
CSS Scoping Requirements

Author: yuzhehan@

What’s All This About?

Slides: CSS style scoping for design systems & fw components - by nsull@

Styling is essential for web applications. Therefore, ensuring that styles are easily
managed and applied is critical to the success of a web application. CSS scoping is a
method of targeting a set of CSS rules to only a section of the DOM. Currently, CSS is
globally scoped, which makes it challenging to determine which styles are applied to a
given element precisely. This challenge is magnified as a web application grows. This
document discusses CSS scoping, its history, current technologies, and required
features. We hope to make strides to improve the ease with which designers and
developers can scope CSS, further enhancing the performance, maintainability, and the
interoperability of web applications.

CSS scoping aims to address the following areas:

●​ Style rules scoped to a connected fragment of DOM (could be a subtree, or a
subtree up specified descendants)..

●​ CSS scoping works for light DOM and shadow DOM.
●​ Global styles can override scoped CSS based on specificity, allowing hosting

applications to style components created by third parties.
●​ Eliminate the need for preprocessing tools to generate namespaced selector

names in order to prevent selector naming collisions.
●​ Improve the interoperability of components from different design systems via

scoping their styles to themselves.
●​ Enable developers to encapsulate component styles only to the component,

preventing styles from breaking out (toward the document root) and bleeding in
(toward nested components)

https://docs.google.com/presentation/d/1Ki-IUCEWU-mNlS-019QVV9I9JsytvafQJHTxpBNfYvI/edit?usp=sharing

Target Audience for this Feature:

The target audience for this feature is HTML and CSS developers. Knowledge of
javascript, frameworks, css preprocessors aren’t required for utilizing this feature. With
that said, we expect Scoped CSS still be leveraged by frameworks and css
preprocessors.

Example use case:

Page.html
<style> // Page styles apply to A, B, C and D

Component tree: // Each node is a component, ex: custom-element or
 // shadow host.
 A
 / \
 B // Styles scoped to B don’t affect upwards (A) or
 / \ // downwards (C, D)
 C D

Blue box represents one component from the component tree above.

Current Issues:

The main issue with CSS is its global scope. All selectors reside in a global namespace.
As such, it gets increasingly difficult to determine which styles get applied to an element
as the project grows. It's common for the styling of one page to regress the appearance
of another page unintentionally. Also, modifying and refactoring of styles becomes
problematic as it requires manually checking all pages to make sure that the UI hasn't
regressed.

A consequence of the CSS global scope is that it makes it difficult to provide
interoperability of components from different design systems. Adding components from
various component libraries requires importing their CSS. The web app runs the risk of
style collision every time it imports a new CSS style sheet.

Lastly, the fear of unintended global style pollution can lead to the creation of
non-performant CSS selectors. For example, nav.header .menu ul > li button, would be
a non-performant (because of the complexity of the selector) choice to style a specific
nav menu button while preventing its style from leaking to other buttons.

Scoping History:

Globally scoped CSS and its problems have plagued web developers for years. Back in
2012, an attempt to address these issues with the introduction of scoped attribute on
the style element. The solution had some drawbacks. For one, it requires modification of
HTML to inject the style tags. Later on, due to the non-uniform support from other
browsers, this feature was removed [1] [2].

However, the removal caused many developers to raise the issue of the need for
scoping CSS. The community created additional proposals and issues after scoped
removal. These include CSS namespacing, CSS nesting, and bring back CSS Scoping.

Current Solutions:

The following are some of the popular solutions for addressing CSS scoping.

https://developers.google.com/web/updates/2012/03/A-New-Experimental-Feature-style-scoped
https://github.com/whatwg/html/issues/552
https://github.com/w3c/csswg-drafts/issues/137
https://github.com/w3c/csswg-drafts/issues/270
https://tabatkins.github.io/specs/css-nesting/
https://github.com/w3c/csswg-drafts/issues/3547

Manually: CSS rules are localized by adopting a consistent CSS selector naming
scheme. Block, Element, and Modifier (BEM) is a common technique used. However,
the management of the naming convention can be a challenge as the project grows.
Also, selector names can get very long, and bloat both stylesheet and HTML.

Ex: <button class=”x-button-primary”>Save</button>

As a project grows, invariably, the demand for styling increases. The class selector for
the same button placed inside a page content header menu becomes
x-header-nav-button_primary.

<div class="x-detail-page">
 <div class="x-header">
 <button class="x-page-header-button_primary">Save</button>
 </div>
</div>

Additional CSS organizational methods exist, SMACSS and OOCSS. However, as with
BEM, the management of the CSS class to ensure consistent naming gets increasingly
burdensome as the web application grows.

CSS preprocessor: SASS, LESS, and other tools are commonly used to reduce the
manual burden of managing CSS. They add a compilation step that can automate the
scoping of CSS by defining scoped variables and attaching styles to those variables.

header.scss
$container: “.page”;
$component: “.header”;
#{$container} {
 #{$component} {
 &-button {
 &_primary {
 color: red;
 }
 }
 }
}

Compiles to:

header.css
.page .header-button_primary {
 color: red;
}

http://getbem.com/
http://smacss.com/
http://oocss.org/
http://getbem.com/

While these tools reduce manual CSS scoping work, they can create large stylesheets
with multiple nested selectors. If CSS scoping were supported natively, these tools
could leverage CSS scoping syntax to optimize the compiled CSS rules.

