FLT. Formulas of numbers A, B, C

Victor Sorokine*

Professor of Mathematics Mezos, France.

To my wonderful women - grandmother, mother, wife, and friend.

1. **Theorem.** In a hypothetical equality $A^n + B^n - C^n = 0$ in a number system with a prime base n > 2, mutually prime natural numbers $A, B, C \pmod{n^k}$ starting from k = 1 equal to the numbers $A_l^{n^n(k-1)}, B_l^{n^n(k-1)}, C_l^{n^n(k-1)}$ (mod n^k), where k can be arbitrarily large.

Properties of Equality (1*):

- 2. Designations: $A_1, A_2, \dots A_k$ one-, two-, ... k-significant endings of the number A in the numeral system with base n.
- 3. The numbers A, B, C can be represented as: $A = A^{\circ}n^k + A_k$, $B = B^{\circ}n^k + B_k$, $C = C^{\circ}n^k + C_k$, where the base n = 10.
- 4. **Key Lemma.** The last two members in Newton Binom $(A^{\circ}n^k + A_k)^n$ are $nA^{\circ}n^k(A_k)^{n-l} + A_k^n$. From this can be seen, the numbers A^n , B^n , C^n (mod n^{k+l}) are unambiguous functions of the numbers A, B, C (mod n^k).
- 5. If $A + B \pmod{n} > 0$, then factors A + B and R in the decomposition of the degrees $A^n + B^n = (A + B)R$ are mutually prime; If $A + B \pmod{n} = 0$, then $R = 0 \pmod{n}$.

Therefore, if A, B, C (mod n) are not zero, then factors in the equalities

- 6. $C^n = A^n + B^n = (A+B)R$, $A^n = C^n B^n = (C-B)P$, $B^n = C^n A^n = (C-A)Q$ are degrees:
- 7. $A+B=c^n$, $R=r^n$. $C-B=a^n$, $P=p^n$, $C-A=b^n$, $Q=q^n$, and, since according to Fermat's little theorem,
- 8. $A^{n-l}_{l} = B^{n-l}_{l} = C^{n-l}_{l} = A_{l}^{n-l}_{l} = B_{l}^{n-l}_{l} = C_{l}^{n-l}_{l} = I \pmod{n}$, then $P_{l}, Q_{l}, R_{l} \pmod{p}, q_{l}, r_{l}$ in 6* is $l \pmod{n}$, and according to 7*
- 9. $P = Q = R = 01 \pmod{n^2}$. And from equalities 6* we get a system of equations with unknown A, B, C:
- 10. $A_{12}^{n} + B_{12}^{n} = (A + B)_2$, $C_{12}^{n} B_{12}^{n} = (C B)_2$, $C_{12}^{n} A_{12}^{n} = (C A)_2$ (mod n^2). Where do we find:
- 11. $A_2 = A_{12}^n = a_{12}^n * p_{12}^n$, $B_2 = B_{12}^n = b_{12}^n * q_{12}^n$, $C_2 = C_{12}^n = c_{12}^n * r_{12}^n$. And from 1* we have:
- 12. $A_3^n + B_3^n C_3^n = 0 \pmod{n^3}$, where $P_3 = p_1^{m_3}$, $Q_3 = q_1^{m_3}$, $R_3 = r_1^{m_3}$ are equal to 001, and the equalities 10* already give a system of equalities (and not just one!) with new unknowns A, B, C:
- 13. $A_1^{nn}_3 + B_1^{nn}_3 = (A + B)_3$, $C_1^{nn}_3 B_1^{nn}_3 = (C B)_3$, $C_1^{nn}_3 A_1^{nn}_3 = (C A)_3$ with the solution:
- 14. $A_3 = A_1^{n^2}, B_3 = B_1^{n^2}, C_3 = C_1^{n^2}, (compare with 10* taking into account 11*).$
- 15. Next, we return to point 10* and repeat the operations 10*-14*, but now with the 3-digit endings $A_1^{n^2}$, $B_1^{n^2}$, $C_1^{n^2}$, $C_1^{n^2}$, $C_1^{n^2}$, of the numbers A, B, C (where the factors $P_1^{n^2}$, $P_1^{n^2}$, $P_2^{n^2}$, $P_2^{n^2}$
- 16. And so it goes on INFINITELY, receiving of arbitrarily large A, B, C (mod n^k) and, consequently, of the numbers A, B, C, themselves, from which the impossibility of equality 1* follows.
- 17. We also see that, starting from k=1, A, B, C are $A_1^{n^{\wedge}(k-l)}$, $B_1^{n^{\wedge}(k-l)}$, $C_1^{n^{\wedge}(k-l)}$ (mod n^k).

May 2025. Mezos, France.

Victor Sorokine. victor.sorokine2@gmail.com

https://docs.google.com/document/d/1OguuCS hvZTmokTiQujaMRCXNTMPOdO6A2v 0k26leM/edit?tab=t.0