
[OpenMPOpt] Command Center
Note: Please feel free to comment or add anything in here, e.g., to ask for information or
help!

Weekly Meeting
Meeting Notes
Tuesdays, 11:15am - 12:15pm CDT [UTC - 5]
https://bluejeans.com/280571403/3617?src=calendarLink

Collaborator List (add yourself!)
●​ Johannes Doerfert <jdoerfert@anl.gov> <johannesdoerfert@gmail.com> [UTC-5]
●​ Stefan Stipanovic <stefomeister@gmail.com> [UTC+2]
●​ Hamilton Tobon Mosquera <hamiltontobon77@gmail.com> [UTC-5]
●​ Giorgis Georgakoudis <georgakoudis1@llnl.gov> <ggeorgakoudis@gmail.com> [UTC-7]
●​ Joseph Huber <huberjn@ornl.gov> [UTC-6]
●​ Jose M Monsalve Diaz <josem@udel.edu> [UTC-5]
●​ Abid Malik <amalik@bnl.gov>

Tasklist (ever growing!, descriptions below the list)

https://bluejeans.com/280571403/3617?src=calendarLink
mailto:jdoerfert@anl.gov
mailto:johannesdoerfert@gmail.com
mailto:georgakoudis1@llnl.gov
mailto:ggeorgakoudis@gmail.com
mailto:huberjn@ornl.gov
mailto:josem@udel.edu

OLD TASKLIST

ID Name Difficulty Depends on Assigned Status Referen
ces

1 Add missing runtime
functions

easy Joseph Done

2 Add more attributes
and attribute classes
to runtime functions

easy -
medium

 Joseph Done

3 Deduplicate more
runtime functions

easy

3a Deduplicate
compatible `omp for`
runtime calls

medium Malik Patch
submitted.
Working on
tests
submissions

and
comments

3b Deduplicate runtime
call pairs

medium

4 Parallel region
expansion

medium -
hard

 Giorgis Under
review

5 ICV tracking medium -
hard

 Stefan In progress

6 Barrier optimization hard Contact
Giorgis

7 Memory transfer
latency hiding

medium -
hard

 Hamilton

8 Interprocedural code
motion

hard

9 Heterogenous
LLVM-IR modules

medium -
hard

 Shilei

10 TRegion SPMD
optimization

medium Johannes?

11 Utilize memory
spaces

medium -
hard

12 Target region
expansion and
splitting

hard #4 and #9 Shilei

13 Track device
memory mapping

hard Prithayan

14 Provide user and
tool feedback

easy -
medium

 Joseph

15 Guide heuristics,
`omp loop`,
`schedule(auto)`, …

easy -
hard

16 Modify the number
of teams/threads

easy -
hard

17 Identify manually
performed
optimizations

medium

18 Choose the
reduction
implementation

medium -
hard

 Fady?

19 Utilize domain
knowledge

medium

20 Fix deduplication
alloca interaction

easy JD link

21 Optimize local
variable
globalization in GPU
code

mixed Jose?

22 OpenMP in the
LLVM-Test suite

mixed

Task Descriptions

1) Add missing runtime functions
In OMPKinds.def we define ~45 runtime functions with the `__OMP_RTL` macro. OpenMP and
the OpenMP runtime have many more. We should eventually include all user facing OpenMP
functions and the runtime functions generated by Clang. Once we do the latter we can replace
the OpenMPRTLFunction enum in CGOpenMPRuntime.cpp as well as the
createRuntimeFunction in the same file.

2) Add more attributes and attribute classes to runtime functions
In OMPKinds.def we define LLVM-IR attributes for the OpenMP runtime functions with the
`__OMP_RTL_ATTRS` macro. We already define some important attributes for the runtime
functions we list in this file but we could do better. As more information about runtime functions
is crucial for later analysis and optimization, we need to ensure all existing and applicable
attributes are set and new attributes are created if the need arises. As already done in the file,

https://reviews.llvm.org/D80639#2071913

we can group attributes into sets to simplify specifying them for various runtime functions at the
same time.

