with development roadmap

●​ Team/individual working on the effort
●​ Expected timeline

7

●​ Potential / requested areas of assistance for contribution (coding assistance,
documentation assistance, example development assistance, etc.)

●​ Validation and discussion of the methods

GitHub Flow

The contribution process should continue to use GitHub Flow. The key points to GitHub
workflow for ActivitySim are:

●​ The master branch contains the latest working/release version of the ActivitySim
resources. The master branch is protected and therefore can only be written to
by the CI system.

●​ Work is done in an issue/feature branch (or a fork) and then pushed to a new
branch.

●​ The test system automatically runs the tests for the examples on the new branch.
In some cases, test targets need to be updated to match the new results
produced by the code since these are now the correct results.

●​ If the tests pass, then a manual pull request can be approved to merge into
master

●​ The repository manager handles the pull request according to the contribution
review criteria and makes sure that related resources such as the wiki,
documentation, issues, etc. are updated.

●​ The repository manager coordinates any review concerns with the project
management committee and makes revisions as necessary.

●​ The responsibility for fixing errors or bugs identified in the code review is the
responsibility of the contributing author. It is not the responsibility of the reviewer.

●​ Every time a merge is made to master, the version is incremented and a new
package posted to pypi.org. Versioning follows the major.minor format discussed
next.

ActivitySim uses the MAJOR.MINOR versioning convention. MAJOR designates a
major revision number for the software, like 2 or 3 for Python. Usually, raising a major
revision number means adding several new features, breaking backward compatibility
or significantly changing the APIs / interfaces / contracts. MINOR usually designates
moderate changes to the software like bug fixes or minor improvements. Most of the
time, users can upgrade to a new minor release with no risks to their software.
Because major releases have significant ramifications, the project management
committee decides when to identify, develop, and release a major version.

8

The figure below helps illustrate the process of working together across and within the
ActivitySim repository. The key parts of the figure are:

●​ In the center of the diagram is the ActivitySim organization account master
repository develop branch. This is the central clearinghouse for all ActivitySim
related work.

●​ Eventual contributions are developed in a forked develop branch, such as in the
SEMCOG or ARC organization account fork of the ActivitySim organization
account repository. A new feature is developed in the SEMCOG fork and then a
pull request is issued from the SEMCOG fork to the ActivitySim master
repository. This pull request includes updated documentation and tests to
describe and exercise the new software as well. This pull request is not pulled
until the review process below is complete.

●​ At the same time, in a separate fork, such as the ARC organization account fork,
developers may be working on a new feature. This effort could also create a pull
request from its repository to the master ActivitySim repository.

●​ Once the repository manager reviews the pull requests according to the
contribution review criteria, and the contributors meet all the criteria, then the
contributions (including code, documentation, and example tests) are pulled, or
incorporated, into the master repository develop branch.

●​ Either at the same time, or at a later date once a bundle of improvements have
been collected and approved by the project management committee for release,
a release of ActivitySim is made by pushing the revisions from develop to master,
building the online user guide, and then posting a package release on pypi.org.
This process is the same for major or minor releases, with major releases
requiring additional review by the agency partners.

9

Example Contribution Management Workflow

The benefits of this approach to managing contributions from others is it provides a
linked framework for multiple versions of the software along with mechanisms for
intelligently merging but first reviewing and improving contributions. It is also entirely
online and integrated with GitHub issues and the test system, which makes the overall
process transparent and more collaborative.

Contributor Recognition and Release

Each contributor should be recognised and feel a productive part of the community, and
it is a goal of the project to encourage diverse industry participation. Key to this is the
recognition of contributions from individuals in a manner that also recognises the
community effort that made it all possible. Contributions of actual code, documentation,
and example tests are supported by design discussion, oversight, testing,
documentation, bug fixes and much more. It is therefore impossible to credit individual
contributors.

However, contributions are tagged to the contributing GitHub account, which makes it
possible, at least partially, to identify contributors. In addition, contributors are

10

encouraged to create issues and then tag issues in their commits in order to better
manage the software and to leave a trail of contribution.

ActivitySim is an open source project that is distributed at no charge to the public. All
contributions to ActivitySim must adhere to the license , and contributors must 7

acknowledge in the contribution review criteria that they have an official release of
ownership from the funding agency if applicable. This ensures that the ActivitySim
project has the right to freely distribute the software.

