UCSD Robocar Framework 1

UCSD Robocar Framework

Version V1.3
Last updated: 08/26/2022

Prepared by
Dominic Nightingale
Department of Mechanical and Aerospace Engineering
University of California, San Diego
9500 Gilman Dr, La Jolla, CA 92093

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UCSanDiego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 2

Table of Contents

1. Introduction

1.1 About

1.2 What's Being Used
1.2.1 Embedded Computers
1.2.2 Ubuntu
1.2.3 Gitlab
1.2.4 Docker
1.2.5 R0OS

1.3 Recommendations
1.3.1 VS Code IDE
1.3.2 Virtual Machines

2. UCSD Robocar Framework Breakdown
2.1 Packages
2.1.1 Nav
2.1.2 Lane Detection
2.1.3 Sensor
2.1.4 Actuator
2.1.5 Control (coming soon)
2.1.6 Path (coming soon)
2.1.7 Basics
2.2 Updating All Packages
2.2 Launch Files

O © © © © 00 0w 0 0 00 N (e>NNNe> RN o) B e)RENe> RN o) NG BENG) NN &) BENG) BN S, BEN V)

-_—

3. Developer Tools 14
3.1 Guidebooks 14
3.2 Gitlab 14

3.2.1 Adding new submodules: 14
3.2.2 Updating local submodules with remote submodules: 14
3.2.3 Updating remote submodules with local submodules: 14
3.2.4 Removing submodules: 14
3.2.5 Adding an existing package to git 15
3.3 Docker 16
3.3.1 Pulling/running 16
3.3.2 Updating/creating/sharing 16
3.3.3 Listing 16

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework

3.3.4 Deleting

4. Accessing Docker Images

4.1 UCSD Robocar Image

4.2 Docker Setup
4.2.1 Enable X_11 Port Forwarding
4.2.2 Update Docker Daemon
4.2.3 Running A Container

4.3 Workspaces in Docker Container
4.3.1ros1_ws
4.3.2 ros2_ws
4.3.3 sensor2_ws

4.4 ROS BRIDGE

4.5 Utility functions in ~/.bashrc

5. Source ROS Version
5.1 Source ROS1
5.2 Source ROS2
5.3 Source ROS Bridge

6. Hardware Configuration
6.1 ROS1
6.2 ROS2

7. Node Configuration
7.1 ROS1
7.2 ROS2

8. Sensor Visualization
8.1 ROS1
8.2 ROS2

9. Manual Control of Robot with Joystick
9.1 ROS1
9.2 ROS2

10. Integrating New Packages/Code into the Framework
10.1 Integrating a ROS Package
10.2 Integrating supporting files
10.3 Integrating new algorithms into the basics package

11. Navigation

16

17
17
18
18
18
19
21
21
21
21
21
21

22
22
22
22

23
23
23

24
24
24

25
25
25

26
26
26

27
27
28
29

30

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 4
11.1 Lane Detection 30
11.1.1 Calibration Process 30
11.1.1.1 ROS1 30

11.1.1.2 ROS2 30

11.1.2 Color Calibration 31

11.1.3 Line/Lane Calibration 35

11.1.4 Actuator Calibration 39
11.1.4.1 Clarification on throttle modes 40

11.1.5 Camera Navigation 41
11.1.5.1 ROS1 41

11.1.5.2 ROS2 41

11.2 Tube/Wall Following (coming soon) 42
11.3 SLAM 43
11.3.1 Requirements 43

11.3.2 Starting SLAM 43
11.3.2.1 Saving the map 44

11.3.2.1.1 map_server 44

11.3.2.1.2 hector_mapping 44

11.3.3 Localization in a pre-made map 44

12. Data Collection 45
13. F1 Tenth Simulator 46
13.1 Creating a Map with Paint (coming soon) 46
13.2 Updating Vehicle Parameters (coming soon) 46
13.3 Adding Multiple Vehicles (coming soon) 46

14. Troubleshooting 47
15. Frequently Used Linux commands 48
15.1 WIFI 48
15.2 Hardware Tests 48
15.3 File management 48
15.4 System Control 48

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 5

1. Introduction

The UCSD Robocar framework is primarily maintained and developed by Dominic Nightingale right here at UC
San Diego.

UCSD Robocar uses ROS and ROS2 for controlling our scaled robot cars which can vary from traditional
programming or machine learning to achieve an objective. The framework works with a vast selection of
sensors and actuation methods in our inventory making it a robust framework to use across various platforms.
Has been tested on 1/16, 1/10, 1/5 scaled robot cars and soon our go-karts.

1.1 About

This framework was originally developed as one of Dominic’s senior capstone projects as an undergraduate
and has been under constant development throughout his graduate program. The framework provides the
ability to easily control a car-like robot as well as performing autonomous tasks. It is currently being used to
support his thesis in learning-model predictive control (LMPC).

The framework is also being used to teach undergraduates the fundamentals of using gitlab, docker, python,
openCV and ROS. The students are given the task to use the framework with their robots to perform
autonomous laps on a track by first going through a calibration process that's embedded into the framework.
The students then have to come up with their own final projects for the class that can be supported by the
framework, which can vary from car following, SLAM applications, path planning, city driving behaviors,
Human-machine-interfacing and so much more.

1.2 What's Being Used
1.2.1 Embedded Computers
There are 3 main computers that have been used to develop and test this framework which belong to the
NVIDIA Jetson family.
e Jetson Nano
e Jetson Xavier Nx
e Jetson AGX Xavier

1.2.2 Ubuntu
The host OS on all the Jetson computers use Ubuntu18 which is flashed through NVIDIA's Jetpack image.

However, the docker image uses Ubuntu20 in order to use ROS2 without worrying about package installation

issues

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 6

1.2.3 Gitlab

This is where all the code for the entire framework is managed and developed. Gitlab provides a service similar
to google drive but for programs! It's especially convenient in terms of deploying code into embedded

computers.

1.2.4 Docker

This tool is being used to expedite the setup process on the computers. To get the docker image working, the
Jetson just needs to be flashed with the Jetpack 4.6 image provided by NVIDIA and then simply pull the UCSD
Robocar docker image from docker hub onto the Jetson. This allows for plug-n-play capabilities as long as all

the hardware is connected to the Jetson properly.

1.2.5 ROS
The framework allows for both ROS-Noetic and ROS2-Foxy to work together through the ROS bridge or

independently depending on the application.

1.3 Recommendations
1.3.1 VS Code IDE

Microsoft Visual Studio IDE is an excellent development tool for coding especially because of all the free
plug-ins that can be added.
Plug-ins recommended:

e Python

e Docker

e Remote - SSH

1.3.2 Virtual Machines

If having software related issues, a virtual machine can possibly solve the issues and also provide a linux
based interface to use with the jetson which is usually much smoother than with windows or mac.

Below are some links to install Virtual machine software and a virtual machine image that runs Ubuntu20.04,
has VS code (with all plug-ins mentioned above), docker and the UCSDrobocar docker image installed already.

VMware Software

UCSD Robocar VM image for VMware
Hostname: ucsdrobocar-vm
Username: robocar

Password: ucsdrobocar

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://www.vmware.com/products/workstation-player.html
https://drive.google.com/file/d/1ltKrZBdA2ZTFRjKj5E08WWbZN5PNIPJL/view?usp=sharing

UCSD Robocar Framework 7

2. UCSD Robocar Framework Breakdown

Below are the supporting packages to the framework. The Nav package operates as the "brain" because it is

the only package that communicates to all the other packages which are all independent from one another.

Why so many packages? In practice, developing stand-alone or independent functionalities makes the
package more robust in terms of deployability. Also as the robot becomes more sophisticated, the number of
packages it will have access to would naturally increase allowing it to achieve many different types of tasks

depending on the application of interest.

So the idea is to develop a package that could in general be used on any car-like robot as well as being able to

choose what packages your robot really needs without having to use the entire framework.