3) Deduplicate more runtime functions
We need to extend and improve `deduplicateRuntimeCalls` in OpenMPOpt.cpp. That is, more
runtime functions need to be listed if we can deduplicate them and we need to extend the logic
to more than simple getter functions. See also #3a and #3b.

3a) Deduplicate compatible `omp for` runtime calls
Two consecutive `omp for` directives with a static schedule and the same number of iterations
will cause the same two loop invariant runtime calls that will basically compute the same thing,
namely the chunk for the executing thread. We can reuse the result instead of computing it
again. As a consequence, two runtime calls become obsolete, less stack space is used, and,
probably most importantly, we enable regular loop fusion as there are no more runtime calls
between the loops and the loops bounds are trivially equal. To determine if the optimization can
be performed is slightly tricky and rewriting the IR is as well. Once it works for two loops at a
time we have to apply it until no more runtime calls can be removed.

3b) Deduplicate runtime call pairs
An extension of #3a is to apply similar logic to other runtime call pairs. Every pair might need
some specific handling but parts should overlap, e.g., the control dependence check. As such,
we should have a generic handling with specializations for runtime calls, e.g,. via template
specialization based on the runtime function enum. An example that comes to mind outside of
OpenMP is raja visitor/listener callbacks placed before and after a parallel region. We can
deduplicate them as described in #3a to enable parallel region expansion #4 without the need
for extra guard code.

4) Parallel region expansion
Please see Section 5 in https://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf and
https://github.com/jdoerfert/llvm-project/tree/feature/openmp_opt

5) ICV tracking

Internal control variables (ICVs) are used to describe OpenMP semantics. This conceptual state
may or may not have a corresponding state in the runtime. Either way, tracking the values of the
ICVs would allow us to do various things including: (1) replace runtime calls with their known
result, (2) improve heuristics, (3) emit warnings for the user. To track ICVs we need to define the

https://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
https://github.com/jdoerfert/llvm-project/tree/feature/openmp_opt

effects of runtime calls on their value as well as their default state. We then perform a fixpoint
data-flow analysis to determine their state at every (interesting) program point.

6) Barrier optimization

(Explicit) barriers are not necessarily common in HPC code but they can occur. Especially after
parallel region expansion #4 they happen to emerge. As barriers are “known” to be expensive, it
is important to lower their cost. Different ways exist, some below.

6a) Barrier elimination

Please see Section 6 in https://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf.

6b) Barrier movement

Barriers can sometimes be hoisted/sunken out of loops, especially after inlining or as
inter-procedural optimization.

6c) Barrier replacement

Barriers can often be replaced with different (synchronization) schemes, e.g. atomics or
privatized variables & post processing, explicit dependences, ...

7) Memory transfer latency hiding

From the GSoC proposal by Hamilton:
Given the increasing number of use cases for massively parallel devices (GPUs), solving the

problems they bring have become an important research field. One of the main problems that

needs to be solved is the long time (latency) that it takes to move data from the computer’s

main memory to the device’s memory. Therefore, using the LLVM compiler infrastructure, the

proposed solution consists of adding a new functionality to the current OpenMP interprocedural

optimization pass, OpenMPOpt, such that the OpenMP runtime calls that involve host to device

memory transfers are split into “issue” and “wait” functions as follows.

●​ The “issue” function will contain the code necessary to transfer the data from the host to

the device in an asynchronous manner (extending the functionality of the analogous
_nowait runtime calls), returning a handle in which the “wait” function will wait for
completion.

●​ After splitting the runtime call, the call to the “issue” function will be moved upwards in
the code until it is illegal to do so. In the same way, the call to the “wait” function will be
moved downwards in the code until it is illegal to do so. Determining whether a
movement is legal or not will be done using data flow techniques and the control flow
graph of the function where the original runtime call is issued.

https://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf

●​ Doing this, the instructions between the “issue” and the “wait” can be executed, while
separately doing the data transfer to the device, hence, reducing the time the process is
blocked waiting for the transfer to finish.

