

Research on Stock

Purpose:

- => Build a smart portfolio management system using Reinforcement Learning (RL)
- => Include stocks as a major asset class within the multi-agent system

About Stocks:

A **stock** represents ownership in a company and constitutes a claim on part of the company's assets and earnings. Investors use individual stocks to target specific industries, growth stories, or income strategies.

Example Stocks:

- **AAPL** – Apple Inc.
- **MSFT** – Microsoft Corporation
- **GOOGL** – Alphabet Inc.

Market Regime Awareness via Stocks:

Use stock performance and technical indicators to detect regimes:

Regime Stock Signals

Bull Major indices (e.g., S&P 500, NASDAQ) ↑, VIX ↓

Bear Major indices ↓, defensive stocks ↑, VIX ↑

Sideways Low volatility, unclear directional trend

Types of Stock Agents:

Agent Type	Stock Category	Example Tickers	Purpose
Index Agent	Blue-chip indices	AAPL, MSFT, JNJ	Capture broad market trends
Growth Agent	High-growth tech	TSLA, NVDA, SHOP	Alpha-seeking, momentum strategy
Dividend Agent	Income-focused stocks	T, VZ, KO, PFE	Yield harvesting, low volatility
Defensive Agent	Consumer staples/utilities	PG, XEL, WMT	Market hedge, safe-haven exposure
Small-Cap Agent	Emerging businesses	PLTR, UPST, RIVN	High-risk/high-reward
Thematic Agent	ESG, AI, Fintech	AI, SQ, CRWD	Trend-following

Building the Multi-Agent System (Step-by-Step)

=> Step 1: Assign One Agent per Stock Category

- Growth Agent follows fast-growing tech firms like TSLA or NVDA
- Dividend Agent monitors high-yield stocks like KO or PFE
- Defensive Agent watches non-cyclicals like PG or WMT

=> Step 2: What Info Does Each Agent See?

Each stock agent consumes:

- Historical stock prices (OHLCV)
- Technical indicators (RSI, MACD, Moving Averages)
- Volatility (Beta, ATR)
- News sentiment (from APIs like NewsAPI)
- Macro signals (Fed announcements, CPI data, etc.)

This info represents the **state** for each agent.

=> Step 3: What Can Each Agent Do?

Actions include:

- Allocate a % of portfolio to the stock (e.g., 30% to AAPL)
- Hold cash (risk-off mode)
- Rebalance or switch between stocks

=> Step 4: How Do Agents Learn?

Agents use reward signals like:

- Portfolio return – Volatility penalty
- Alpha over benchmark (e.g., SPY)
- Diversification bonus (if applicable)

Data Sources and APIs for Stock Information

API/Source	Purpose	Notes
Yahoo Finance API	Historical prices, volume, corporate data	Free via yfinance Python library
Alpha Vantage	Stock prices, fundamentals, indicators	Free tier available, requires API key
IEX Cloud	Real-time quotes, market depth	High-quality US market data
Polygon.io	Minute-level data, news	Paid tiers available for institutional-grade data
Finnhub	Financials, sentiment, earnings calendar	Good for alternative data
NewsAPI	Headlines from financial media	Combine with NLP models for sentiment signals

API/Source	Purpose	Notes
Quandl (now Nasdaq Data Link)	Fundamental and macroeconomic data	Used for high-level regime signals

Why It Matters for Our Project

Stocks offer:

- **Granular exposure** to company-level fundamentals
- **Higher alpha potential** with careful stock picking
- **Complementarity** with ETFs, bonds, and crypto
- **Market signal generation** via broad indices or specific sector leaders

Research on ETFs

Purpose:

=> Building a smart portfolio management system using Reinforcement Learning (RL)

New Requirements:

=> The system should manage different types of assets like stocks, ETFs, crypto, bonds, etc.

=> Use multiple agents, each focusing on different asset types.

About ETF:

An ETF (Exchange-Traded Fund) is like a basket of investments that you can buy or sell just like a stock. One ETF may contain many companies.

Example:

SPY = 500 big US companies (like Apple, Microsoft).

TLT = long-term government bonds.

GLD = gold.

Market Regime Awareness via ETFs:

Use ETFs as regime proxies to classify market conditions:

Regime	ETF Signal
Bull	SPY ↑, QQQ ↑, TLT ↓
Bear	SPY ↓, VIX ↑, GLD ↑
Sideways	Low volatility across SPY, QQQ, VIX

Types of ETF:

Agent Type	ETF Category	Example Tickers	Purpose
Equity Agent	Broad Market	SPY, VTI	Stocks
Sector Agent	Sectoral	XLK, XLF, XLE	Technology, Finance, Energy
Bond Agent	Fixed Income	TLT, IEF, AGG	Interest rate exposure
Commodity Agent	Commodities	GLD, USO, SLV	Hedge strategies
Crypto Agent	Crypto ETFs	BTCC, BITO	Track Bitcoin price
Volatility Agent	VIX Products	VXX, UVXY	Market fear & hedging
Thematic Agent	Innovation	ARKK, KOMP	Trend-following strategies

Building the Multi-Agent System (Step-by-Step)

=> Step 1: Assign One Agent per ETF Type

Imagine you have a team of robots (agents):

One robot focuses on stock ETFs like SPY, QQQ

Another robot watches bond ETFs like TLT

Another follows crypto ETFs like BITO

Another one tracks gold or oil ETFs like GLD, USO

Each robot will learn how to invest smartly in its own type of ETFs.

=> Step 2: What Info Does Each Agent See?

Each agent needs to understand the market, so you'll show it:

Past prices of its ETF

Moving averages (price trends)

Volatility (how risky it is)

News sentiment (e.g., tweets saying "market is crashing!")

Market mood (bullish, bearish, etc.)

This collection of info is called the state of the market.

=> Step 3: What Can Each Agent Do?

Each agent can:

Decide how much money to put in its ETF (e.g., 50% in SPY, 50% in QQQ)

Do nothing if the market looks risky

These are its actions.

=> Step 4: How Do Agents Learn What's Right?

They learn using a reward system, like how a child learns from consequences.

Example:

If the ETF goes up after an agent invests → it gets a reward

If it picks a bad time → it gets penalized

Reward = Good returns - Too much risk

Canadian ETF Market:

Aspect	Canadian Market Snapshot
First ETF	Toronto 35 Index Participation Fund (1990)
Total AUM	Over \$400 billion CAD as of 2024
Key Providers	BlackRock (iShares), BMO, Vanguard, Horizons, CI Global
Exchange	Toronto Stock Exchange (TSX)
Growth	Rapid growth in low-cost, thematic, and crypto-linked ETFs
Fees	Typically lower MER (Management Expense Ratio) than mutual funds

Why It Matters for our Project

The Canadian market offers:

- => A wide range of ETFs across sectors and asset classes
- => Access to crypto via TSX-listed ETFs (BTCC, ETHH)
- => Liquidity and low fees – good for realistic backtesting or paper trading
- => Regime-awareness options: We can compare Canadian sectors like energy (ZEO) or banks (ZEB) to detect trends.

ETF Ticker	Description
ZCN	Broad Canadian stock index (S&P/TSX)
XIC	iShares Canadian Composite Index
ZEB	Canadian Banks ETF
XBB	Canadian Aggregate Bond Index

BTCC	Bitcoin ETF (Purpose)
VDY	High Dividend Yield Index
ZCLN	BMO Clean Energy Index ETF

Data Sources (for training our agents)

Yahoo Finance (ZCN.TO, XIC.TO, etc.)

TMX Money (<https://money.tmx.com>)

ETF provider websites (BMO, iShares, etc.)

Data Collection Sources for ETFs:

Data Source besides “yfinance”

1. Alpha Vantage (Free, API key required)

[🔗 \[https://www.alphavantage.co\]\(https://www.alphavantage.co\)](https://www.alphavantage.co)

What it provides:

=> Daily OHLCV for ETFs (same as stocks)

=> Technical indicators (e.g., RSI, MACD)

=> Real-time data (with delay on free tier)

Example API Call:

https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=SPY&apikey=your_api_key

Pros:

=>Free with 500 calls/day

=> Includes tech indicators

Cons:

> 5 calls/minute rate limit

=> Output in JSON (needs parsing)