Managing Contributions from Others Summary Table

Approach Brief Description

Maintain a
development roadmap

●​ Establish a development roadmap to help coordinate
potential contributions from others

Establish a repository
manager role

●​ The repository manager is responsible for ensuring
the repository and test system is always in good
working order

●​ The repository manager is responsible for
coordinating review with the project management
committee when needed

Establish site for
third-party
contributions

●​ Maintain a resource for the develop community to
track / publicize on-going and future contribution plans

Continue to use
GitHub Flow

●​ Use the industry standard framework for collaborative
open source software development

Adhere to the
Contribution Review
Criteria

●​ Follow, and revise when needed, the project’s
contribution review criteria and process

7 https://github.com/ActivitySim/activitysim/blob/master/LICENSE.txt

11

Version releases ●​ Follow MAJOR.MINOR convention with the project
management committee deciding when to identify,
develop and release major new versions

Maintain supportive
contribution
environment

●​ Ensure contributors feel welcome, software is properly
licensed, and contributions are legally released to the
project

Maintaining support for multiple model
implementations

The ActivitySim consortium is a growing community of diverse model implementations.
Being able to successfully maintain a shared common modeling platform across
implementations will be key to project success.

Purpose

The purpose of this section of the plan is to describe the methods for maintaining
support for multiple model implementations with one shared common platform. Before
discussing the approach, we review the challenges and historic approach since it helps
us better understand how to plan for the future. A summary of the key aspects of the
approach is provided at the end of the section.

Background

Historically, activity-based modeling software for a new implementation, often a new
region for example, has been implemented in one of two approaches:

●​ Implement a new code base that was independent of other code bases
●​ Copy an existing code base and modify it as needed for the new implementation,

including primarily changing configuration options but also code as needed

There are some gradations among these approaches, but the basic idea was the same
- to start anew for each implementation with no clear way to contribute and test
improvements from other users. While the starting code base had some configuration
options, it was typically incomplete for the next user and so some code revisions were
required due to the challenges described below. In terms of testing, this was typically

12

done through actual use (i.e. there was no test system, just running the actual model,
making sure everything works as expected, and revising as needed). As explained later,
it was not until this project that a serious attempt to develop a common platform,
including contribution framework and test harness, for activity-based modeling was
attempted.

Model implementations across regions, states, user types, projects, etc. can be
significantly different, thereby making maintenance of the entire suite of models
challenging. In order to better understand approaches to maintaining multiple models, a
review of key differences in implementations follows.

●​ Differences in input data - land use attributes, synthetic population attributes,
employment types, school enrollment types, spatial resolutions (TAZs,
microzones, parcels, transit stop areas (or access points)), network
level-of-service (skim) attributes and time periods, global value-of-time settings
versus submodel specific value-of-time settings for example, etc.

●​ Differences in alternatives - modes, activity types, etc.
●​ Differences in segmentation - person types, work status, school status, etc.
●​ Differences in submodels - telecommute model, CBD parking location model,

time-of-day probability lookup tables versus choice models, etc.
●​ Differences in submodel dependency, sequencing, and interaction - explicit

modeling of joint travel, destination choice before mode choice or vice versa, etc.
●​ Differences in core components - traditional choice models such as MNL and NL

versus new models such as MDCEV, one zone model system versus two zone
model system, etc.

Some of these challenges have historically been straightforward to accommodate,
whereas others have been difficult. For example, differences in land use attributes,
synthetic population attributes, employment types, and network skim attributes are often
easier to accommodate because the structure of the data remains the same - there is
just replacement or additional data along existing dimensions. Differences that require
revisions to data structures, such as new submodels or interactions between
submodels, for example tracking of joint travel (where multiple persons make the same
tour or trip) throughout the model stream, are more challenging since the code that
consumes these revised data must typically also be revised.

13

Approach

The method for maintaining support for multiple model implementations that share a
common modeling platform consists of the following key ideas:

●​ Exposing settings for differences in input data
●​ Exposing configurable options for differences in alternatives, utility expressions,

and segmentation
●​ Exposing submodel contracts for differences in submodels and submodel

interdependencies and interactions
●​ Exposing core component interfaces for differences in underlying components
●​ Sufficient test coverage of the functionality in the multiple model implementations

What follows is a detailed discussion of each idea, followed by an example to illustrate
implementation of the approach.