For example, lets say another company developed their own similar sensor, actuator and nav packages but
they have not researched into lane detection. Instead of using the entire UCSD Robocar framework, they could
easily just deploy the lane detection package and have some interpreter in their framework read the messages

from the lane detection package to suit their needs.

Link to official git repo (ROS1): ucsd_robocar_hub1

Link to official git repo (ROS2): ucsd_robocar_hub2

NOTE: Both hub1 and hub2 are metapackages. For specific details about any individual package, click on any
of the packages in either hub to be taken to that packages' main repository.

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://gitlab.com/ucsd_robocar/ucsd_robocar_hub1
https://gitlab.com/ucsd_robocar2/ucsd_robocar_hub2

UCSD Robocar Framework 8

2.1 Packages

Each UCSD ROS package has a README.md that explains in detail what config, nodes, launch files it
has as well as topic/message information. So if you are confused about a particular thing, ask yourself,
“What is the problem | am having?” ,“What package is most likely the root of the concern?” Then go
see the readme for that package and check anything relevant or even the troubleshooting section.

In the package sections below are the links to the official README.md docs for each package for both ROS1
and ROS2. So any package with a 1 in it is for ROS-NOETIC and any package with a 2 is for ROS2-FOXY.

2.1.1 Nav

The navigation package (nav_pkg) is the "brain" of the UCSD Robocar framework because it keeps all the
launch files in its package to launch any node/launch file from the other packages used in the framework. This
makes using the framework easier because you only really have to remember the name of the nav_pkg and
what launch file you want to use rather than having to remember all the other package names and their own
unique launch files.

NAV2 README.md
NAV1 README.md

2.1.2 Lane Detection

The lane detection package is one method of navigating by identifying and tracking road markers. The basic
principle behind this package is to detect road markers using openCV and then compute whats called the
“cross-track-error” which is the difference between the center axis of the car and the centroid (center of “mass”)
of the road mark which is then fed into a PID controller for tracking.

Lane Detection2 README.md

Lane Detection1 README.md

2.1.3 Sensor

The sensor package contains all the required nodes/launch files needed to use the sensors that are equipped
to the car.

Sensor2 README.md

Sensor! README.md

2.1.4 Actuator

The actuator package contains all the required nodes/launch files needed to use the actuators that are
equipped to the car.

Actuator?2 README.md

Actuator! README.md

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://gitlab.com/ucsd_robocar2/ucsd_robocar_nav2_pkg/-/blob/master/README.md
https://gitlab.com/ucsd_robocar/ucsd_robocar_nav1_pkg/-/blob/master/README.md
https://gitlab.com/ucsd_robocar2/ucsd_robocar_lane_detection2_pkg/-/blob/master/README.md
https://gitlab.com/ucsd_robocar/ucsd_robocar_lane_detection1_pkg/-/blob/master/README.md
https://gitlab.com/ucsd_robocar2/ucsd_robocar_sensor2_pkg/-/blob/master/README.md
https://gitlab.com/ucsd_robocar/ucsd_robocar_sensor1_pkg
https://gitlab.com/ucsd_robocar2/ucsd_robocar_actuator2_pkg/-/blob/master/README.md
https://gitlab.com/ucsd_robocar/ucsd_robocar_actuator1_pkg/-/blob/master/README.md

UCSD Robocar Framework 9

2.1.5 Control (coming soon)

The control package contains all the required nodes/launch files needed to control the car in various methods
such as PID, LQR, LQG and MPC

2.1.6 Path (coming soon)

The path package contains all the required nodes/launch files needed to create trajectories for the car to follow
in a pre-built map as well as in simulations

2.1.7 Basics

The path package contains all the required nodes/launch files needed to subscribe/publish to the
sensor/actuator messages within the framework for fast algorithm prototyping
Basics2 README.md

2.2 Updating All Packages

A utility function was added to the ~/.bashrc script that will automatically update all the packages in the
framework and then rebuild and source it so it will be ready to start using ROS2!

From the terminal
upd ucsd robocar

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

https://gitlab.com/ucsd_robocar2/ucsd_robocar_basics2_pkg/-/blob/master/README.md

UCSD Robocar Framework 10

2.2 Launch Files
The launch file diagrams below show the very general approach of how the packages communicate with one

another. With ROS, it just comes down to a combination of starting launch files and sending messages
(through topics) to nodes. For specific details about messages types, topics, services and launch files used,

please go to the readme for the specific package of interest!

The nav_pkg is at the base of each of the diagrams and rooting from it are the launch files it calls that will
launch other nodes/launch files from all the other packages in the framework.

In ROS2, a dynamically built launch file (at run-time) is used to launch all the different nodes/launch files for
various purposes such as data collection, navigation algorithms and controllers. This new way of creating
launch files has now been simplified by just adding an entry to a yaml file of where the launch file is and a
separate yaml file to indicate to use that launch file or not. There is only one file to modify and all that needs to
be changed is either putting a “0” or a “1” next to the list of nodes/launch files. To select the nodes that you
want to use, put a “1” next to it otherwise put a “0” which means it will not activate. In the figures below, instead
of including the entire ros2 launch command, you will only see the names of the launch files that need to be
turned on in the node config file explained more in detail here

actuator_pkg
twist_node

rviz_pkg ‘

ROS-NOETIC: roslaunch ucsd robocar navl pkg sensor visualization.launch
ROS2-FOXY: all components.launch.py, sensor visualization.launch.py

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UCSD Robocar Framework 11

teleop_twist_joy_pkg - actuator_pkg
[joy de twist_node

4
launch fil ‘ nav_pkg ‘
I

ROS-NOETIC: roslaunch ucsd robocar navl pkg teleop joy vesc.launch
ROS2-FOXY:all components.launch.py, teleop joy vesc launch.launch.py

sensor_pkg - lane_detection_pkg 5 actuator_pkg
camera_node calibration twi ode

‘ nav_pkg ‘

ROS-NOETIC: roslaunch ucsd robocar navl pkg
camera nav_calibration launch.launch

ROS2-FOXY: all components.launch.py, camera nav calibration.launch.py

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework

12

sensor pkg - : > actuator pPg

launch fi
m

ROS-NOETIC: roslaunch ucsd robocar navl pkg camera nav launch.launch
ROS2-FOXY: all components.launch.py, camera nav.launch.py

sensor_pkg X hector_slam_pkg
lidar_node . slarr e rviz_pkg

nav_pkg

ROS-NOETIC: roslaunch ucsd robocar navl pkg ros racer mapping launch.launch

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UCSanDiego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework

13

sensor_pkg

lidar_node

launch fi
m

laser_to_pose_pkg
scan_matcher_node

nav_pkg

map_server_pkg
map, >

ROS-NOETIC: roslaunch ucsd robocar navl pkg ros racer nav launch.launch

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 14

3. Developer Tools
3.1 ROS Guidebooks

Links provided below are guides for ROS and ROS2 which include many examples, terminal commands and
general concept explanations of the various features in ROS and ROS2

e UCSD ROS Guidebook

e UCSD ROS2 Guidebook

3.2 Gitlab

Since the framework uses a meta package (a package that contains multiple packages) we refer to individual
packages as submodules.

3.2.1 Adding new submodules:

1. git submodule add <remote url>
2. git commit -m "message"

3. git push

3.2.2 Updating local submodules with remote submodules:

1. Iflocal changes have been made, the update command will fail unless you add, commit and push
(shown in 3.2.3) or stash (git stash) them, which will temporarily discard any local changes

2. git submodule update --remote --merge Pay attention to the output of this command. to
make sure it did not fail or Abort...