##2. IEX Cloud (Freemium)

[🔗 \[https://iexcloud.io\]\(https://iexcloud.io\)](https://iexcloud.io)

What it provides:

=> OHLCV data

=> ETF price quotes and fundamentals

Example:

https://cloud.iexapis.com/stable/stock/SPY/chart/1y?token=YOUR_TOKEN

Pros:

=> Clean API

=> Supports JSON + CSV

=> Better docs than Alpha Vantage

Cons:

=> Limited free calls

=> U.S. ETFs only

##3. Polygon.io (Freemium)

[🔗 \[https://polygon.io\]\(https://polygon.io\)](https://polygon.io)

What it provides:

=> Historical OHLCV

=> Real-time updates (paid)

=> Market-wide ETF/stock data

Sample Endpoint:

https://api.polygon.io/v2/aggs/ticker/SPY/range/1/day/2022-01-01/2023-01-01?apiKey=YOUR_KEY

Pros:

=> Fast, reliable

=> Suitable for high-frequency use

Cons:

=> Most features are paid

=> U.S. market focus

##4. Tiingo (Freemium)

[🔗 \[https://api.tiingo.com\]\(https://api.tiingo.com\)](https://api.tiingo.com)

What it provides:

=> Daily OHLCV

=> Technicals, real-time prices

Example:

plaintext

https://api.tiingo.com/tiingo/daily/SPY/prices?token=YOUR_API_KEY

Pros:

=> CSV/JSON options

=> Good ETF coverage

Cons:

=> Limited free quota

##5. Quandl (now Nasdaq Data Link)

[🔗 \[https://data.nasdaq.com\]\(https://data.nasdaq.com\)](https://data.nasdaq.com)

What it provides:

=> U.S. ETF data

=> Economic and sector metrics

Example:

https://data.nasdaq.com/api/v3/datasets/EOD/SPY.json?api_key=YOUR_KEY

Summary: Best Alternatives to `yfinance` for ETFs

Source	Free?	Real-Time	Best For
Alpha Vantage		Delayed	Beginners, historical data
IEX Cloud			Clean JSON, U.S. ETFs
Polygon.io			Fast, scalable solutions
Tiingo			Easy CSV export
Nasdaq/Quandl		Delayed	Fundamentals + ETF history

References:

[Exchange-Traded Fund \(ETF\): What It Is and How to Invest](#)

[ETF Facts - Canadian Securities Administrators](#)

[Global Corporate Actions Data for ETFs | ETF Data | Listed Funds including Distributions, Payments | Datarade](#)

Research on Crypto APIs and Market Indicators

❖ What is Cryptocurrency?

Cryptocurrency is a type of **digital or virtual money** that uses cryptography for security. Unlike traditional money issued by governments (like rupees or dollars), cryptocurrencies are **decentralized**—meaning they are not controlled by any central authority like a bank or government.

The most well-known cryptocurrency is **Bitcoin**, created in 2009. Since then, many others have been created, such as **Ethereum, Binance Coin, Solana, and Dogecoin**.

❖ How Does It Work?

Cryptocurrencies run on a technology called **blockchain**—a digital ledger that records all transactions across a network of computers. Each transaction is verified and added to the blockchain, making it **secure, transparent, and permanent**.

- The crypto market has **grown rapidly** over the past decade. Bitcoin started with almost no value, but now it's worth **tens of thousands of dollars**.
- Cryptocurrency prices **change very quickly**, which means there's a high risk—but also a high chance of a reward. This **volatility** makes crypto attractive for traders but risky for beginners.

MARKET INDICATORS:

Market indicators are tools used to **analyze cryptocurrency price movements**, trading volume, volatility, and investor sentiment. They help traders make smarter decisions by identifying market trends and potential entry/exit points.

1. Price-Based Indicators

- **Moving Averages (MA)**: Show average price over time; help identify uptrends/downtrends.
- **RSI (Relative Strength Index)**: Ranges from 0–100; >70 = overbought, <30 = oversold.
- **MACD**: Tracks momentum using two moving averages; shows buy/sell signals.

2. Volume-Based Indicators

- **OBV (On-Balance Volume)**: Combines price and volume to show buying/selling pressure.
- **Volume Oscillator**: Measures volume strength to indicate rising or falling interest.

