
- 1. (a) State the law of conservation of energy
- (b) The graph below shows the potential energy against displacements for a body of mass 80g

The body oscillates about point **R**. Calculate the velocity of the body at:

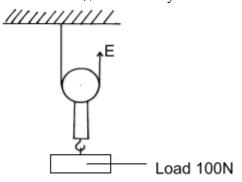
- (i) P and T
- (ii) Q and S
- (iii) at R
- (c) A wheel and axle are used to raise a load of 280N by a force 40N applied to the rim of the

wheel. If the radii of the rim and axle are 70cm and 5cm respectively, calculate:

- (i) The mechanical advantage
- (ii) The velocity ratio
- (iii) The efficiency
- 2. (a) A bicycle has wheels 66 cm in diameter. Its crank wheel has 44 teeth and the rear sprocket

16 teeth. The crank radius is 16.5 cm.

- (i) Determine the radius of the rear sprocket.
- (ii) The bicycle moves when the rear sprocket is made to move. Hence determine the


velocity ratio.

(b) A man uses a block and tackle mechanism of velocity ratio 6 to lift a car engine

smoothly through a height of 1 m in 5s. The man applies a force of 300N while the

mass of the engine is 120 kg. Determine:

- (i) The mechanical advantage of the pulley system.
- (ii) its efficiency.
- 3. (a) Define work and state its S.I units
- (b) A crane lifts a load 500kg through a vertical distance of 4m in 8 seconds. Determine:
 - (i) Work done by the crane
 - (ii) Power developed by the crane
- (iii) Efficiency of the crane given that it is operated by an electric motor rated $2.8 \mathrm{Kw}$
- (iv) State two effects which contribute to the efficiency being less than 100%
- 4. A load of 100N is raised using the system in the figure below by an effort.

Given that the efficiency of the machine is 90%, calculate the minimum effort.

- 1. (a) The law of conservation of energy states that the sum of kinetic energy and potential energy of a system is a constant
 - (b) (i) At P and T potential energy is a maximum and kinetic energy is a minimum. Hence

velocity is zero (2mks)

(ii) At Q and S P.E has reduced by 0.1J. This equals the K.E

$$K.E = \frac{1}{2} MV^{2}$$
 $0.1 = \frac{1}{2} \times 0.8V^{2}$
 $0.1 = 0.4V^{2}$
 $0.1 = V^{2}$
 $V^{2} = \frac{1}{4} = 0.25$
 $V = 0.5m/s$

(iii) At R, auP.E has been converted to K.E velocity now is a maximum

So,
$$0.2 = \frac{1}{2} MV^2$$

 $0.4 = V^2$
 $V = 0.4 m/s$
 $V = 0.64 m/s$

(c) (i)
$$M.A = \underline{L} = 280N = 7 (2mks)$$

(ii)
$$V.R = P = \frac{70}{R} = 14(2mks)$$

(iii)
$$n = M.A \times 100\%$$

 $V.R$
 $= 7 \times 100\%$
 14
 $= 50\%$ (2mks)

2. a) (i) $CR = 2\pi R = No \text{ of teeth draw}$ $2\pi r$ No. of teeth of driven = 1

$$R = 6 cm = 1$$

$$(ii) V.R. = \underbrace{R}_{r} \qquad \stackrel{\text{?}}{\rightleftharpoons} 1$$

$$= \underbrace{16.5 \text{ cm}}_{6 \text{ cm}} \qquad \stackrel{\text{?}}{\rightleftharpoons} 1$$

$$= \underbrace{2.75}_{r} \stackrel{\text{?}}{\rightleftharpoons} 1$$

$$= \underline{1200N} \quad \stackrel{\text{\tiny \cong}}{300N} \\ = 4 \quad \stackrel{\text{\tiny \cong}}{=} 1$$

(ii) Its efficiency of:

$$D = \underbrace{M.A \times 100\%}_{V.R.} \iff 1$$

$$= \underbrace{4 \times 100\%}_{6}$$

$$= 66.67\% \iff 1$$

3. (a) Work is said to be done when the body on which a force is applied moves in the direction

of force; S.I unit if the Joule, J or (Nm);

- (iv) Friction between movable parts
 - Sound due to moving parts
 - heat –some of the electrical energy is converted to unnecessary heat

- 1. Given that a lamp is rated 45W 240V. Calculate the resistance of the heating element.
- 2. An electric bulb is rated 40W, 240V. What is the resistance of its filament?
- 3. An electrical immersion heater is rated 3kW, 250V. Choose a suitable fuse from 3A, 5A, 10A,
 - 12A, and 20A that can be used in such an appliance.
- 4. An electric kettle is rated 3KW, 250V. Determine the resistance of the coil
- 5. An electric kettle rated 3.0Kw, 240V is filled with water. If the water boiled after 8 minutes
 - of heating, determine the energy used in boiling the water.
- 6. (a) An electrical heater is rated 3.45KW. The heater is immersed in 2.4kg of water.
- Calculate the minimum time it takes for the temperature of the water to rise from 23.0°C to 69.0°C. (Specific heat capacity of water = $4.2Jg^{-1}K^{-1}$)

1.
$$D = IV$$
 $PI^{2}R$ $R = P$ I^{2} I^{2}

2.
$$P = \frac{V^2}{R}$$

$$R = \frac{(240)^2 \sqrt{40}}{40}$$

$$= 1440\Omega \sqrt{10}$$

3.
$$\underline{P} = I$$

$$V$$

$$\underline{3000} = 12A$$

$$250$$

suitable fuse 13A

4. An electric kettle is rated 3KW, 250V. Determine the resistance of the coil

$$P = IV = \frac{V2}{R}$$

$$300 = \frac{2502}{R}$$

$$R = 62500$$

$$3000$$

$$= 20.83 \Omega$$

5. Energy
$$E_1$$
 = Power x time
= 3000 x 8 x 60
= 1440000J 1

6. =
$$2.4 \times 4.2 J g^{-1} K^{-1} \times 46 K (1mk)$$

= $2.4 \times 4200 J K g^{-1} K^{-1} \times 46 K (1mk)$
= $463 6805 J$

Let the rime be tEnergy H = Pt = 3450Wx t 3450t = 463 680Jt = 134.4s