3.2.3 Updating remote submodules with local submodules:

1. git add .
2. git commit -m "message"
3. git pushP ttention to th tput of thi mmand, to mak re it did not fail

3.2.4 Removing submodules:

1. git submodule deinit <submodule>
2. git rm <submodule>

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://docs.google.com/document/d/1u7XS7B-Rl_emK3kVKEfc0MxHtwXGYHf5HfLlnX8Ydiw/edit
https://docs.google.com/document/d/1DJgVLnu_vN-IXKD3QrQVF3W-JC6RiQPVugHeFAioB58/edit?usp=sharing

UCSD Robocar Framework 15

3.2.5 Adding an existing package to git

From the web browser, create empty repo on gitlab

Now from the Jetson, start by creating a new ROS2 package

ros2 pkg create --build-type ament python pkg name --dependencies rclpy
build ros2

Now proceed with merging the new package with the framework

git init

git remote add origin <remote url from step 1>
git add
git commit -m "message"

git push --set-upstream origin master

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://docs.gitlab.com/ee/user/project/working_with_projects.html#create-a-blank-project

UCSD Robocar Framework 16

3.3 Docker

Below is a go-to list of docker commands that can be used with the framework.

Some new lingo:

Container name: NAMES

Image name: REPOSITORY

Image tag ID (comparable to branches in git): TAG

3.3.1 Pulling/running

pulling image from docker hub: docker pull REPOSITORY:TAG

starting a stopped container: docker start NAMES

stopping a container: docker stop NAMES

Using Multiple Terminals for a Single Docker Container: docker exec -it NAMES bash
build docker image and give it a new name and tag docker build -t REPOSITORY:TAG

3.3.2 Updating/creating/sharing

e save changes made while in container to original image (change tag to create a new image):
docker commit name of container REPOSITORY:TAG
create a new image from a container: docker tag NAMES REPOSITORY:TAG
pushing image to dockerhub: docker push REPOSITORY:TAG
Share files between host and docker container:
o From host to docker container: docker cp foo.txt container id:/foo.txt
o From docker container to host: docker cp container id:/foo.txt foo.txt

3.3.3 Listing

e |istallimages: docker images
e [ist all running containers: docker ps
e list all containers (including stopped): docker ps -a

3.3.4 Deleting

delete specific container: docker rm NAMES

delete specific image: docker rmi REPOSITORY:TAG

delete ALL containers: docker rm -f $(docker ps -a -q)
delete ALL images: docker rmi -f $(docker images -Qq)

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 17

4. Accessing Docker Images

Currently there are two DIFFERENT docker images that are being supported by UCSD. One image was built
for arm architecture computers (Jetson family) and the other was built for X86 architecture computers (most
laptops and desktops). Apple M1 support will be coming soon.

Question: Why two images?

Answer: The X86 image was built to provide an environment for the developer to test new algorithms,
packages, sensors (Yes, you can plug sensors into your computer just like the Jetson for testing) etc in a
simulated environment without having to use a physical robot. Using the physical robot for first-time testing can
lead to damaging the robot or something/someone in the environment due to an unforeseen behavior from the
robot. We must practice safe autonomy if we ever hope to see our new ideas become a part of the industry!
This leads to the ARM image, which was built to be used on the physical robot when ready to perform physical
testing.

Question: The display wont open when in the container, how to make it work? (ie. images won't port through)
Answer: There could be several reasons why the display is not working but below are the most common
solutions that can be tried
e Make sure that an X11 forwarding session was established when doing an ssh connection into the
jetson
e |[f that still doesn't work, then the container could have a broken connection with the display so the only
other thing to try is creating a new container using the provided function in the ~/.bashrc

NOTE: Docker is pre-installed on the Jetson computers so no need to install it, but in order to use the X86
image, you must install docker on your computer (for linux, windows or mac).

Note: If you have an ARM based mac there is not a docker image that works yet.

However, you can install ros2 locally with https://robostack.github.io/GettingStarted.html

4.1 UCSD Robocar Image

Link to image on Docker Hub: docker image
Computer architecture: ARM (Jetson)

Pulling the image from the terminal:

docker pull djnighti/ucsd robocar:devel

Computer architecture: X86 (Most laptops and desktops)
Pulling the image from the terminal:
docker pull djnighti/ucsd robocar:x86

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://robostack.github.io/GettingStarted.html
https://hub.docker.com/r/djnighti/ucsd_robocar

UCSD Robocar Framework 18

4.2 Docker Setup

The exact "recipe" to build this image can be found here

Note: If using the virtual machine, all this is already completed for you!
Note: In order to connect with x-forwarding, you have to set stuff up.

1. One way is to ssh from a terminal inside the virtual machine to the jetson
2. On windows, | recommend downloading moba xterm, which should have x11-forwarding set up by

default https://mobaxterm.mobatek.net/
3. On mac, you can download xquartz from xquartz.org. Here is a link describing how to set it up:

https://drive.google.com/file/d/10zFlgelVAWQg04S_bMru95JwThPDrg6Fk/view?usp=sharing

4.2.1 Enable X_11 Port Forwarding

1. On your HOST machine (not the Jetson) enter these commands (Will have to enter every time)
ssh -X jetson@ip address

2. Now on the Jetson, run the following commands to obtain sudo access for docker commands (only
needs to be ran once)
sudo usermod -aG docker ${USER}

su S${USER}

3. Now check that if X_11 forwarding is working
xeyes

If some googly eyes pop up, X_11 is ready to go. IF X_11 PORT FORWARDING IS NOT SETUP, follow steps
here to get it set up. Then come back here to continue the steps below.

Note: xhost + is essentially disabling access control for display forwarding to your computer. This creates a
security vulnerability since malicious third parties could forward stuff to your display. While you’re on the
ucsd_robocar dedicated wifi network there is pretty much no risk from this, but make sure to run xhost -
after you are done to re-enable access control.

Xforwarding from the jetson may even work without ever running xhost +. Try it to see if it works for you.

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://gitlab.com/ucsd_robocar2/ucsd_robocar_hub2/-/blob/master/docker_setup/docker_files/Dockerfile
https://mobaxterm.mobatek.net/
https://drive.google.com/file/d/1ozFIgeIVAWg04S_bMru95JwThPDrq6Fk/view?usp=sharing
https://gitlab.com/djnighti/ucsd_robo_car_simple_ros/-/blob/master/x11_forwarding_steps.txt

UCSD Robocar Framework 19

Additional Troubleshooting:

One common fix to try for x_11 forwarding issues is docker restart container name

A “nuclear option” for fixing x_11 forwarding issues is reinstalling the xserver and regenerating the xauthority
files. However you will have to create new docker containers after doing this in order to get access to x11
forwarding

sudo apt-get install --reinstall xserver-xorg

sudo chmod 777 .Xauthority

One alternative to x_11 forwarding entirely is to use nomachine to forward the display instead.
Note that if you need to run a container you'll have to add a flag to the docker run command, which is
described later

See E 15 - UCSD RoboCar Remote Desktop for instructions on setting up nomachine.

4.2.2 Update Docker Daemon

1. Then modify daemon.json file (just delete previous version then create new one)
sudo rm /etc/docker/daemon.json

sudo nano /etc/docker/daemon.json

2. copy and paste the following into that file:

{
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",

"runtimeArgs": []

by

"default-runtime": "nvidia"

}

3. save and quit then reboot jetson
sudo reboot now

4.2.3 Running A Container
1. SSH back into the Jetson with the -X flag which enables X_11 Forwarding

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://docs.google.com/document/d/1WR4my5hZGzdHrmYuORuqSjyniT_PZXgufSlsZdT_atI/edit?tab=t.0#heading=h.vqgfpy1txthc

UCSD Robocar Framework 20

ssh -X jetson@ip address

2. Create a new function in the ~/.bashrc file with command line arguments to easily run a container
gedit ~/.bashrc
3. Copy and paste the following into the very bottom of the file

#xhost +local:docker #only for nomachine
robocar docker ()
{
docker run \
--name ${1} \
-it \
—--privileged \
-—-net=host \
-e DISPLAY=$DISPLAY \
#-e QT X11 NO MITSHM=1 \ #you only need to use this if you want to
forward the display to your local computer via nomachine
-v /dev/bus/usb:/dev/bus/usb \
-—-device-cgroup-rule='c 189:* rmw' \
-—device /dev/videoO \
--volume="$HOME/.Xauthority:/root/.Xauthority:rw" \
djnighti/ucsd robocar:${2:-devel}

Note: you may want to replace the last line with

djnighti/ucsd robocar:${2:-ucsd robocar} if you want to use the latest
part of the ucsd robocar image instead of the devel image. However I
recommend the devel image

Notice the two arguments we have made:

${1}: This will be the name of the container, ex. Name_this_container

${2:devel}: This is the tag id of the image you want to launch a container from. If nothing is specified
when calling at the command line (example shown below), the “devel” tag will be run.