JS Frameworks: Frameworks like Vue and Angular have built-in support for CSS
scoping. Primarily, they run a CSS preprocessor that generates a unique component
hash and append it to the component style rules.

Ex: Vue

sample.vue
<style scoped>
 button.primary {
 color: red;
 }
</style>
<template>
 <button class=”primary”>Save</button>
</template>

Compiles to:

sample.css
button.primary[data-v-f3f3eg9] {
 color: red;
}
sample.html
<template>
 <button class=”primary” data-v-f3f3eg9>Save</button>
</template

Frameworks do a good job of scoping their CSS styles to the specific component that
embeds them. Styles are encapsulated within the component boundary. Page styles
propagate to components and can override their styles based on specificity. With all the
benefits of using frameworks, it comes at a cost. Frameworks don't play well with each
other within a web app. Components from one framework can't be used in another
framework.

See demo built with Vue for more examples.

Web Components: Web components have native CSS scoping support. Styles defined
within the shadow DOM are scoped only to the component. This frees developers from
following a complex selector naming convention to prevent conflicts. However, styling

https://yuzhe-han.github.io/demos/vue/dist/index.html

web components from the host application requires coordination between styles
exposed by web components and style rules set by the host application, because global
styles do not apply to shadow DOM content. Often, there is a coordination/API
mismatch that prevents the web component from being styled as the host application
desires.

Ex: The following shows an example of an Accordion web component that uses var()
for page styling. See demo for more details:

Accordion.js
const styles = `
 :host(.section) .panel-content {
 color: var(--accordion-section-content-color);
 background-color: var(--accordion-section-content-bg-color);
 };`
const template = `
 <div id="sect" class="panel">
 <div class="panel-content"> Accordion Content</div>

 <slot name="section-panel">section panel missing</slot>
 <slot name="section-description">section description is missing</slot>
 </div>`;

The accordion web component exposes two variables for styling from the parent
container. Often, the container needs more styling options than is available. However,
that’s not possible without modification to the web component. This problem, to a lesser
degree, exists for ::part() pseudo element.

Need for a new solution:

The existing solutions were created to solve the global scope of CSS rules. With all the
existing solutions, why do we need to create another solution? To better illustrate this
need, see the diagram below of scoping features to the existing solutions.

Scoped CSS Feature List vs. existing solution:

Features

CSS naming
methodolgy:
OSSCSS,
SMACSS, BEM

CSS
Preprocessor:
SCSS & LESS

CSS in
JS

Frameworks:
Angular, Vue

Web
Components

Component Style

https://yuzhe-han.github.io/demos/web-component/accordion-demo.html

Scoped

Prevent Scoped
rules from applying
outside of the
scoped DOM
subtree NO NO3 YES1 YES1 YES

Prevent scoped
rules from applying
inward towards
nested
components NO NO YES1 YES1 YES

Global Styles

Allow global styles
to apply to
component or
DOM subtree YES YES YES YES NO

Allow global styles
to override scoped
CSS styles. YES YES YES YES YES2

Namespacing

Scoped selectors
don't conflict with
selector of same
name in other
scoped context NO NO YES YES YES

Combine multiple
scoped CSS rules
in a single
stylesheet NO NO YES YES NO

Additional
features

Scoped rules
works with both
light DOM and
shadow DOM2 NO NO NO NO NO

Separation of
Content and Style YES YES NO YES NO

1 - CSS compiler appends unique hash to the component selectors encapsulating their styles to
the component.
2 - Shadow DOM requires CSS var() or ::part() for style overriding.

3- CSS preprocessors uses descendant selectors for their scoping feature. However, there’s no
guarantee that the scoped styles wouldn’t conflict with styles of other components.

Referencing the list above, all solutions have some missing features. The main problem
is that CSS selectors are globally scoped. The ideal solution to CSS scoping should
support all of the features above. Frameworks like Angular and Vue do a very good job
ensuring their component CSS are scoped correctly. However, there’s a common
problem across all solutions that prevents styling across shadow boundaries. Having a
scoped CSS will reduce the cognitive overhead required for managing a broad set of
CSS styles in the global scope, increase interoperability between components, and
boost performance via fewer nodes to traverse during style recalcs.

Summary:

This document is to capture the requirements for CSS scoping, its current state, and the
missing features. This document doesn't go into solutions yet, as we are trying to make
sure we’ve captured the problem space correctly and fully. Please comment on whether
there are additional items to consider.

Open Questions:

This document is a work in progress! Please share your input!

	CSS Scoping Requirements
	What’s All This About?
	Target Audience for this Feature:
	Example use case:

	Current Issues:
	Scoping History:
	Current Solutions:
	Need for a new solution:
	Scoped CSS Feature List vs. existing solution:
	

	Summary:
	Open Questions:

