LINDI MUNICIPAL COUNCIL

FORM FOUR UMEKTA EXAMINATION – JULY 2023

CHEMISTRY 2A (PRACTICAL) 032/2A

MARKING SCHEME

1. (a) TABLE OF RESULTS (BURETTE READINGS)

• For volume of pipette 25cm³

Titration	Pilot	1	2	3
Final reading cm ³	25.40	25.20	25.10	25.00
Initial reading cm ³	0.00	0.00	0.00	0.00
Volume used cm ³	25.40	25.20	25.10	25.00

(10 marks) @ 0.5 mark

For volume of pipette 20cm³

Titration	Pilot	1	2	3
Final reading cm ³	20.40	20.20	20.10	20.00
Initial reading cm ³	0.00	0.00	0.00	0.00
Volume used cm ³	20.40	20.20	20.10	20.00

25cm³ BB required 25.10cm³ of AA for complete reaction (b) (1mark) @ 0.5 mark

(c) The colour change at the end point was from yellow to orange (1 mark) (a) 0.5 mark

(d), The balanced chemical reaction is as follows;

$$2HCl + Na_2CO_3 \rightarrow 2NaCl + H_2O + CO_2$$
 (1mark)

Then,
$$na = 2$$
, $nb = 1$

Molarity of acid (Ma) \equiv conc in g/dm³ Molar mass of HCl

$$= 3.65g/dm^3$$

36.5g/mol

$$Ma = 0.1M$$

(1.5 marks)

From mole ratio;
$$\underline{\text{MaVa}} = \underline{\text{MbVb}}$$
 na nb

$$Mb = \underline{MaVa\ nb}$$
 $Vb\ na$

(1mark)

Where;
$$Ma = 0.1M$$

$$Va = 25.10 cm3$$

$$nb = 1$$

$$Vb = 25 cm3$$

$$na = 2$$

Therefore Mb =
$$0.1 \times 25.10 \times 1$$
 (1mark)
25 x 2

$$Mb = 0.05M$$
 (1.5 marks)

ALSO Conc of pure base(an unhydrous) = Mb x Molar mass of
$$Na_2CO_3$$

= 0.05×106
= $5.3g/dm^3$ (1.5 marks)

$$\frac{14.3}{5.3} = \frac{106 + 18x}{106}$$

$$2.698 \times 106 = 106 + 18 \times 286 = 106 + 106 = 106 + 106 = 106 = 106 = 106 = 106 = 106 = 106 = 106 = 106 = 106 = 106 = 106 = 106 = 106 = 106 = 1$$

$$18x = 286 - 106$$

$$18x = 180$$

$$X = 180/18$$

The value of X is 10. (2.5 marks)

- (e) Application of volumetric analysis are;
- Manufacturing of chemicals such acids and bases
- Applied in neutralization process

(2 marks) @ 1 mark. Required two points

- Determining the colour changes
- Determine the unknown volume

S/N	Experiment	Observation	Inference
(a)	The appearance of sample Q was observed	White crystals was observed	Zn ²⁺ , Ca ²⁺ , NH4 + , Pb ²⁺ may be present
(b)	Spoonful of a sample Q was placed in a test, water was added and then shaked	The sample Q was dissolved in water	NO ₃ - may be present
(c)	The sample Q in a test tube was heated to maximum with red and blue litmus paper, burning splint was applied	-Reddish brown residue and yellow when cold was observed - Reddish brown gas was evolves which turn blue litmus to red. The gas was Nitrogen dioxide	Pb ²⁺ may be present NO ₃ - may be present
(d)	Concentrated sulphuric acid was added to sample Q in a test tube	Reddish brown gas which had irritating smell was evolved (Nitrogen dioxide)	NO ₃ - may be present
(e)	To original portion of solution of sample Q few drops of sodium hydroxide was added, then in excess	White precipitate soluble in excess was observed	Pb ²⁺ may be present
(f)	To original portion of solution of sample Q few drops of ammonia solution was added, then in excess	White gelatinous precipitate insoluble in excess was observed	Pb ²⁺ may be present
(g)	To original portion of solution of sample Q few drops of potassium iodide solution was added	Yellow precipitate was observed	Pb ²⁺ present, confirmed
(h)	To original portion solution of sample Q in a test tube freshly prepared ferrous sulphate solution was added followed by carefully addition of conc. H ₂ SO ₄ along the side of the test tube	Brown ring developed at the junction of the two layers was observed	NO ₃ - present, confirmed

(20 marks)

CONCLUSION

- (i) The cation present in Q is Pb^{2+} (1mark)
- (ii) The anion present in Q is NO_3 (1mark)
- (iii) The chemical formula of Q is Pb $(NO_3)_2$ (1mark)
- (iv) The chemical name of Q is Lead (II) Nitrate (1mark)
- (v) The balanced chemical equation for the reactions taking place in experiment (c) is Pb $(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$ (1mark)