Don't modify the function, the argumen re intentional and not mean har

4. Source the ~/.bashrc script so the current terminal can see the new function we just added
source ~/.bashrc
5. Run the following command to enter the docker container
robocar docker test container
6. To access the same docker container from another terminal (do this for as many terminals you want)
docker start test container
docker exec -it test container bash

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 21

At this point the docker setup is complete but don't forget to refer to the useful docker commands sections
which includes deleting, creating and updating images locally and remotely!

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 22

4.3 Workspaces in Docker Container
4.3.1ros1_ws

ROS version: ROS-NOETIC
This workspace contains source compiled packages from ucsd_robocar_hub1

4.3.2 ros2_ws

ROS version: ROS2-FOXY
This workspace contains source compiled packages from ucsd robocar _hub2

4.3.3 sensor2_ws

ROS version: ROS2-FOXY
This workspace contains source compiled packages for various sensors in our inventory.

4.4 ROS BRIDGE

The ros1_bridge package is used to enable the communication between nodes in ROS1 (ros1_ws) and ROS2
(ros2_ws). Reading material on how to use it can be found here and a video of it being used can be found here

REMEMBER:

This image has both ROS1 and ROS2 which results in having to source them individually and every
new terminal. This also means that the metapackages ucsd robocar _hub1 and ucsd robocar _hub2
must be sourced!

Jetpack info for Jetson
REQUIREMENT: JetPack 4.6 (L4T R32.6.1)
check to make sure: sudo apt-cache show nvidia-jetpack

4.5 Utility functions in ~/.bashrc

Updating all packaging in the ucsd_robocar framework from gitlab: upd ucsd robocar
Source Noetic and ALL ROS packages and start roscore: source _rosl init

Source Noetic and ALL ROS packages: source rosl pkg

Source Noetic and ALL ROS packages and put user in ros1_ws: source rosl

Source foxy and ALL ROS2 packages: source ros2 pkg

Source foxy and ALL ROS2 packages and put user in ros2_ws: source ros2

Build all packages in ucsd_robocar: build ros2
Source ROS bridge: source ros_bridge

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://gitlab.com/ucsd_robocar/ucsd_robocar_hub1
https://gitlab.com/ucsd_robocar2/ucsd_robocar_hub2
https://industrial-training-master.readthedocs.io/en/melodic/_source/session7/ROS1-ROS2-bridge.html#run-the-ros1-bridge
https://www.theconstructsim.com/how-to-communicate-between-ros1-ros2-with-ros1_bridge

UCSD Robocar Framework 23

5. Source ROS Version
5.1 Source ROS1

We need to source ROS Noetic, ros1_ws and activate roscore, below is an alias command that will do all of
that automatically. This command only needs to be run one time in any docker container. As you open new
terminals in the same Docker container, another alias was made to source ROS Noetic and the ros1_ws as
well as placing you in the ros1_ws. This command needs to be run in every new terminal you want to use
ROS1 in.

From the terminal (this terminal will always need to be running so don't close it!)

source rosl init

From another terminal

source rosl

5.2 Source ROS2

We need to source ROS Foxy and the ros2_ws, below is an alias command that will do that automatically. The

alias will also place you in the ros2_ws. This command needs fo be run in every new terminal you want to use
ROS2 in. Another alias was made to rebuild the package if any changes were made to the source code. It will

put you in the ros2_ws, then perform a colcon build and then source install/setup.bash to reflect the changes
made.

From the terminal
source ros2

From the terminal (This is only needs to be ran in 1 terminal, the changes will be reflected everywhere)
build ros2

5.3 Source ROS Bridge

We need to source ROS Noetic, ROS Foxy and the ros2_ws, below is an alias command that will do that and

launch ros bridge automatically. This command only needs to be run once and will occupy a terminal
throughout its existence. This alias does a dynamic bridge between ALL topics in Noetic and Foxy.

From the terminal

source ros bridge

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 24

6. Hardware Configuration

Not all robots have the same hardware especially when it comes to their sensors and motors and motor
controllers. This quick section shows how to select the hardware that is on your robot. There are differences
between ROS1 and ROS2 on how this configuration works so please read accordingly. This configuration is
only necessary for the UCSD Robocar Image and NOT UCSD Robocar Simple ROS Image.

6.1 ROS1

In ROS1, the hardware configuration is done by either modifying the launch files or at the command prompt as
an argument to the launch command. There are 3 pre-made car configurations that can be launched at any
time. If using a launch file from the nav_pkg, an example is given below for how to modify the launch file. Al
the launch files for the hardware can be found in the launch directory in the ucsd_robocar_nav1_pkg.

1. dsc_car_launch: sic lidar, intel camera (any model works), VESC

2. mae_148_ car_launch: Id06 lidar, webcam, adafruit

3. custom_car_launch: Id06 lidar, webcam, VESC (pick any nodes needed to launch all sensors/actuators

on the car, by modifying the “custom_car_launch.launch” file)

NOTE: The custom car option is meant to be modified as needed for other types of configurations.

Modify “load_car_launch.launch” launch file with the car config for your robot. This is the line you
need to modify, the 3 options are listed above. <arg name="car_type" value="custom_car_launch " />
From the terminal

source_rosl

gedit src/ucsd robocar hubl/ucsd robocar navl pkg/launch/load car launch.launch

6.2 ROS2

In ROS2, the hardware configuration is as simple as flipping a switch. Since the launch files in ROS2 are now
in python, we can dynamically build launch files! This means no more need to have several different “car
configs” that may have different hardware on them and instead have a single launch file that is capable of
launching any component you need by changing a single number (that number is explained below)! There is
only one file to modify and all that needs to be changed is either putting a “0” or a “1” next to the list of
hardware in the file. To select the hardware that your robot has and that you want to use, put a “1” next to it
otherwise put a “0” which means it will not activate.

Modify and save the car config with the sensors and actuators on your robot and then recompile.
From the terminal

source ros2

gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/car config.yaml
build ros2

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 25

7. Node Configuration

This quick section shows how to select the nodes/launch files that are on your robot. There are differences
between ROS1 and ROS2 on how this configuration works so please read accordingly. This configuration is
only necessary for the UCSD Robocar Image and NOT UCSD Robocar Simple ROS Image.

7.1 ROS1

In ROS1, the launch files for the various capabilities of the robot are written and called individually and can be
found in the launch directory in the ucsd_robocar_nav1_pkg.

7.2 ROS2

Similar to the hardware configuration in ROS2, a dynamically built launch file is used to launch all the different
nodes/launch files for various purposes such as data collection, navigation algorithms and controllers. This
new way of creating launch files has now been simplified by just adding an entry to a yaml file of where the
launch file is and a separate yaml file to indicate to use that launch file or not. There is only one file to modify
and all that needs to be changed is either putting a “0” or a “1” next to the list of nodes/launch files. To select
the nodes that you want to use, put a “1” next to it otherwise put a “0” which means it will not activate.

Modify and save the node config to launch the algorithm(s) of your choice and then recompile.
From the terminal

source ros2

gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/node config.yaml
build ros2

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 26

8. Sensor Visualization

After selecting the hardware that's equipped on the robot, let's visually verify that the sensors are
working. The current config file that is launched will display laser scan and image data. If you have
more sensors you want to visualize, feel free to add them through rviz.