3. Volatility Indicators

- **Bollinger Bands**: Wide bands = high volatility; narrow bands = low volatility.
- **ATR (Average True Range)**: Measures how much price moves; higher ATR = higher risk.

4. Sentiment Indicators

- **Fear & Greed Index**: Ranges from 0 (fear) to 100 (greed); gauges market emotion.
- **Social Media Trends**: Tracks hype across platforms; spikes may signal breakouts.

There are many more indicators than the above stated. We Use Indicators because They help in

- Understanding market trends
- Reducing emotional trading
- Improving timing of trades

To pull crypto data we are going to use API of some websites which can provide access to real-time and past crypto data. Some of them are

yfinance (Yahoo Finance Python Library) : Free Python package to access financial data, including some major cryptocurrencies

Binance API for real-time market data.

CoinMarketCap API, CoinGecko API, CoinDesk

References:

- 1) <https://www.kraken.com/learn/crypto-technical-indicators>
- 2) <https://www.tokenmetrics.com/blog/best-indicators-for-crypto-trading-and-analysis>
- 3) <https://coinmarketcap.com/charts/cmc100/>
- 4) <https://www.gemini.com/cryptopedia/crypto-indicators-token-metrics-crypto-fear-and-greed-index>
- 5) <https://pypi.org/project/yfinance/>

Research on Multi Agent RL

Algorithms where multiple small tasks are accomplished by agents in a shared environment to complete one bigger task. Each agent learns to make decisions based on its observation rewards and behavior of other agents in some cases.

There are two or more agents involved and the interaction between them is cooperative, competitional or mixed.

Type of Interactions

1. Cooperative
Agents work together to accomplish common goals
2. Competitional
Agents have opposing goals
3. Mixed
Mixed between cooperation and competition

Key Challenges

1. Non-Stationarity
With changes in other agent's behavior, the shared environment becomes more unpredictable
2. Credit Assignment
It's hard to determine which agent had higher contribution in group reward setting while contributing to single goal
3. Scalability
As the agents grow joint action space grows exponentially
4. Partial Observability
Agent may lack full visibility of the environment or each other

Meta-RL

Meta RL is a field where agents learn how to quickly learn new tasks. Instead of taring for a single task, Meta-RL trains the agent to adapt quickly to new tasks using a small amount of data or experience.

Difference between traditional RL and Meta-RL

Traditional RL

- An agent trains for millions of steps on one task
- If the task changes (even slightly), training must start from scratch

Meta-RL

- The agent is trained on distribution of tasks
- At test time, it can quickly adapt to new but related tasks

How it works

1. Gradient-Based Meta-RL (Model-Agnostic Meta-Learning)
2. Recurrent Meta-RL (RNN-based)

Meta-RL Structure

- Meta Training Phase
 - Training many tasks from task distribution
 - Learn a policy or algorithm that can adapt
- Meta-Testing Phase
 - Give new task, it adapts quickly using only a few episodes

Benefits

1. Sample efficiency
2. Generalization
3. Task adaptation

Challenges

1. Require many diverse training tasks
2. Computationally intensive
3. Defining task distribution can be tricky

Contextual Bandits

Agents learn to choose the best action for a given context to maximize the rewards over time.
Its balance between Exploration and Exploitation

- Exploration: Try new actions to learn
- Exploitation: Use best known action for a context

How it works

Context \square Action \square Reward

1. Agents see the context

2. Chooses an action
3. Gets reward
4. Updates the strategy for future similar contexts

Common Algorithms

1. Epsilon-Greedy
2. LinUCB
3. Thompson Sampling
4. Neural Bandits

Benefits

- Fast to train, easy to update
- Doesn't need full environment modeling like RL
- Strong for personalized experiences

Challenges

- No long-term planning
- Assuming action doesn't affect future context
- May struggle with high dimensional contexts

Why Contextual Bandit > Meta-RL in our case?