Exposing settings for differences in input data

The first level of user configuration starts with differences in inputs. This first level of
differences between model implementations is handled through user defined input
tables (such as zonal land use data, synthetic persons, synthetic households, and
skims), global and submodel specific parameters (such as skim time periods and the
maximum walk to transit distance for mode choice), and submodel expression and
coefficient files (i.e. model alternative utilities). Each ActivitySim model setup defines
global settings available to each submodel, as well as submodel specific settings. For
example, if a user has a different set of employment types, then they would need to
provide their land use data file, as well as, revised downstream submodel settings, such
as expressions files for accessibility and destination choice that make use of the new
data. These settings are exposed via YAML files for the user to edit and ActivitySim
accepts inputs in open data formats such as CSV and OMX.

Exposing configurable options for differences in alternatives, utility
expressions, and segmentation

A more complex, but still relatively straightforward difference between implementations
are more substantive configurations such as new/different modes of travel, different
utility expressions, and market segmentation such as activity type, person type, and
school type, which may be used to apply a specific school submodel specification to a
specific type of person. Unlike the first set of differences, these differences start to get

14

more at differences in model design. Similar to the approach for handling differences in
input data, each ActivitySim model setup defines submodel specific settings for
differences in alternatives, utility expressions, and segmentation. For example, if a user
has a different set of modes, such as walk to premium transit and walk to local transit,
instead of just walk to transit, then they would need to configure all relevant submodels
and their configuration files - settings, expressions, and coefficients. In addition, if a
model solves a different set of expressions by market segment, for example, K-12
versus University location choice, then the user configures the segmentation via the
same set of files. These settings are exposed via YAML and CSV files for the user to
edit. Experience deploying ActivitySim for SEMCOG and ARC resulted in a few small
pull requests for improvements in this respect. Nevertheless, as additional ActivitySim
deployments are set up, it is important to continue to expose the alternatives, utility
expressions, and segmentation via the submodel config files.

Exposing submodel contracts for differences in submodels and submodel
dependencies, sequencing and interactions

The ActivitySim software package has two primary subpackages - models and core.
The models subpackage contains specific modeling steps such as auto ownership, tour
frequency, and trip mode choice. The core subpackage contains framework
components such as logit models, expression handling, and multiprocessing that are
used by the submodels to implement a complete model design.

As noted above, the current platform allows for customization of modes,
utilities/expressions, etc. but not for adding/revising/modifying submodels without writing
or updating the Python code. If a user wants to implement a different version of a
submodel, such as a different version of the trip scheduling model, then they would
need to create a new trip scheduling submodel, named differently, and revise dependent
modules, core functionality such as possibly the person time window availability code,
and update the test examples to test the new submodel. This process is ad hoc and
depends on the specific submodel since ActivitySim maintains no formal definition for a
submodel and its relationship with other components, i.e. its contract. A submodel
contract that defines expected inputs, outputs, methods, and dependencies would make
accommodation of differences in model implementation easier.

Closely related to adding new submodels is a more significant type of revision:
resequencing submodels. Resequencing submodels, or more generally revising the
overall model system design, typically means significant revisions to the dependencies /
interactions between submodels, between core components, and between submodels

15

and core components. In the case of resequencing submodels or developing new
overall model designs, it is sometimes better to extend a submodel or core component
to support additional use cases, where as other times it is better to create a new
submodel or core component that works only for the new use case (at the time of
creation). The preferred approach depends primarily on how similar the revisions are to
the existing software.

A third case might be to just implement one submodel, such as a new and improved
version of trip mode choice. In this case, instead of running a complete set of travel
submodels from beginning to end, ActivitySim runs just the one submodel and therefore
requires a clear contract for that submodel alone with respect to inputs and outputs.

In any case, the submodels and core components require certain inputs, implement
certain methods, and produce certain outputs, and the framework should provide the
developer with a documented and easy way to provide them - e.g. an contract.
ActivitySim should continue to better define and implement a more formal submodel
contract that delineates how inputs, outputs, methods, dependencies, settings, etc. are
handled and how this contract is understood and registered with the platform so the
exercise of revising or adding new submodels and/or core components is more
straightforward. This should help support implementation of new features as the user
community grows.

Exposing core component contracts for differences in underlying
components

Differences in core components are probably the most difficult differences to maintain
across multiple implementations of ActivitySim. In 2020, the ActivitySim platform began
the transition from essentially supporting one model design with some customization
functionality to supporting multiple model designs by adding support for models with
one, two, or three zone systems. In addition, the addition of model estimation
functionality required significant revisions to the platform plus the creation of a new
estimation mode test example. Both of these development efforts led to significant
revisions to the relationships (i.e. contracts) between core components such as
expression management, tracing, skims (or network level-of-skims information in
general), and multiprocessing, and to a lesser extent, the submodels.

Since new features are expected to be added through a collaborative contribution
model, good documentation and clarity around core component technology is essential
for the development community. For example, newer choice models such as MDCEV

16

select multiple alternatives instead of just a single alternative like MNL and NL and
therefore require a different contract with their calling software components.

Like submodels, continuing to better define and provide a more formal framework for
evolving contracts for core component technologies will make it easier to add new
features. This framework should be documented online so as to be accessible to the
open source community.

Sufficient test coverage of the functionality in the multiple model
implementations

The test system provides a test bed of examples that exercise the platform under
diverse uses to help ensure software reliability/stability and futureproofing, and by
providing expected / known answers to help verify that changes made to the software
are actually the changes that were expected. The test system also sets up a clean
installation of ActivitySim to check dependencies, checks the source for style guide
compatibility, builds the user documentation based on comments embedded in the
code, and deploys the online user’s guide. The ActivitySim test system, which tests not
only component functionality and feature behavior, but also complete model example
runs from start to finish, is central to addressing the challenges described earlier.

A good test system has high code coverage (i.e. the percent of the code that is
exercised by the tests). Often the necessary data to test a new feature is only available
for the new implementation (e.g. for a new region as opposed to one already in the test
system). As a result, the developer of the new feature essentially has two options for
creating test data to go along with software contributions:

●​ Create new input and output test data for existing implementations (e.g. regions /
model designs) already in the test system

●​ Add (a subset of) the new implementation and its test data to the test system

Both capabilities will need to be supported to ensure adequate test coverage for
maintaining support for multiple model implementations. Existing implementations
serve as the core examples for testing and developers are encouraged to update these
when possible. Alternatively, when the design and features of the new implementation
are different enough from the existing examples, then (a subset of) the new
implementation would be added to the test system. Like some of the existing test
examples, when adding test coverage for the new implementation, only a subset of
households and/or zones can be added so test runtimes are manageable. Adding (a
subset of) the new implementation has the additional benefit of offering some additional

17

assurances that future versions of ActivitySim will more easily work for the model user
since (a subset of) their model would have already been tested.

For agencies interested in having their complete ActivitySim model periodically tested
against software updates, an optional agency specific test system could be established.
This would be similar to the DaySim test system, where agencies periodically share a
complete ActivitySim model setup via GitHub, and this test system checks out the latest
version of ActivitySim and runs each agency model to completion or to identify issues.
Because of the large data files and potential runtimes (even with sampling), this test
system may be run nightly or weekly instead of with each commit. The benefit of this
system for agencies is additional future proofing that updates to ActivitySim will more
likely work when used in practice. An additional benefit for ActivitySim developers is the
ability to get additional test coverage when developing new features.

Maintaining Support for Multiple Model Implementations Summary Table

Approach Brief Description

Exposing settings for
differences in input
data

●​ Provide, and enhance when needed, user options to
configure differences in inputs via settings files

Exposing configurable
options for differences
in alternatives, utility
expressions, and
segmentation

●​ Provide, and enhance when needed, user options to
configure differences in inputs via settings files

Exposing submodel
contracts for
differences in
submodels and
submodel
dependencies,
sequencing and
interactions

●​ Add submodels to the models subpackage
●​ Develop a formal submodel contract
●​ Publish the submodel contract
●​ Refactor existing examples to implement revisions
●​ Require new features to implement contract

18

Exposing core
component contracts
for differences in core
underlying
components

●​ Revise core subpackage to work with new and
existing models in the models subpackage