8.1 ROS1

Here is the list of available launch files for all the sensors in the sensor1_pkg

Place the robot on the class provided stand. The wheels of the robot should be clear to spin.
From terminal

source rosl

roslaunch ucsd robocar navl pkg sensor visualization.launch

8.2 ROS2

Here is the list of available launch files for all the sensors in the sensor2_pkg

Place the robot on the class provided stand. The wheels of the robot should be clear to spin.
From the terminal

source ros2

Modify the hardware config file to turn on the sensors you have plugged in and want to visualize.
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/car config.yaml

Then modify the node config file to activate all_components and sensor_visualization launch files
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/node config.yaml

Then rebuild and launch
build ros2
ros2 launch ucsd robocar navZ pkg all nodes.launch.py

NOTE: If image data does not show up automatically, un-check and check its box in the display panel
in rviz.

Here is an example from intel showing the point cloud with any of their cameras in RVIZ!
From the terminal

source ros2

ros2 launch realsense2 camera demo pointcloud launch.py

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://gitlab.com/ucsd_robocar/ucsd_robocar_sensor1_pkg/-/tree/master/launch
https://gitlab.com/ucsd_robocar2/ucsd_robocar_sensor2_pkg/-/tree/master/launch
https://github.com/IntelRealSense/realsense-ros/tree/ros2#point-cloud

UCSD Robocar Framework 27

9. Manual Control of Robot with Joystick

This feature is only supported in the UCSD Robocar Image and NOT UCSD Robocar Simple ROS Image
If using Adafruit and not VESC, anywhere below that says vesc you can replace with adafruit

A deadman switch is also enabled which means you must be pressing the button (LB on logitech) down in
order for you to send commands to your robots motors.

The joysticks on the controller are what control the robot to move forwards/backwards and turn.

Place the robot on the class provided stand. The wheels of the robot should be clear to spin.

9.1 ROS1

Place the robot on the class provided stand. The wheels of the robot should be clear to spin.
From the terminal

source rosl

roslaunch ucsd robocar navl pkg teleop joy vesc.launch

9.2 ROS2

Place the robot on the class provided stand. The wheels of the robot should be clear to spin.
From the terminal
source ros2

Modify the hardware config file to turn on the vesc_with_odom
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/car config.yaml

Then modify the node config file to activate all_components and fitenth_vesc_joy_launch launch files
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/node config.yaml

Then rebuild and launch
build ros2
ros2 launch ucsd robocar navZ pkg all nodes.launch.py

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 28

10. Integrating New Packages/Code into the Framework

Integrating a new package can be done many ways so do not take this approach as the best or only method
but simply a method for integration. The example below will be in ROS2 but the general procedure is the same
in ROS1.

10.1 Integrating a ROS Package

1. While in the docker container source ros2 and move in to the src directory of the ros2_ws
source ros2
cd src/

2. Now lets create a new node by using an example node from the ros2 guidebook which gives all the code
for the node, setup.py and launch files as well as step-by-step terminal commands to create everything
including the package itself.

a. Package name: counter_package
b. Node name: counter_publisher.py
c. Launch file name: counter_package_launch_file.launch.py

3. After completing step 2, notice the “counter_package” package in the same directory as
“ucsd_robocar_hub2” package
ls src/

4. Adding your package to the nav2 node configuration and node package location lists. To do this, all we
need is the name of the package that we want to integrate and the name of the launch file we want to use
from that package. In the example node above, the package name is “counter_package” and its launch
file is called “counter_package_launch_file.launch.py”. Lets add them to
“‘node_pkg_locations_ucsd.yaml” and to “node_config.yaml” which are both in the NAV2 package

source ros2

gedit

src/ucsd_robocar hub2/ucsd robocar nav2 pkg/config/node pkg locations ucsd.yaml

gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/node config.yaml

5. Once added, make sure that the “counter_package_launch_file.launch.py” file is set to “1” in the
“node_config.yaml” to make sure it's activated as well as any other nodes that are desired to be run.

6. Rebuild the workspace
build ros2

7. Now launch!
ros2 launch ucsd robocar navZ pkg all nodes.launch.py

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://ucsd-ecemae-148.github.io/markdown-documentation/ROS2_Guide_Book.pdf

UCSD Robocar Framework 29

8. Verify the node is running (which is called “counter_publisher”) and echo the topic (which is called
“/counter”)

ros2 node list

ros2 topic echo /counter

That's it! A new package has just been integrated into the framework and now can be easily called with any of
the framework's launch files.

10.2 Integrating supporting files

Supporting files can range from yaml files, data sets, machine learning models and general source code that
has nothing to do with ROS but may be required for the node to run properly. Once these files are integrated
into the ROS framework, they are used the same exact way as they would be when ROS was not being used,
which basically means we need to tell ROS where to locate these files so it can access them. Below is a
simple example of a ROS package structure.

ros2_ws
src
example_package_name
config
launch

example_package name
example_node.py
setup.py

Now let's say our node “example_node.py” requires an external class or method from a pure python file
called “python_only.py”, Lets create a new directory or submodule in “example_package_name” and call it
“example_submodule_name” and then put the pure python file there

ros2_ws
Src
example_package name
config
launch

example_package _name
example_submodule_name

python_only.py
example_node.py

setup.py

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UCSD Robocar Framework 30

This is the general idea however the submodule placement is arbitrary as long as you are consistent in the
code where things are located. For example, maybe the node requires a pre-trained machine learning model
for it to run successfully and makes more sense to have a models folder adjacent to the launch and config
directories as shown below

ros2_ws
SIc
example_package name
config
launch
models

example_model.pt
example_package_name
example_node.py
setup.py

Again, this placement is arbitrary but it's good to form a convention so others can understand more easily. After
the new external files have been added to the package, both the “setup.py” and “example_node.py” files
need to be updated/modified so they can access the supporting files. See this example of modifying these files

in the ROS2 guidebook.

10.3 Integrating new algorithms into the basics package

The basics package was created to give a jump start on accessing sensor data and controlling the actuators
on the robot without having to focus too much on the ROS implementation. The pre-created nodes have all the
ROS-functionality completed and only require the algorithms to process the sensor data and/or control signals
for moving the robot. Each node in the package (nodes described in the readme.md link above) has a callback
function which provides the starting point for the user to implement their algorithms with ease.

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

https://docs.google.com/document/d/1DJgVLnu_vN-IXKD3QrQVF3W-JC6RiQPVugHeFAioB58/edit#heading=h.gt05lbgt1rp9
https://docs.google.com/document/d/1DJgVLnu_vN-IXKD3QrQVF3W-JC6RiQPVugHeFAioB58/edit#heading=h.gt05lbgt1rp9

UCSD Robocar Framework 31

11. Navigation

This chapter is dedicated to the various methods for the robot to navigate autonomously.

Note: A common issue that comes up in this section is that the cars will talk to each other.

This is because they are all set up with the same ros domain ID at the start.

To fix this, nano ~/.bashrc and then change export ROS_DOMAIN_ID = 96 to some other number between 0
and 101.

11.1 Lane Detection

Goal: Be able to identify road lines with opencv and ROS to be able to autonomously navigate around any
given track.

To achieve this, the hardware on the robot must be calibrated for the track environment which is explained in
detail below. Once the calibration is complete, launch the robot in an autonomous state and tune the calibration
parameters as needed.

11.1.1 Calibration Process

This section is a guide for calibrating the camera to detect road lines as well as for steering and speed control.

