Implementation

start with one new colab notebook and follow the steps one by one.
step 1

Install tensorflow version 2 or higher

Ipip install -U --pre tensorflow=="2.*"
step 2

make sure to install pycocotools for coco detection API.

Ipip install pycocotools

step 3

get tensorflow/models by cloning the repository.

import os
import pathlib

if "models" in pathlib.Path.cwd().parts:
while "models" in pathlib.Path.cwd().parts:
os.chdir("..")
elif not pathlib.Path('models').exists():
Igit clone --depth 1 https://github.com/tensorflow/models



https://github.com/tensorflow/models

move (cd) to research directory of the repo

cd models/research
step 4

compile protobufs

Iprotoc object_detection/protos/*.proto --python_out=.

install object_detection python package

Ipip install object_detection

step 5

import required libraries

import numpy as np

import os

import six.moves.urllib as urllib
import sys

import tarfile

import tensorflow as tf

import zipfile

from collections import defaultdict
from io import StringlO

from matplotlib import pyplot as plt
from PIL import Image

from IPython.display import display

install tf_slim python package:

Ipip install tf_slim



import object detection modules:

from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_ util

step 6

function to load your model

def load_model(model_name):
base_url = 'http://download.tensorflow.org/models/object_detection/'
model_file = model_name + '.tar.gz'
model_dir = tf.keras.utils.get_file(
fname=model_name,
origin=base_url + model_file,
untar=True)

model_dir = pathlib.Path(model_dir)/"saved_model"

model = tf.saved_model.load(str(model_dir))
model = model.signatures['serving_default']

return model

this is the code to load your label map. Label maps map indices to
category names/Class names. For example when our neural
network predicts 1, it will correspond to “person” class or if it will
predict, suppose 18, it will correspond to “dog” category.

PATH_TO_LABELS = 'object_detection/data/mscoco_label _map.pbtxt'
category_index =
label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,
use_display_name=True)

this is the path to your test images. This will help you to check your
model detections over the given class. You can change your test
images by going to models/research/object_detection/test_images
to check the accuracy of SSD mobilenet over the given class.



PATH_TO_TEST_IMAGES_DIR = pathlib.Path('object_detection/test_images')
TEST_IMAGE_PATHS = sorted(list(PATH_TO_TEST IMAGES_DIR.glob("*.jpg")))
TEST_IMAGE_PATHS

step 7

load your object detection SSD mobilenet vl model for object
detection

model_name ='ssd_mobilenet_v1_coco_2017_11 17'
detection_model = load_model(model _name)

Now, check the model’s input signature.

print(detection_model.inputs)
detection_model.output_dtypes

Now add this wrapper function which is calling the model and
returns the output.

def run_inference_for_single_image(model, image):

image = np.asarray(image)

input_tensor = tf.convert_to_tensor(image)

input_tensor = input_tensor[tf.newaxis,...]

output_dict = model(input_tensor)

num_detections = int(output_dict.pop('num_detections'))

output_dict = {key:value[0, :num_detections].numpy()

for key,value in output_dict.items()}

output_dict['num_detections'] = num_detectionsoutput_dict['detection_classes'] =

output_dict['detection_classes'].astype(np.int64)

if 'detection_masks' in output_dict:detection_masks_reframed =
utils_ops.reframe_box_masks_to_image_masks(
output_dict['detection_masks'], output_dict['detection_boxes'],
image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5,
tf.uint8)
output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy()

return output_dict



step 8

Now, this is the main step where you can just pass on the class id
corresponding to the category you want to detect in the class_id
parameter of the function given below.(provided it should be
present in the coco dataset). You can check the class id and their
respective classes here.

def show_inference(model, image_path,class_id):
image_np = np.array(Image.open(image_path))
output_dict = run_inference_for_single_image(model, image_np)
boxes =[]
classes =[]
scores =[]
for i,x in enumerate(output_dict['detection_classes']):
if x==class_id and output_dict['detection_scores'][i] > 0.5:
classes.append(x)
boxes.append(output_dict['detection_boxes'][i])
scores.append(output_dict['detection_scores'][i])
boxes = np.array(boxes)
classes = np.array(classes)
scores = np.array(scores)
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
boxes,
classes,
scores,
category_index,
instance_masks=output_dict.get('detection_masks_reframed', None),
use_normalized_coordinates=True,
line_thickness=2)

display(Image.fromarray(image_np))
step 9

this is the final step to see your output on the test images.

for image_path in TEST _IMAGE_PATHS:
show_inference(detection_model, image_path, class_id)

Results


https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt

Let’s suppose we have two images in the test_images directory and
I’'ve passed class_id to be 1 which corresponds to “person” so in
both the images only persons are detected.

Classes of object -

https://drive.google.com/file/d/1ds-UMrPgAG3NQUXQ9itDyb1N06t4SYWb/view?us
p=sharing

for image_path in TEST_IMAGE_PATHS:
show_inference(detection_model, image_path, 1)

In this case only persons are detected in the second image and no other
object is detected.


https://drive.google.com/file/d/1ds-UMrPqAG3NQUXQ9itDyb1N06t4SYWb/view?usp=sharing
https://drive.google.com/file/d/1ds-UMrPqAG3NQUXQ9itDyb1N06t4SYWb/view?usp=sharing

Now, let’s change the class_id to be 18 which corresponds to “dog”
category.

for image_path in TEST_IMAGE_PATHS:
show_inference(detection_model, image_path, 18)

Here, only dogs are detected and no other object.



	Implementation 
	Results 