●​ Develop a formal contract for core components
●​ Publish the core components contracts
●​ Refactor existing examples to implement revisions
●​ Require new features to implement contracts

Sufficient test
coverage of the
functionality in the
multiple model
implementations

●​ Extend test examples with appropriate test input and
output data with each revision

●​ Add (a subset of) new implementation test data to test
new features if needed

Example: Transit Capacity Constraint, Crowding & Reliability

In order to illustrate how the ActivitySim platform can support additional or enhanced
features, we consider an example where a region wants to incorporate transit capacity
constraint, crowding and reliability (TCCR) into their ActivitySim implementation. In brief,
incorporation of TCCR means revising the travel demand and supply models to be
sensitive to transit vehicle and parking lot capacity and service reliability. Assuming the
network model is revised to produce additional skims to reflect network crowding and
reliability measures, and the model system is a three zone model system, then the
following set of revisions to ActivitySim may be in order:

●​ Differences in input data
○​ New skim inputs to reflect network crowding and reliability measures
○​ Revised transit virtual path building, accessibility, and mode choice utility

specifications to include these new skim measures
○​ Revised coefficient files that parameterize these new measures

●​ Differences in alternatives
○​ No changes to the alternatives are expected

●​ Differences in segmentation
○​ No changes to the market segmentation are expected

●​ Differences in submodels
○​ Revised mode choice submodels that compare TAP demand to supply

(capacity) by iterating until an acceptable level of convergence is met
●​ Differences in submodel dependencies, sequencing and interactions

19

○​ New process for iteratively running mode choice and possibly other
component models such as accessibility to select TAP pairs based on
TCCR within a single global iteration of the demand model. Additional
iterative procedures for incorporation of TCCR within the network model
would also be developed.

●​ Differences in core components
○​ Revised transit virtual path builder to support TAP demand to capacity

calculations and iteration
​
The table below summarises the revisions to ActivitySim to support transit constraint,
crowding and reliability.

Transit Capacity Constraint, Crowding, and Reliability Summary Table

Approach Brief Description

Exposing settings for
differences in input
data

●​ Additional skims, utility expressions, and
coefficients/parameters exposed via YAML, CSV, and
OMX files

Exposing configurable
options for differences
in alternatives, utility
expressions, and
segmentation

●​ Additional skims, utility expressions, and
coefficients/parameters exposed via YAML, CSV, and
OMX files

Exposing submodel
contracts for
differences in
submodels and
submodel
dependencies,
sequencing and
interactions

●​ Updates to the accessibility models to optionally
support TCCR

●​ Updates to the mode choice models to optionally
support TCCR

20

Exposing core
component contracts
for differences in core
underlying
components

●​ Updates to the transit virtual path builder to optionally
support TCCR

Sufficient test
coverage of the
functionality in the
multiple model
implementations

●​ Extend test examples with appropriate test input and
output data to test TCCR. Alternatively, add (a subset
of) new implementation test data to test TCCR.

Managing issues and requests

The needs of the ActivitySim platform continue to grow as the user base grows. This
section describes the approach to better manage issues, feature requests, questions,
and support as needed.

Purpose

The purpose of this section of the plan is to describe the methods for managing issues,
feature requests, questions, and support. Before discussing the approach, we review
historic practices since it helps us better understand how to plan for the future. A
summary of the key aspects of the approach is provided at the end of the section.

Background

From 2015 to 2020, the ActivitySim project has principally been handling issues, feature
requests, questions, and support through a combination of GitHub issues, email
support, and consortium project management calls. This has generally worked fine
since the platform has largely been under development and without many users, and so
the number of user issues, feature requests, questions and support have been limited.

More recently, interest in ActivitySim, and therefore support for ActivitySim, has started
to increase. Support for users beyond consortium members has been delivered through
a combination of email, GitHub issues, and phone conversations by consultant and
agency members. While sufficient to date, this informal approach to supporting the

21

broad user community is unlikely to scale with the growing demand and thus a more
formal approach to managing issues and requests is needed.