Place the robot on the class provided stand. The wheels of the robot should be clear to spin.
From the terminal
roslaunch ucsd robocar navl pkg camera nav calibration launch.launch

Place the robot on the class provided stand. The wheels of the robot should be clear to spin.
From the terminal

source ros2

Modify the hardware config file to turn on the vesc_without_odom and the camera you have equipped
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/car config.yaml

Then modify the node config file to activate only all_components and camera_nav_calibration launch files
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/node config.yaml

Then rebuild and launch
build ros2
ros2 launch ucsd robocar navZ pkg all nodes.launch.py

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework

32

11.1.2 Color Calibration

The camera is seeing something like this
before we filter

Anything that is accepted (true) will be
passed through as white, everything else will
be black (false). With the default values,
everything is white

We are going to calibrate the camera to
only keep the color yellow (the dots in the
middle of the road). To do that we need to
understand how HSV colors work

- (1) H=S (H: 0-180, S: 0-255, V: 255)

30 40
(H: 0-180, S:

lowH

highH

lows

highs

lowv

highv'

mask =13

179

The Hue is often referred to as a degree and goes between 0 and 180

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 33

So if we chose an H value of 0 we would get something
Ilke thlS ?O‘!l‘ background color:

o

All of these values are represented by the H value of
0. We would expect something similar to the above
square except yellow if we put in the value of 30

Because we are trying to filter out all images except = mask (==l
yellow in our image, we will set the lowH and highH to 25 e
and 35 Here is what we see with these values e

the camera is seeing something like this before we ek
filter oy

We want to keep everything in the upper right

corner of these(picture this red square is e i
yellow). As you can see, if the S value gets too

low(left to right), we only see white, and if the b
V value gets too low(up and down) we only

see black values. There is not a problem with

V or S being too high, as that gives us a pure

color(top right). With this in mind, we will keep

only what is in the upper right corner by

leaving the highS and highV at the max and

setting the low values to about half way

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework

34

Oops, looks like that filters out too much. We
can adjust these values until we get what we
want. (also notice that in the original image the
yellow looked pretty white so we will lower the
lowS until we see some good results with little
noise)

And there you go (while playing with these two
bars (lowS and lowV) will almost always result
in a good image like this, note that paying
attention to the lighter and darker parts of the
color you are filtering for will help you set your
lowS and lowV values with a higher accuracy
and speed)(if the bright spots are
disappearing, allow more S, if the shadows
aren't showing up, allow more V)

Inverted_filter WWhatever color you selected to
“track” this slider will invert it which is basically
rejecting what you were originally tracking and
now tracking the exact opposite. This feature
is nice when the road color is very consistent
and you want to track all road markers, yellow
dashed lines, white lanes etc.

Inverted_filter

|} mask EEx]

blackAndWhiteImage E@E

gray_thresh

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 35

If for some reason you still have noise like this
and don't want to change these settings, the i
following settings can be adjusted hightt

lows

highs

lowV

highv

gray_thresh This will put a threshold on what is
considered approximately gray such that only
the white pixels can pass through the filter and
potentially resulting the small noise in the
background to black pixels

Kernel_size This value represents the size of
the kernel to be convolved with the image with
the two transforms, Erosion & Dilation
Erosion_itterations The higher this value, the
more times the kernel is convolved with the
image which results in shrinking pixel noise. This
means if there is some small noise like in the
photo above, the erosion transform will minimize
that noise further by shrinking its distribution.
The Erosion transform not only minimizes the
noise but in general all distributions which
means that even our detected road marker will
shrink! This issue is fixed with the dilation
transform.

Dilation_itterations The higher this value, the
more times the kernel is convolved with the
image which results in enlarging pixel values.
We want to undo the effects of the erosion
transform on the road marker which is ok
because our noise has already been filtered out
so it won't come back!

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UCSD Robocar Framework

36

11.1.3 Line/Lane Calibration

This part of the calibration is now about manipulating the image dimensions, the geometry of the road lines and
parameters to adjust the steering behavior of the robot.

min_width and max_width filter based on the

size of the dotted lines found

For example we can see if we set the min to
be 15 it will eliminate some of the smaller lines

in the distance because they are too thin
(below15)

]

min_width

max_width

img \:I@E

S00

number_of_lines

error_threshold

frame_width

rows_to_watch

rows_offset

100

98

]

min_width

max_width

img \:IIEIIZI

S00

number_of_lines

error_threshold

frame_width

rows_to_watch

rows_offset

100

98

100

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 37

Number_of_lines correlates to the number of lines
found in the road to use during calculation.
When it is set to 4, only up to 4 lines will be used

Error_threshold Specify the acceptable error the
robot will consider as approximately "no error".
This means that everything inside the two vertical
red bars (error bounds) will be ignored and only
the detected road lines outside of the error bounds
are used when determining the steering angle.
The simple error cost function implemented will
determine the minimum error detected (closets
road line) and steer towards it. Again, in this cost
function, the road lines within the error bars are
ignored.

This value also plays a role in determining throttle
values which is discussed in the actuator
calibration section.

Some intuition, if on a curved path,

As the distance decreases between the error
bounds, the robot will steer towards the
roadlines that are closest to it (basically
looking down).

Some intuition, if on a straight path,

If all the detected lines fall within the error bounds,
then the algorithm will assume an error of zero and
not change its steering angle. So, if the error bars
are too wide, this can cause some “drifting” (not
like Tokyo drift..) behavior to occur which can

make the car go unstable and lose the path. As the distance increases, the robot will start

steering towards detected road lines that are
further away (will start looking ahead rather
than previously).

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 38

number_of lines

Camera_centerline is used to calibrate the
actual center position of the camera frame. min i "

Fastest way to calibrate this is to grab a ruler max width
and align it along the center of the car and then ;

toggle the slider bar such that the green vertical
bar (true car center line) is lined up directly in

the middle of the ruler. The value of slider camera_centerline
represents pixel % X

frame_width

21
error_threshold

55

32
rows_to_watch

17

rows_offset

Frame_width and rows_to_watch areusedto ™ img =13
crop the image vertically and horizontally 0
min_width
500
max_width
3

number_of_lines
error_threshold
frame_width
rows_to_watch

rows_offset

!\n "

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework

39

And rows_offset will give a vertical pan
adjustment

The higher rows_ofset is, the further down it
looks

= img [=1 E3

0
min_width

max_width

number_of lines

error_threshold

frame_width

rows_to_watch

rows_offset

= img [|=1

0
min_width

max_width

number_of_lines

error_threshold

frame_width

rows_to_watch

56
rows_offset

p—

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 40

11.1.4 Actuator Calibration

This part of the calibration is now about identifying the speeds the robot should go in different situations and
adjusting how much the car steers left and right.

A PID controller is implemented on the steering values to throttle_and_steering (on ucsdrobo...™ ©

improve performance in autonomous mode. T
Kp_steering

Kp_steering is the value for the proportional error term
Ki_steering is the value for the integral error term
Kd_steering is the value for the derivative error term
Steering_mode 100

) 100
Ki_steering

e Mode_0 sets max left for fixing any offset Kd_steering

e Mode_1 sets straight steering limit .

e Mode_2 sets max right steering limit Steering_ mode ______
Steering_value is the value used to visualize the steering _
sensitivity and setting steering constraints. Steering_value i
Throttle Calibration In order to calibrate the throttle you 0

. Throttle_mode
will want to set 3 separate values. See the systems =
response plot at the end of this section to get more 1000
intuition on how throttle scheduling works Throttle value — _

Throttle _mode
e Mode_0 sets zero_throttle (desired throttle for max_rpm
neutral)
e Mode_1 sets max_throttle (desired throttle when !) 1
] . steering_polarity
there are no errors for road line tracking)
e Mode_2 sets min_throttle (desired throttle with

10000

errors present for road line tracking, NOT throttle_polarity
REVERSE) .
Max RPM for those using a vesc, this sets upper limit on test_motor_control -

RPM

Steering _polarity swaps the steering direction
Throttle _polarity swaps the throttle direction

Test_motor_control tests out the PID steering controller
and the throttle scheduling values as the car will start
tracking the road lines. This test should be done on the
test stand and not for actual autonomous navigation, that's
the next section!

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UCSD Robocar Framework 41

Again we are going to be setting 3 separate values. The default mode to calibrate first is throttle mode_0.
When toggling the throttle_mode slider to different modes, whatever value that is currently set for the
throttle_value slider will be the value that is taken in for that mode as the values are being saved to the
calibration file in real time. As long as you are on any particular mode, you are editing the values for that
mode, whatever the last value you had when you were on that mode will be the value that is saved to
that mode when you end the calibration script. For example, if the throttle_value slider is currently set to
1000 now when toggling the throttle_mode slider from mode_0 to mode_1, the value for mode_0 will remain
at 1000 and then the process of editing mode_1 will begin.