1. Sample and effective for Policy Selection
2. Fast Decision making
3. Easier to Train and Debug
4. Integrates well with Sentiment + Macro Context

Research on Paper Trading API and options

PAPER TRADING API
and OPTIONS.pdf

Research on Impact of Social Media Sentiments on the Stock Market

Introduction

In today's digital era, social media platforms have become pivotal in shaping public opinion and investor behavior. Platforms like Twitter, Reddit, and TikTok serve as real-time sources of information, where sentiments expressed can significantly influence stock market dynamics. The rapid dissemination of opinions, news, and rumors through these channels has introduced a new dimension to market volatility and investor decision-making.

Understanding Social Media Sentiment

Social media sentiment refers to the collective emotions and opinions expressed by users on social platforms regarding specific topics, companies, or financial instruments. Analyzing this sentiment involves assessing whether the public discourse is positive, negative, or neutral. Advanced techniques, including natural language processing (NLP) and machine learning algorithms, are employed to quantify and interpret these sentiments. For instance, studies have demonstrated that Twitter sentiment can be a significant predictor of stock market trends, highlighting the platform's influence on investor behavior [.arXiv](#)

Case Studies Illustrating Impact

The GameStop Phenomenon

A notable example of social media's impact on the stock market is the GameStop (GME) short squeeze in early 2021. Retail investors congregating on Reddit's r/WallStreetBets forum orchestrated a massive buying spree, propelling GME's stock price from under \$20 to over \$400 within weeks. This event underscored the power of collective action facilitated by social media, challenging traditional market dynamics and causing significant losses for hedge funds with short positions [.Time](#)

Influence of Finfluencers

The rise of financial influencers, or "finfluencers," on platforms like TikTok and Instagram has further exemplified social media's sway over the stock market. These individuals, often lacking formal financial credentials, can amass large followings and influence investment decisions through their content. Their recommendations have been linked to significant stock price movements, emphasizing the need for critical evaluation of information sources in the digital age [.The Insurance Universe](#)

Mechanisms of Influence

Rapid Information Dissemination

Social media enables instantaneous sharing of information, allowing news, rumors, and opinions to spread rapidly among investors. This immediacy can lead to swift market reactions, as seen in various instances where tweets or posts have triggered significant stock price fluctuations .

Herd Behavior and Sentiment Contagion

The phenomenon of herd behavior, where individuals mimic the actions of a larger group, is amplified on social media platforms. Positive sentiments can lead to increased buying activity, while negative sentiments may trigger widespread selling. This sentiment contagion can result in heightened market volatility and price swings [.ScienceDirect](#)

Predictive Analytics and Algorithmic Trading

Investment firms are increasingly incorporating social media sentiment analysis into their trading algorithms. By leveraging AI and big data analytics, these firms aim to predict market movements based on public sentiment trends. Such strategies have shown promise in enhancing the accuracy of market forecasts and informing investment decisions .

Challenges and Considerations

Misinformation and Market Manipulation

The unregulated nature of social media allows for the rapid spread of misinformation, which can mislead investors and distort market perceptions. Coordinated efforts to manipulate stock prices through false or exaggerated claims pose significant risks to market integrity.

[.ScienceDirect](#)

Short-Term Impact and Volatility

While social media sentiment can influence immediate stock price movements, its effects are often short-lived. Studies have indicated that the impact of social media sentiment on stock returns tends to diminish over time, with fundamental factors eventually prevailing.

[.ScienceDirect](#)

Ethical and Regulatory Implications

The growing influence of social media on financial markets raises ethical and regulatory concerns. Issues such as the spread of unverified information, potential conflicts of interest, and the need for investor protection necessitate the development of appropriate regulatory frameworks.

Conclusion

Social media has undeniably transformed the landscape of stock market investing. Its capacity to shape investor sentiment and influence market dynamics underscores the importance of understanding and monitoring online discourse. While it offers valuable insights and democratizes information access, it also presents challenges that require careful navigation. Investors and regulators alike must remain vigilant, ensuring that the integration of social media into financial markets promotes transparency, fairness, and stability.

