
X-ray

- 12. a) State the energy changes that take place in an X ray tube
- b) Electrons in an X-ray tube are accelerated by a potential difference of 40 kV. If 20 % of the

electrons are converted into X- rays, determine the maximum wavelength of the emitted

electrons.

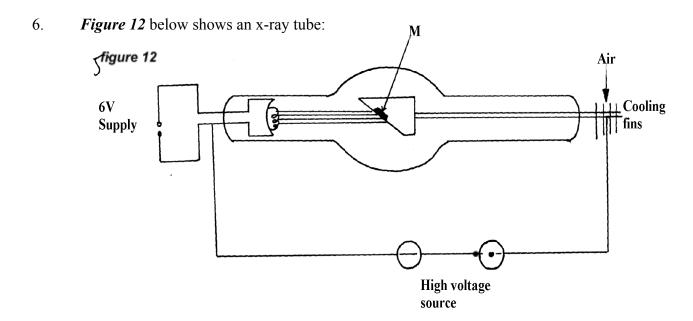
- c) i) Draw a simple circuit consisting of a photocell to show the direction of flow of current
 - ii) The diagram below shows a wave form displayed on a CR0 screen.

If the Y — gain reads 0.5V cm⁻¹ while the time base is set at 0.1 ms cm⁻¹, determine the amplitude and frequency of the wave.

X-ray

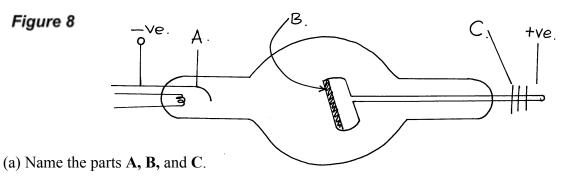
- 1. Give **one** use of X –rays in medicine
- 2. State the factor that affects:-
 - (i) The intensity of X-rays
 - (ii) The strength of X-rays
- 3. An x-ray tube must be highly evaluated. Give a reason for this
- 4. a) In the production of X- rays, electrons are directed at a tungsten target. State a reason why

the target is made of tungsten

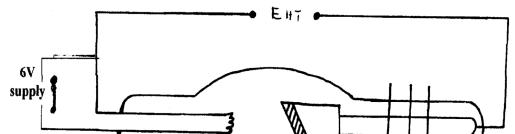

- b) How can the intensity of the X-rays tube be increased?
- 5 a) Arrange the following waves in order of increasing frequencies: microwaves, x-rays,

Infra-red, ultra-violet

b) The table below shows the electromagnetic spectrum;


G	amma	A	Ultra	В	Infra red	Radio
ra	ıys		violet			waves

- i) Identify A and B
- ii) State one use for each



(a) Indicate on the diagram the path of x-ray beam supplied by the tube

- (b) Why is **M** set at angle of 45° relative to the electron beam?
- (c) Name a suitable metal that can be used for part \mathbf{M} and give a reason for your choice
 - (d) State how the following can be controlled:-
 - (i) Intensity
 - (ii) Penetrating power
- (iii) The exposure to patients
- (e) An x-ray tube is operating with an anode potential of 12Kv and a current of 10.0m.A:
 - (i) Calculate the number of electrons hitting the anode per second
 - (ii) Determine the velocity with which the electrons strike the target
 - (iii) State **one** industrial use of x-rays
- 7. (i) The diagram below shows simplified diagram of an x-ray tube,

- (b) What adjustments would be made to:
 - (i) Increase the penetrating power of the x-rays produced.
 - (ii) Increase the intensity of the rays produced.
- (c) Name a suitable material for the part marked **B** and give a reason for your choice.
 - (d) Name a suitable material for the part marked C and sate its purpose.
 - (e) Why is it necessary to maintain a vacuum inside the tube?
 - (f) State **one** use of x-rays in the following areas; -
 - (i) In medicine
 - (ii) In Industry.
- 8. a) The figure shows the circuit of a modern X-ray tube

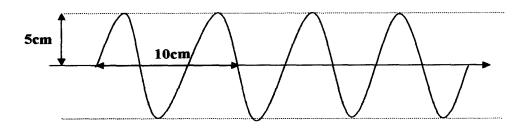
Evacuated tube

- i) Indicate the path of the X-ray beam supplied by the tube
- ii) Name the part labeled C and state its function (2 mks)
- iii) If the tube above is operated at an accelerating potential of 100 kV and only 0.05% of

the energy of the electrons is converted to X-rays, calculate the wave length of the

generated X-rays. (Take electric charge $e = 1.602 \times 10^{-19} \text{C}$, planks constant $h = 6.63 \times 10^{-34} \text{ Js}$, and speed of light $c = 3.0 \times 10^8 \text{m/s}$)

- iv) State two properties of X-rays
- v) State **one** industrial application of X-rays
- 9. Below is a nuclear reaction


$$^{232}A$$
 K ^{228}B Y- radiation ^{232}A

- i) Identify radiation K
- ii) Determine the value of X and Y
- 10. a) State the energy changes that take place in an X ray tube
- b) Electrons in an X-ray tube are accelerated by a potential difference of 40 kV. If 20%

of the electrons are converted into X- rays, determine the maximum wavelength of the

emitted electrons.