System Response

g% (, Max Throttle

Min Throttle

T Error Threshold %
"2

0.5 [0 F-]

Nomalized e mor

In the system response plot, it shows the relationship between the max throttle, min throttle and error threshold
values. This is the idea of throttle scheduling based on the tracking error (x-axis). For example, let's say the
tracking error is 0.4, based on the throttle plot, the throttle command will be about 0.37 and if the error is less
than the error threshold (0.2 in the example throttle plot) then the throttle response will be max throttle which is
0.4 in this example.

From here, exit the calibration script with ctrl+c and the chosen throttle mode (mode 0, mode 1 and mode_2)
values (and all other calibration values) will be properly stored in the calibration file found in the config

directory of the lane_detection_pkg. Don't forget that you need to recompile after calibration.

UC San Diego UC San Diego

JACOBS SCHOOL OF ENGINEERING HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 42

Make sure to always build_ros2 after closing the camera calibration program. The reason is
that on startup, the camera calibration overwrites the values in the ros_racer_config.yaml with
whatever values it was compiled with. Even though the values you put in will get autosaved in
the ros_racer_config.yaml, if they don't get compiled they will just get overwritten the next
time the calibration starts up.

Note: If you want to edit the lane following .yaml file manually, it is located in this directory:
/home/projects/ros2_ws/src/ucsd_robocar_hub2/ucsd_robocar_lane_detection2_pkg/config/

Editing the vesc parameters in the camera calibration gui can be buggy, so you may want to edit them
in the yaml file instead.

There is a known bug where the RPM published by the camera_navigation node is substantially lower
than the true value which the vesc ends up doing.

To get the car to actually move, one reasonable set of parameters is

lane_guidance_node:

ros__parameters:
Kp_steering : for you to figure out
Ki_steering : for you to figure out
Kd_steering : for you to figure out
zero_throttle : ©
max_throttle : 0.382
min_throttle : 0.363
error_threshold : for you to figure out
max_right_steering : 1
max_left_steering : -1

vesc_twist_node:

ros__parameters:
max_potential_rpm : 20000
steering_polarity : 1
throttle_polarity : 1
zero_throttle : @
max_throttle : 0.382
min_throttle : 0.363
max_right_steering : 1
straight_steering : ©

max_left_steering : -1

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 43

If you would like to edit the source code for lane guidance/detection, it can be found here:
https://qitlab.com/ucsd robocar2/ucsd robocar lane detection?2 pka/-/tree/master/ucsd robocar lan

e_detection2_pkg?ref type=heads
The file path in the container is roughly the same as in the url.

11.1.5 Camera Navigation

Only proceed with this section AFTER you have gone through the calibration procedure above. At this point,
your robot should be taken off of the test stand and put on to the track so it can move freely. Please be alert of
the people around you and be ready to shutdown the robot if it starts drifting off the path.

From the terminal
roslaunch ucsd robocar navl pkg camera nav_ launch.launch

Remember, if you make even a single change ANYWHERE in your code (which also includes .yaml
files) you must rebuild the package. Check the Source ROS2 section.

From the terminal

source ros2

Modify the hardware config file to turn on the vesc_without_odom and the camera you have equipped
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/car config.yaml

Then modify the node config file to activate only all_components and camera_nav launch files
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/node config.yaml

Then rebuild and launch
build ros2
ros2 launch ucsd robocar navZ pkg all nodes.launch.py

If the robot is not responding the way you were expecting, turn on the debugger plots which will show you:

e your black and white filter (will show how good your filtering is working)

e the detected lines with bounding boxes and error bound etc. like from calibration
This is done easily by setting the ros parameter from the terminal.

e 1:debugon

e (0:debug off
By default, the debugger is set to 0 (off) for performance reasons and is only recommended to turn on when
trying to find out why the robot starts deviating from the expected outcome of following the track. Which is most
likely due to changes in environment lighting.
From another terminal (turn on debugger)

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://gitlab.com/ucsd_robocar2/ucsd_robocar_lane_detection2_pkg/-/tree/master/ucsd_robocar_lane_detection2_pkg?ref_type=heads
https://gitlab.com/ucsd_robocar2/ucsd_robocar_lane_detection2_pkg/-/tree/master/ucsd_robocar_lane_detection2_pkg?ref_type=heads

UCSD Robocar Framework

44

ros2 param set /lane detection node debug cv 1

From another terminal (turn off debugger)

ros2 param set /lane detection node debug cv 0

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework

45

11.2 Tube/Wall Following (coming soon)

UC San Diego

JACOBS SCHOOL OF ENGINEERING

UCSanDiego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 46

11.3 SLAM

Simultaneous Localization and Mapping (SLAM) has been completely integrated with our Docker image but is
only currently available in ROS1 and NOT ROSZ2. Below is a short tutorial of getting SLAM working on the
robot using ROS-Bridge.

11.3.1 Requirements

Make sure that the following hardware is plugged in and operational before launching the docker container
e Lidar
e Logitech controller (for manual control while mapping)
e VESC or Adafruit PWM board

11.3.2 Starting SLAM

We will need 3 terminals to get SLAM working, 1 for the Hector-SLAM algorithm in ROS1, another for
ROS-Bridge and the last one for sensors/hardware and control/path planning algorithms.

From terminal 1

source ros2

Modify the hardware config file to turn on the vesc_with_odom and the lidar you have equipped
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/car config.yaml

Then modify the node config file to activate only all_components, sensor_visualization and
fitenth_vesc_joy_launch launch files
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/node config.yaml

Then rebuild
build ros2

From terminal 1
source rosl
roslaunch ucsd robocar navl pkg ros racer mapping launch.launch

From terminal 2
source ros bridge

From terminal 3
ros2 launch ucsd robocar navZ2 pkg all nodes.launch.py

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

http://wiki.ros.org/hector_slam

UCSD Robocar Framework 47

Notice RVIZ is launched automatically with a pre-configured setup file to show a URDF of your robot doing
SLAM!

Now depending on what the robot is trying to achieve with slam, modify the all_nodes.yaml file to turn on which
navigation/control algorithms for the robot to use. If unsure, or specifically trying to create a map it's suggested
to turn on all_components (where a lidar and actuator type has been selected), manual_joy control_launch to

have manual control of the robot while creating the map.

There are a few options to do this step. The first option is from the map_server node and the other is from the
hector_mapping node. Each provides different output map formats so it could be useful knowing both
commands depending on what projects you’ll be working on.

For this method, the map files are created in your current working directory so keep that in mind. There is a
maps folder in the ucsd_robocar_nav1_pkg that can be used to store all your maps.

From another terminal
source_ rosl
rosrun map server map saver -f ms map test

For this method, the maps generated are saved automatically to the maps directory in ucsd_robocar_nav1_pkg
with a generic name with some time stamp.

From another terminal
source rosl
rostopic pub syscommand std msgs/String "savegeotiff"

11.3.3 Localization in a pre-made map

This will only load maps that were created with the map_server node! You will also need to modify the car_type
in this launch file just as done previously.

From terminal
source_ rosl
roslaunch ucsd robocar navl pkg ros racer nav_launch.launch

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 48

Notice RVIZ is launched automatically with a pre-configured setup file to show a URDF of your robot, your
saved map and it localizing itself!

12. Data Collection

To collect data being broadcasted over the topics that are actively being published, turn on whichever nodes
needed to publish that topic information but make sure that the rosbag_launch option in the node_config is
also turned on which is the switch for data collection. This will record ALL topics to the “rosbag” which is a
unique file type to ROS. Then a package called bagpy is used to convert the data into csv format which is
useful for viewing/analysis.

Modify the hardware config file to turn on any sensors you have equipped and need for data collection/moving
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/car config.yaml

Then modify the node config file to activate only all_components, rosbag_launch launch files and any other
launch file you need to move the robot around (i.e. manual control, camera_nav etc.)
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/node config.yaml

Then rebuild and launch
build ros2
ros2 launch ucsd robocar navZ pkg all nodes.launch.py

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

https://jmscslgroup.github.io/bagpy/index.html

UCSD Robocar Framework 49

13. F1 Tenth Simulator

A light-weight ROS2 simulator using RVIZ can be used for various scenarios such as model validation,
experiment repeatability and general experimentation. The simulator uses a 2D dynamic bicycle-car model to
simulate how the car would actually move in an environment. There are several maps that are already made
and can be used in the simulator or you can create your own map with the SLAM techniques discussed above
and load that map into the simulator as well. Below are the steps to pick the following plug-ins for the simulator:
a map, path planning technique, and a controller as an example. Feel free to change any of the plug-ins.

NOTE: For the example below, we are going to use the joystick for the controller so you will need a controller
plugged into your computer. Since we will be doing manual control, we do not need a path planner activated.

NOTE: Only use the simulator on the X86 docker image and not the Jetson.

Modify the hardware config file to turn off any sensors you have
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/car config.yaml

Then modify the node config file to activate only the simulator and fitenth_vesc_joy_launch, launch files
and any other launch file you need to move the robot around (i.e. manual control, camera_nav etc.)
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/node config.yaml

Modify the f1 tenth simulator config file to update the map (if needed)
gedit src/ucsd robocar hub2/ucsd robocar nav2 pkg/config/fl tenth sim.yaml

Then rebuild and launch
build ros2

ros2 launch ucsd robocar navZ pkg all nodes.launch.py

13.1 Creating a Map with Paint (coming soon)
13.2 Updating Vehicle Parameters (coming soon)
13.3 Adding Multiple Vehicles (coming soon)

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSD Robocar Framework 50

14. Troubleshooting

Below are the links to the troubleshooting sections when using either ROS1 or ROS2. There are
troubleshooting guides for every single package to potentially help solve any common problems.

e ucsd_robocar_hub1 troubleshooting links
e ucsd_robocar_hub2 troubleshooting links

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

https://gitlab.com/ucsd_robocar/ucsd_robocar_nav1_pkg#troubleshooting
https://gitlab.com/ucsd_robocar2/ucsd_robocar_hub2#troubleshooting

UCSD Robocar Framework 51

15. Frequently Used Linux commands
15.1 WIFI

Rescan wifi list: sudo nmcli device wifi rescan

Show wifi list: sudo nmcli device wifi list

Connect to wifi network: sudo nmcli device wifi connect <NETWORK NAME> password
<NETWORK PASSWORD>

Restart networking: sudo service NetworkManager restart

Check network interfaces: nmcl1i device status

Check if connected internet: ping google.com

Disable power save mode for wifi: sudo iw dev wlan0 set power save off

Networking info: ifconfig

15.2 Hardware Tests

List connected USB devices: 1susb
Check if joystick is working: jstest /dev/input/js0
Check if x_11 forwarding is working: xeyes

15.3 File management

Listing files in a directory: 1s

Copyfile: cp old file name new file name

Copy directory: cp -r old directory name new directory name

Move file: mv file name /path/to/new/file/location/file name
Move directory: mv -r directory name /path/to/new/directory/location/directory name
Delete file: rm -f file name

Delete directory: rm -rf directory name

To copy a file from B to A while logged into B:

scp /path/to/file username@A ip address:/path/to/destination
To copy a file from B to A while logged into A:

scp username@B ip address:/path/to/file /path/to/destination

15.4 System Control

Terminate process by PID: sudo kill -9 PID number

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

	UCSD Robocar Framework
	
	Table of Contents
	
	1. Introduction
	1.1 About
	1.2 What's Being Used
	1.2.1 Embedded Computers
	1.2.2 Ubuntu
	1.2.3 Gitlab
	1.2.4 Docker
	1.2.5 ROS

	1.3 Recommendations
	1.3.1 VS Code IDE
	1.3.2 Virtual Machines

	2. UCSD Robocar Framework Breakdown
	2.1 Packages
	2.1.1 Nav
	2.1.2 Lane Detection
	
	2.1.3 Sensor
	2.1.4 Actuator
	2.1.5 Control (coming soon)
	2.1.6 Path (coming soon)
	2.1.7 Basics

	
	2.2 Updating All Packages
	
	2.2 Launch Files

	
	3. Developer Tools
	3.1 ROS Guidebooks
	3.2 Gitlab
	3.2.1 Adding new submodules:
	3.2.2 Updating local submodules with remote submodules:
	3.2.3 Updating remote submodules with local submodules:
	3.2.4 Removing submodules:
	
	3.2.5 Adding an existing package to git

	
	
	3.3 Docker
	3.3.1 Pulling/running
	3.3.2 Updating/creating/sharing
	3.3.3 Listing
	3.3.4 Deleting

	
	4. Accessing Docker Images
	4.1 UCSD Robocar Image
	
	
	4.2 Docker Setup
	4.2.1 Enable X_11 Port Forwarding

	ssh -X jetson@ip_address
	sudo usermod -aG docker ${USER}
	su ${USER}
	xeyes
	
	Additional Troubleshooting:
	One common fix to try for x_11 forwarding issues is docker restart container_name
	​A “nuclear option” for fixing x_11 forwarding issues is reinstalling the xserver and regenerating the xauthority files. However you will have to create new docker containers after doing this in order to get access to x11 forwarding
	sudo apt-get install --reinstall xserver-xorg
	sudo chmod 777 .Xauthority
	4.2.2 Update Docker Daemon

	sudo rm /etc/docker/daemon.json
	sudo nano /etc/docker/daemon.json
	{
	 "runtimes": {
	 "nvidia": {
	 "path": "nvidia-container-runtime",
	 "runtimeArgs": []
	 }
	 },
	 "default-runtime": "nvidia"
	4.2.3 Running A Container

	ssh -X jetson@ip_address
	4.3 Workspaces in Docker Container
	4.3.1 ros1_ws
	4.3.2 ros2_ws
	4.3.3 sensor2_ws

	4.4 ROS BRIDGE
	4.5 Utility functions in ~/.bashrc

	5. Source ROS Version
	5.1 Source ROS1
	
	5.2 Source ROS2
	5.3 Source ROS Bridge

	6. Hardware Configuration
	6.1 ROS1
	

	6.2 ROS2

	7. Node Configuration
	7.1 ROS1
	

	7.2 ROS2

	8. Sensor Visualization
	
	8.1 ROS1
	8.2 ROS2

	9. Manual Control of Robot with Joystick
	
	9.1 ROS1
	9.2 ROS2

	10. Integrating New Packages/Code into the Framework
	10.1 Integrating a ROS Package
	10.2 Integrating supporting files
	10.3 Integrating new algorithms into the basics package

	11. Navigation
	11.1 Lane Detection
	
	11.1.1 Calibration Process
	
	11.1.1.1 ROS1
	
	11.1.1.2 ROS2

	11.1.2 Color Calibration

	
	
	
	
	
	
	
	
	11.1.3 Line/Lane Calibration

	
	
	11.1.4 Actuator Calibration
	11.1.4.1 Clarification on throttle modes

	11.1.5 Camera Navigation
	11.1.5.1 ROS1
	
	11.1.5.2 ROS2

	11.2 Tube/Wall Following (coming soon)
	11.3 SLAM
	11.3.1 Requirements

	
	11.3.2 Starting SLAM
	11.3.2.1 Saving the map
	11.3.2.1.1 map_server
	11.3.2.1.2 hector_mapping

	
	11.3.3 Localization in a pre-made map

	12. Data Collection
	
	13. F1 Tenth Simulator
	13.1 Creating a Map with Paint (coming soon)
	13.2 Updating Vehicle Parameters (coming soon)
	13.3 Adding Multiple Vehicles (coming soon)

	
	14. Troubleshooting
	15. Frequently Used Linux commands
	15.1 WIFI
	15.2 Hardware Tests
	15.3 File management
	15.4 System Control