References

1. Mokhtari, M., Seraj, A., Saeedi, N., & Karshenas, A. (2023). The Impact of Twitter Sentiments on Stock Market Trends. *arXiv preprint arXiv:2302.07244*.[arXiv](#)
2. Time. (2023). *Dumb Money and the Complicated Legacy of GameStop*. Retrieved from <https://time.com/6312307/gamestop-meme-stocks-dumb-money/en.wikipedia.org+3Time+3investopedia.com+3>
3. Moolah Solutions. (2024). *The Impact of Social Media on Stocks: A Comprehensive Analysis*. Retrieved from <https://moolahsolutions.com/impact-of-social-media-on-stocks/The Insurance Universe>
4. Easy Street Investing. (2024). *Social Media's Influence on Investor Behavior and Market Sentiments*. Retrieved from <https://www.easystreetinvesting.com/social-medias-influence-on-investor-behavior-and-market-sentiments/Easy Street Investing>
5. ScienceDirect. (2024). *Social media sentiment contagion and stock price jumps and crashes*. Retrieved from <https://www.sciencedirect.com/science/article/abs/pii/S0927538X24002725>[.ScienceDirect](#)
6. ScienceDirect. (2022). *The causal relationship between social media sentiment and stock return: Experimental evidence from an online message forum*. Retrieved from

<https://www.sciencedirect.com/science/article/abs/pii/S0165176522001793> ScienceDirect

7. Ticker Trends. (2024). *Social Media Sentiment and Stock Volatility*. Retrieved from <https://blog.tickertrends.io/p/social-media-sentiment-and-stock-volatility>

Research on the explainability of model with LLMs

Stock Portfolio Allocation and Risk Management using FinRL/Reinforcement Learning

- **Action rationale:** Why did the RL agent choose a particular asset allocation?
- **Policy interpretation:** What is the strategy or behavior learned by the agent?
- **Risk assessment:** How are risk measures like volatility, Sharpe ratio, and drawdowns being handled?
- **State-action importance:** What market states most influence decisions?

. Techniques for Explainability with LLMs

a. Natural Language Explanations from Logs

Use LLMs to turn logs from your environment into explanations. For example:

- Track states (market conditions), actions (buy/sell/hold), and rewards.
- Feed sequences into an LLM to generate descriptions:
- Implement Explainable AI (XAI) in stock trading RL model, we need to analyze and interpret the decisions made by the PPO agent
- Use **SHAP** (SHapley Additive exPlanations) to understand feature contributions for the Q-network or policy network.
- Convert SHAP values into natural language summaries with LLMs

```
shap_summary = shap_explainer.shap_values(state)
prompt = f"""
Given these SHAP values for input features: {shap_summary},
explain how they influenced the agent's decision.
"""

```

c. State Clustering + LLM Interpretation

- Cluster similar states (e.g., bull, bear, volatile).
- Use LLMs to describe agent behavior in each cluster.

. Visualization + LLM Commentary

Combine plots (portfolio value, risk metrics, allocation changes) with LLM-generated summaries.

Example: "This dip in the portfolio coincides with increased volatility in the market. The agent responded by reallocating to lower-risk assets."

. Explain Risk Management Policies

Use LLMs to interpret how your RL agent complies with risk controls:

- Maximum drawdown enforcement
- Portfolio diversification
- Stop-loss triggers

. Visualization + LLM Commentary

- Combine plots (portfolio value, risk metrics, allocation changes) with LLM-generated summaries.
- Example: “This dip in the portfolio coincides with increased volatility in the market. The agent responded by reallocating to lower-risk assets.”

. Explain Risk Management Policies

Use LLMs to interpret how your RL agent complies with risk controls:

- Maximum drawdown enforcement
- Portfolio diversification
- Stop-loss triggers

LLMs and tools we can combine

Open Ai GPT-4	General purpose explainability, financial narrative
Gemini	Regulatory compliance and wise decision
Meta LLaMa3	Open source research prototypes

References

- **The properties of equally weighted risk contributions portfolios.** *The Journal of Portfolio Management, A Unified Approach to Interpreting Model Predictions.* [SHAP GitHub](#)

Wireframe

STOCKIFY

Home About Log in

PORTFOLIO

Portfolio Allocation \$100,000	Time Horizon 5 Years
---	---------------------------------------

Description	Stocks	Allocation
A paragraph describing why this portfolio is chosen	Stock 1	30%
	Stock 2	25%
	Stock 3	25%
	Stock 4	20%

Research on