●​ In addition to this, given the case when a “wait” call is waiting on a transfer X to be
finished, and immediately after the “wait” there is an “issue” to move X back to where it
came from, then there is no need to “issue” and “wait” in both cases, they can be
eliminated.

8) Interprocedural code motion
Please see Section 7 in https://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf

9) Heterogenous LLVM-IR modules
In order to perform host-device code optimizations in a reasonable way we need to see the
code for both at the same time, preferably in the same IR module.
TODO: Paste from Kaushik’s GSoC proposal

10) TRegion SPMD optimization
Please see and https://link.springer.com/chapter/10.1007/978-3-030-28596-8_11
http://parallel.auckland.ac.nz/iwomp2019/slides_TRegion.pdf

11) Utilize memory spaces
If a device offers different memory spaces it can be beneficial to utilize them. The most
straightforward example is a constant sized (at compile time) stack allocations inside a teams
regions on a GPU. Such memory can be moved into “shared local memory” of the device
instead of residing in global memory. This particular transformation is hard to perform until we
employ TRegions #10 as Clang otherwise globalizes such stack allocations early. We can also
explore the usage of constant memory for readonly arrays. An extension to the existing API is
required for the latter.

12) Target region expansion and splitting
The parallel region expansion logic #4 is also applicable to target regions (aka. kernels). In
addition, kernels might actually benefit from splitting, or more general, rearranging of the kernel
scopes to avoid high register pressure. This depends on #4 and #9.

https://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
https://link.springer.com/chapter/10.1007/978-3-030-28596-8_11
http://parallel.auckland.ac.nz/iwomp2019/slides_TRegion.pdf

13) Track device memory mapping
If the memory mapping is (partially) known we can remove pairs of map instructions or simplify
single map instructions. We can also provide the user feedback and warnings. This should
follow the same scheme and share infrastructure with #5 with the complication of aliasing.

14) Provide user and tool feedback
Whenever we analyze or transform the code we should emit remarks to the user or tools that
want to follow the reasoning and decisions. We need an infrastructure that makes this simple for
OpenMPOpt developers, which utilizes additional information, e.g., the source locations in the
ident_t struct, and which works well with the existing OpenMP profiling tools. In a related effort
we need to determine how to preserve source information when transformations are performed
and how tools generally deal with the difference between source OpenMP and executed
OpenMP. One outcome could be an “OpenMP advisor” that informs about good and bad code,
provides feedback and explanations, determines OpenMP related UB, … We should report
various things, e.g., hard-coded thread counts are often a bad idea. It is always a bad idea to
assume the thread count is reached, ...

15) Guide heuristics, `omp loop`, `schedule(auto)`, …
We need to utilize code analysis to guide existing and upcoming heuristics. The way to
implement `omp loop` heavily depends on the context. The runtime does only know about the
history, thus what was executed so far, not what is going to be executed next (guaranteed, likely,
potentially, for sure not, ..). PGO and value (range) information can also be used here. We can
adapt the chunk size of dynamic loops, make them

16) Modify the number of teams/threads
We want to serialize parallelism that is (likely) not beneficial. We want to decrease/increase
parallelism when it is clearly beneficial, e.g., when an application is ported or loop bounds are
low. This is only legal if the maximal number is not (implicitly) used.

17) Identify manually performed optimizations
Advanced OpenMP codes often perform manual optimizations a compiler can and should do.
Some codes (I think in the NAS benchmarks) have expanded parallel regions #4 in which code
is executed redundantly and via worksharing loops. Similarly, we can scout code and talk to
developers to identify opportunities for advanced (OpenMP specific) optimizations.

18) Choose the reduction implementation
Reductions, especially on GPUs, can be performed in various ways. Depending on the device,
memory involved, and other factors, the performance varies significantly. (In a 2018 CGO paper
different reduction schemes were benchmarked on various problems.) Similar to TRegions #10,
we need to expose the reduction implementation choices in the runtime API so we can pick after
code analysis, potentially even at runtime.