- c) i) Draw a simple circuit consisting of a photocell to show the direction of flow of current
 - ii) The diagram below shows a wave form displayed on a CR0 screen.

If the Y — gain reads 0.5V cm^{-1} while the time base is set at 0.1 ms cm^{-1} , determine the

amplitude and frequency of the wave.

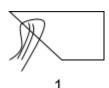
11. The table below shows results obtained in an experiment to determine the internal resistance

of a cell

** * * * *											
V(V)	0.4	0.5	0.6	0.7	08	1.3					
$R(\Omega)$	0.45	0.65	0.80	1.05	1.40	2.4					
$^{1}/_{V}(V^{-1})$											
$^{1}/_{ m R}(\Omega^{-1})$											

- i. Complete the table for values of $^1\!/_V$ and $^1\!/_R$ giving your answers to 3 d.p
- ii. Plot a graph of ¹/_V against ¹/_R
- iii. Use the graph to determine the e.m.f ${\bf E}$ and the internal resistance ${\bf r}$ of the cell given that

$$\underline{\underline{F}} = \underline{\underline{r}} \qquad \underline{I}$$


$$V \quad R$$

X-ray

- 1. Treatment of cancer, tumors
- 2. (i) Size of heater current/filament current
 - (ii) Accelerating potential/kinetic energy of elctrons/anode Voltage
- 3. To avoid collisions between the moving electrons and air particles
- 4. a) Tang stein has high melting point and therefore it would not met at elevated temperatures
 - b) Increasing filament voltage or heating current
- 5. a) Micro waves, infrared, ultra violet X rays
 - b) i) A X rays

B – *visible light*

- ii) X rays viewing bone fracture/foreign objects in the body
- Visible light ordinary photography/ optical fibre
- 6. *(a)*

- (b) To direct x-rays out of the tube through the window on the shield. 1
- (c) Tungsten or molybodenum. 1
 - High melting point thus it can withstand high temperature.
- (d) (i) Heater current (Filament current)
 - (ii) Anode potential (operating potential)
 - (iii) Covering with protective materials where x-rays are not required
 - Minimize exposure time as much as possible
 - Reduce number of exposure as much as possible (any 1-1mk

(e) (i)
$$Q = Jt = 10 \times 10-3C$$
 (= 1.6 x 10-19C)
 $10 \times 10^{-3}C = 1.6 \times 10^{-19} \times n$
 $n = 10 \times 10^{-3} = 6.25 \times 1016 \text{ electrons}$ 1
 1.6×10^{-19}

(ii)
$$\frac{1}{2} m_e V^2 = eV$$

$$V = \frac{2eV}{me}$$

$$= \frac{2 \times 1.6 \times 10 - 19 \times 12000}{9.1 \times 10 - 31}$$

$$= \sqrt{4.2198 \times 10^{15}1}$$

$$= 6.496 \times 107 \text{m/s}$$

- (iii) Detecting fault in metals or other structures.
- Controls quality of manufacturer items e.g tyres, thickness of sheets, papers e.t.c.
 - Analysis of gem stones.

(Any one-1mk

- 7. *(a)* A cathode
- B-Anode

C – *Cooling fins*

- (b) (i) increase the p.d at the anode (B)
 - (ii): increase the cathode heater current
- (c) Tungsten:- It has a high melting point so the heat produced will not melt it easily
 - (d) Copper it is used to cool/conduct heat away from the anode
- (e) So that the electrons do not collide with gas molecules which could result in loss of energy.
 - (f) (i)Detecting fracture in bones
 - (ii) Detecting flaws in metals
- 8. a) i) Name the part labeled C and state its function
 - *C* is the cathode.
 - *It produces electron thermionically*
 - iii) (Take electric charge $e = 1.602 \times 10$ -19C, planks constant $h = 6.63 \times 10$ -34 Js, and speed of light $c = 3.0 \times 108$ m/s

Energy of X-rays
$$f = 8.01 \times 10^{-16}$$

£ = 5/100 X 100 kV X 1.602 X 10 -19 c
6.63 X 10⁻³⁴
= 8.01 X 10⁻¹⁶ j = 1.208 X 10⁻¹⁸

HZ

$$\lambda = c \quad \lambda = 3.0 \times 10^8 \text{ m/s}$$

 $f \quad 1.208 \times 10^{18} \text{HZ}$
 $= 2.483 \times 10^{-10} \text{m}$

- iv)- They penetrate matter
- -They obey properties of electromagnetic waves
 - o Diffraction
 - o Reflection
 - Obey inverse square law
- v) -Used to detect defects in metals in industries
 - -Used to sterilize medical equipment.
- 9. *i)* K- X
- *ii)* X = 88
- *Y*= 288