In reviewing the approach of other open source efforts, there appears to be broad
consensus for using GitHub issues for issues, feature requests, questions, and support.
The asynchronous and archival manner in which users operate has tremendous
benefits for the community, including many of the principles of this project: common,
sustainable, and usable. Several projects create a set of possible issue labels (or tags)
that are assigned to issues and then used to filter and/or aggregate for decision support.
Example issue labels are:

●​ Feature request
●​ Question
●​ Bug
●​ Documentation improvement
●​ Significant issue

Communication around bug tracking and fixes is especially important as users often
want to correct these issues in a timely manner. Many of the projects also maintain a
developer / user listserv and/or email account(s). This has the advantage of being
somewhat private and not openly archived online, which can be especially useful for
questions around governance of the project, more general modeling questions, and
other topics less fit for GitHub issues.

The commercial transportation modeling software developer approach to issues, feature
requests, questions, and support tends to be more one-on-one email or phone support
via a maintenance contract. One could argue that the advantages of this approach are
that users get their ultimate issue or question more easily and/or quickly resolved and
that the conversation is private. The disadvantages of this approach are that it is not
common (i.e. open and archived) and it requires dedicated technical support staff which
increases cost to support the platform.

Approach

The approach to managing issues, feature requests, questions, and support is to
continue to use GitHub issues with labels, to set up an activitysim.org email account
when GitHub issues technology is inadequate, and to establish tiered support.
Management of the GitHub issues is the responsibility of the project management
committee, who may delegate responsibility if desired. Bugs will be specifically called
out and communicated via issues and project management resources since they are

22

especially significant. When GitHub issues technology is inadequate, an email option
such as info@activitysim.org or activitysim@ampo.org will be set up. The project
management committee will be responsible for the email account, and they may
delegate responsibility if desired. This email address could be part of an
ActivitySim/AMPO website. Questions and support can be handled through either
GitHub issues or the email account.

A tiered support strategy is recommended. For tier 1, consortium members get
guaranteed support with membership. Each phase of work will include a fixed amount
of resources for managing consortium member issues, feature requests, questions, and
support. These resources will become more critical as the platform is used by agency
partners and others for planning studies with schedule constraints for bug fixes and
technical support. For tier 2, non-members who desire active support (which means
more than simply responding to the occasional GitHub issue), can sign-up for an annual
support only option, which is a fraction, but not more than 50% of the consortium
membership fee and does not include membership in the project management
committee. For tier 3, non-members with limited support needs can get time and
materials support via a simple invoice or purchase order with a bench consultant of their
choice. This arrangement allows for agency partner resources for answering questions
and providing user support to be largely limited to agency partners, while also providing
a mechanism for non-members to get support. Finally, regardless of affiliation,
ActivitySim is an open and common initiative and so all users, developers, agency
partners, and others are encouraged to participate in the GitHub conversation.

In preparation for scoping future phases of work, the project management committee
reviews feature requests and compiles them according to the process outlined in the
managing future work ideas and prioritizing future work section. Because ActivitySim is
a practical data driven framework, future features need to be grounded in observed /
verifiable results for eventual acceptance and distribution.

Managing Issues and Requests Summary Table

Approach Brief Description

Using GitHub issues ●​ Use online collaborative software development tools
for public issues, requests, questions, and support

23

●​ Explicitly label and communicate bugs and fixes for
timely communication with the agency partners /
users

Add email access to
the project

●​ Use a shared email address for private and general
inquiry type questions such as consortium
management

Tiered user support ●​ Consortium members get guaranteed support
●​ Include a fixed amount of resources for user support

in each phase
●​ A non-member annual support only option is also

offered
●​ A non-member on demand time and materials invoice

/ purchase option is also offered
●​ Regardless of affiliation, encourage involvement via

GitHub

Incorporate feature
requests into scoping
of future work

●​ Review and incorporate feature requests into
subsequent work phase scoping exercises

Managing and prioritizing future work items
The ActivitySim consortium is a growing community of travel modelers with diverse
needs. Managing ideas about future work and prioritizing improvements to the platform
requires thoughtful and coordinated cooperation among members to be successful.

Purpose

The purpose of this section of the plan is to describe the methods for managing ideas
about future work, prioritizing that work, and then converting that work into executed
work. Before discussing the approach, we review the historic work plan since it helps
us better understand how to plan for the future. A summary of the key aspects of the
approach is provided at the end of the section.