19) Utilize domain knowledge
OpenMP comes with various restrictions that could be exploited, potentially after the user
provides certain information, e.g., that the thread limit is always > 1. Especially alias information
could often benefit in the presence of map clauses or actual concurrent execution (due to the
absence of races).

20) Fix deduplication alloca interaction
We should move all allocas before the deduplicated runtime calls.

21) Optimize local variable globalization in GPU code

A motivating example is https://clang.godbolt.org/z/EobPfr
Optimizations:

1)​ The globalization code (roughly 116 - 128) is not dead but “needed”. We should however
have it in a runtime function that spits out a memory location to be used.

2)​ Once 1) is done, we can run AANoCapture on the return value of the above call, I guess
we could even do it w/o the call. Anyway, AANoCapture will tell us if the return value is
eventually captured. If it is not, we can replace the call with the alloca as there is no
need for globalization.

3)​ If 2) fails, so we keep the call/code for globalization, we should determine if we are in a
parallel region or not. If we are, use the alloca (mainline has no support for nested
parallel regions that are not sequentialized).

4)​ If 3) fails, determine if the allocation is “small” and use shared memory instead. I think
the runtime function has even a flag for that, not sure if it works or not though.

22) OpenMP in the LLVM Test Suite

https://clang.godbolt.org/z/EobPfr

Meeting Notes
Date: Tuesday, August 25th
Agenda:

-​ Weekly Updates:
-​ Hamilton:
-​ Stefan:

-​ Patches:
-​ To be committed:
-​ Need review:

-​ https://reviews.llvm.org/D86300
-​ https://reviews.llvm.org/D86474

-​ Questions & Misc:

-​ Slides:
https://docs.google.com/presentation/d/1ELDTEzySXWULqs6eQ1XL25u195Oid
Dw_UkySa87XrUw/edit?usp=sharing

Date: Tuesday, August 18th
Agenda:

-​ Weekly Updates:
-​ Hamilton:
-​ Stefan:

-​ ICV tracking for calls with multiple AAs (should be ready now)

https://reviews.llvm.org/D86300
https://reviews.llvm.org/D86474
https://docs.google.com/presentation/d/1ELDTEzySXWULqs6eQ1XL25u195OidDw_UkySa87XrUw/edit?usp=sharing
https://docs.google.com/presentation/d/1ELDTEzySXWULqs6eQ1XL25u195OidDw_UkySa87XrUw/edit?usp=sharing

-​ Default attributes for intrinsics TableGen + actually making them default
-​ UpdateTestChecks check “attributes #”

-​ Patches:
-​ To be committed:
-​ Need review:

-​ Questions & Misc:

-​ Slides:
https://docs.google.com/presentation/d/1ELDTEzySXWULqs6eQ1XL25u195Oid
Dw_UkySa87XrUw/edit?usp=sharing

Date: Tuesday, August 11th
Agenda:

-​ Weekly Updates:
-​ Hamilton:
-​ Stefan:

-​ Patches:
-​ To be committed:
-​ Need review:

-​ Questions & Misc:

https://reviews.llvm.org/D85703

Date: Tuesday, August 6th
Agenda:

-​ Weekly Updates:
-​ Hamilton:
-​ Stefan:

-​ Patches:
-​ To be committed:
-​ Need review:

-​ Questions & Misc:

Date: Tuesday, July 14th
Agenda:

-​ Weekly Updates:
-​ Hamilton:
-​ Stefan: default attributes for intrinsics, update_test_checks (“Function Attrs”), ICV

callsite information (should have a patch soon)
-​ Patches:

-​ To be committed:

https://docs.google.com/presentation/d/1ELDTEzySXWULqs6eQ1XL25u195OidDw_UkySa87XrUw/edit?usp=sharing
https://docs.google.com/presentation/d/1ELDTEzySXWULqs6eQ1XL25u195OidDw_UkySa87XrUw/edit?usp=sharing
https://reviews.llvm.org/D85703

-​ Need review:

-​ Questions & Misc:

Date: Tuesday, July 7th
Agenda:

-​ Weekly Updates:
-​ Hamilton:
-​ Stefan: Basic ICV committed, default attributes for intrinsics, OMPIRBuilder fix

-​ Patches:
-​ To be committed:

-​ Need review:

-​ D83176

-​ Questions & Misc:

Date: Tuesday, June 30th
Agenda:

-​ Weekly Updates:
-​ Hamilton:

-​ Latency Hiding of M2D Transfers
-​ Write unit tests for getValuesInOfflArrays()

-​ Stefan: More ICV tracking, Default attributes for intrinsics (opt-out list) D70365
-​ Patches:

-​ To be committed:
-​ D80051

-​ Need review:
-​ D82719

-​ Questions & Misc:

Date: Tuesday, June 23th
Agenda:

-​ Weekly Updates:
-​ Hamilton:

-​ Latency Hiding of M2D Transfers
-​ Refactor getValuesInOfflArrays()

-​ Stefan: ICV Tracking basic deduplication
-​ Joseph:

-​ Patches:
-​ To be committed:

https://reviews.llvm.org/D83176
https://reviews.llvm.org/D70365

-​ Need review:
-​ Questions & Misc:

Date: Tuesday, June 16th
Agenda:

-​ Weekly Updates:
-​ Stefan:

 - OMPInformationCache, ICV macros, Attributor initialization
-​ Hamilton:

-​ Latency Hiding of M2D Transfers
-​ Identifying the memory regions to be offloaded by a runtime call.
-​ Detecting the last instruction that can potentially modify the

offloading regions.
-​ Detecting the instructions associated with the “issue”. Needs to be

changed.
-​ Need of a structure that handles the information of the runtime

call, whether it was split or not.
-​ Joseph

-​ OpenMP Runtime Function Attributes
-​ https://reviews.llvm.org/D81031

-​ Initial Analysis Remarks (Waiting on full ICV)
-​ https://reviews.llvm.org/D81036

-​ Patches:
-​ To be committed:
-​ Need review:

-​ Questions & Misc:

Date: Tuesday, June 9th
Agenda:

-​ Weekly Updates:
-​ Stefan:

-​ ICV tacking
-​ Hamilton:

-​ Splitting code and interfaces
-​ Needs use of MemorySSA instead of manual detection of memory

definitions.
-​ Joseph

-​ Analysis remarks
-​ Patches:

-​ To be committed:

https://reviews.llvm.org/D81031
https://reviews.llvm.org/D81036

-​ Need review:
-​ Questions & Misc:

Date: Tuesday, June 2nd
Agenda:

-​ Introductions
-​ Administrative questions

-​ Meeting time slot
-​ Initial Tasks
-​ Questions & Misc

	[OpenMPOpt] Command Center
	Note: Please feel free to comment or add anything in here, e.g., to ask for information or help!
	Weekly Meeting
	Collaborator List (add yourself!)
	Tasklist (ever growing!, descriptions below the list)

	
	OLD TASKLIST
	Task Descriptions
	1) Add missing runtime functions
	2) Add more attributes and attribute classes to runtime functions
	3) Deduplicate more runtime functions
	3a) Deduplicate compatible `omp for` runtime calls
	3b) Deduplicate runtime call pairs

	4) Parallel region expansion
	5) ICV tracking
	6) Barrier optimization
	6a) Barrier elimination
	6b) Barrier movement

	6c) Barrier replacement
	7) Memory transfer latency hiding

	8) Interprocedural code motion
	9) Heterogenous LLVM-IR modules
	10) TRegion SPMD optimization
	11) Utilize memory spaces
	12) Target region expansion and splitting
	13) Track device memory mapping
	14) Provide user and tool feedback
	15) Guide heuristics, `omp loop`, `schedule(auto)`, …
	16) Modify the number of teams/threads
	17) Identify manually performed optimizations
	18) Choose the reduction implementation
	19) Utilize domain knowledge
	20) Fix deduplication alloca interaction
	21) Optimize local variable globalization in GPU code
	22) OpenMP in the LLVM Test Suite

	Meeting Notes