24

Background

The ActivitySim project, which is a software project first and foremost, is focused on
developing a collaborative software platform for activity-based modeling, as opposed to
developing a standalone model system. A software platform, as opposed to a model
system, is a customizable framework for implementing multiple diverse model
implementations, as opposed to a version of a specific, or one-off, model design. The
ActivitySim project believes examples of prototypes of new models are prevalent in the
industry and that examples of collaborative, cost effective, practical, extensible, and
performant platforms are few.

Historically, ActivitySim’s work program has been centrally focused on re-building the
existing MTC TM1 mode. TM1 was one of the first activity-based models for a major
metropolitan area to be used for several planning studies, including the Regional
Transportation Plan, a major function of the MPO. TM1’s demand model is an
implementation of the Java-based CT-RAMP platform. In early 2019, the ActivitySim
project essentially completed the re-write of TM1 into a more common platform software
solution implemented in Python. The partners chose to re-factor TM1 rather than
design, estimate, implement, and calibrate/validate a new model system since TM1 was
proven and highly capable, verification of the new version could be done against the
previous version, and the emphasis of the initiative was on software engineering as
opposed to model design.

ActivitySim work to date has been done in Phases, each with a discrete set of tasks.
Phases are typically six months or twelve months in length and result in a release of the
work. With a focus on re-factoring TM1, the historic work plan has been dictated by
completing the features of TM1, while at the same time, improving usability along key
topics such as configurability/flexibility, documentation, test coverage, data
management, data pipelining/restartability, etc. Each phase of work has typically
included a focus on additional TM1 model components plus some usability
enhancements. In 2019, with the completion of the TM1 re-write, the future work
program became less obvious.

The founding members of ActivitySim, MTC, ARC, and SANDAG all shared a CT-RAMP
model. However, while the activity-based model design for MTC and ARC is quite
similar, the SANDAG model had a significant difference: three zone systems. This three
zone system version of CT-RAMP was a separate code base from the single zone
system version of CT-RAMP and so sharing of code improvements was quite difficult.
In addition, the implementation of all three models was somewhat exploratory (i.e. it

25

contained several code blocks of thought-to-be-good-ideas that were later no longer
needed) and hard coded references to components likely to vary in different
implementations (such as time periods, modes, and constants). In 2020, the
ActivitySim project began the exercise of developing support for a system that works
with either a single zone system, two zone system (see below), or three zone system
model.

As interest in ActivitySim developed over the years, two agencies with existing
activity-based models implemented in the C#-based DaySim framework joined the
effort. These two agencies were SFCTA and PSRC. DaySim’s design has many
similarities to CT-RAMP but there are some major differences:

●​ Additional support for two zone system models
●​ Model re-estimation functionality
●​ A different approach to modeling time-of-day
●​ A different approach to accessibilities
●​ A different approach to consistency across tour and trip mode choice through a

shared pathtype model

In 2020, the ActivitySim project implemented support for two zone systems and model
re-estimation functionality, and additional reconciliation and implementation of
CT-RAMP and DaySim functionality in ActivitySim is likely as the project progresses.

Looking forward, there will always be improvements to the model design and the
software platform that are desired, and an approach to manage ideas around future
work and prioritize and execute this work is required.

Approach

In order to manage ideas around future work and to prioritize and then execute that
work, a development roadmap and an ideas tracking and prioritization process is
needed. Based on the principles described earlier, the roadmap and process should be
collaborative, affordable, practical, easy-to-use, and sustainable.

Development Roadmap

As described under Managing Contributions from Others, a formal development
roadmap is needed for managing and prioritizing future work items. This online
collaborative development roadmap will help organize discussions and plans for future

26

work and will have the benefit of informing non-members and potential members of
ActivitySim’s plans.

Process

The basic process to manage future work ideas and prioritization, which is inspired by
the 2020 Phase 6 scoping exercise, is outlined below. This process may be revised / 8

adapted as needed, but should generally be followed since it is inclusive and
comprehensive.

●​ Describe Potential Work - Agency partners and team members describe desired
features for the next phase of work. At this point in the process, all ideas are
described regardless of level of effort, data needs, or other potential constraints.
This list is informed by the potential third-party contributions site as well. Agency
partners and team members comment, discuss, and refine the feature
descriptions if needed. These ideas are maintained in an online collaboration
tool available to the agency partners and the project team.

●​ Rank Work Items - Agency partners rank their top X number of features. This is
a financially unconstrained ranking since it is focused on what should be done in
the next phase of development as opposed to how to do it. The top X features
are selected for additional scoping refinement and each is assigned a
point-of-contact.

●​ Refine Work Items - The point-of-contact refines the feature scope and works
with the team to develop an approximate cost estimate. The refined feature
descriptions with approximate cost estimates are discussed with the agency
partners and refined again if necessary until acceptable.

●​ Allocate Funds - Each agency allocates the total phase of work budget to the
features of interest, the funding allocation is discussed, and the agency partners
select the final financially constrained list of features for the work plan.

●​ Finalize Work Plan - The team drafts a scope, schedule, and budget based on
the final list of phase features and discusses with the agency partners. The
scope of work is iterated with the project team until satisfactory.

●​ Execute - Upon execution of the phase scope of work, the feature
point-of-contact continues in this role. The feature point-of-contact is responsible
for coordinating the team and agency partner work on the feature. The entire
project team may participate in the development of each feature as desired.

8
https://docs.google.com/spreadsheets/d/1wB_8HGpmtXL9vvysYdEItYyVMvw73r9FuRH3P-_bfEo/edit#gi
d=1486752204

27

The future ideas management and prioritization process, implemented with an online
collaboration tool such as Google Docs or similar, should work well for managing future
work ideas and prioritizing future work for each subsequent phase of the ActivitySim
project. With that being said, the process and tools should be revisited before starting
each subsequent phase of work scoping to ensure they continue to meet the needs.

Managing and Prioritizing Future Work Summary Table

Approach Brief Description

Maintain a
development roadmap

●​ Establish a development roadmap to help manage
and prioritize future work

Phase work sprints ●​ Segment future work into discrete phases, each with a
release

Maintain list of future
work ideas

●​ Maintain a list of future work ideas in an online
collaborative tools for everyone to contribute

●​ Coordinate with the third-party contributions list

Continue to implement
a collaborative scoping
effort

●​ Develop the phase scope, schedule, and budget with
online collaborative tools in multiple rounds of
brainstorming, describing, costing, and prioritizing

Establish a feature /
task point-of-contact

●​ Appoint a point-of-contact, or sponsor, for each
feature / task in the work phase to shepard the feature
/ task to completion

Summary
This strategic plan describes the foundation for the advancement of the ActivitySim
platform as it transitions from its initial development to actual use for agency
transportation planning studies. It covers the principles that guide ActivitySim
development, as well as the methods for managing contributions from others,
maintaining support for multiple model implementations, managing issues and requests,
and managing ideas about future work items and prioritizing future work. With this

28

foundation, the platform and its leadership should be better prepared for ActivitySim’s
exciting future.

29

	ActivitySim Strategic Development and Contribution Plan
	Principles and tenets that guide ActivitySim development
	Collaborative
	Cost Effective
	Practical
	Extensible
	Performant

	Managing contributions from others
	Purpose
	Background
	Approach
	Development Roadmap
	Repository Manager
	Third-Party Contributions
	Interest in contributing to ActivitySim continues to grow. To assist the project management committee and ActivitySim users and developers with tracking and publicizing potential third-party contributions, an online site will be established. The site would be managed through the GitHub project wiki and include topics such as:
	GitHub Flow
	The benefits of this approach to managing contributions from others is it provides a linked framework for multiple versions of the software along with mechanisms for intelligently merging but first reviewing and improving contributions. It is also entirely online and integrated with GitHub issues and the test system, which makes the overall process transparent and more collaborative.
	Contributor Recognition and Release

	Maintaining support for multiple model implementations
	Purpose
	Background
	Approach
	Exposing settings for differences in input data
	Exposing configurable options for differences in alternatives, utility expressions, and segmentation
	Exposing submodel contracts for differences in submodels and submodel dependencies, sequencing and interactions
	Exposing core component contracts for differences in underlying components
	Sufficient test coverage of the functionality in the multiple model implementations

	Example: Transit Capacity Constraint, Crowding & Reliability

	Managing issues and requests
	Purpose
	Background
	Approach

	Managing and prioritizing future work items
	Purpose
	Background
	Approach
	Development Roadmap
	Process

	Summary

