
Implementation

start with one new colab notebook and follow the steps one by one.

step 1

Install tensorflow version 2 or higher

!pip install -U --pre tensorflow=="2.*"

step 2

make sure to install pycocotools for coco detection API.

!pip install pycocotools

step 3

get tensorflow/models by cloning the repository.

import os​
import pathlib​
​
if "models" in pathlib.Path.cwd().parts:​
 while "models" in pathlib.Path.cwd().parts:​
 os.chdir('..')​
elif not pathlib.Path('models').exists():​
 !git clone --depth 1 https://github.com/tensorflow/models

https://github.com/tensorflow/models

move (cd) to research directory of the repo

cd models/research

step 4

compile protobufs

!protoc object_detection/protos/*.proto --python_out=.

install object_detection python package

!pip install object_detection

step 5

import required libraries

import numpy as np​
import os​
import six.moves.urllib as urllib​
import sys​
import tarfile​
import tensorflow as tf​
import zipfile​
​
from collections import defaultdict​
from io import StringIO​
from matplotlib import pyplot as plt​
from PIL import Image​
from IPython.display import display

install tf_slim python package:

!pip install tf_slim

import object detection modules:

from object_detection.utils import ops as utils_ops​
from object_detection.utils import label_map_util​
from object_detection.utils import visualization_utils as vis_util

step 6

function to load your model

def load_model(model_name):​
 base_url = 'http://download.tensorflow.org/models/object_detection/'​
 model_file = model_name + '.tar.gz'​
 model_dir = tf.keras.utils.get_file(​
 fname=model_name, ​
 origin=base_url + model_file,​
 untar=True)​
​
 model_dir = pathlib.Path(model_dir)/"saved_model"​
​
 model = tf.saved_model.load(str(model_dir))​
 model = model.signatures['serving_default']​
​
 return model

this is the code to load your label map. Label maps map indices to
category names/Class names. For example when our neural
network predicts 1, it will correspond to “person” class or if it will
predict, suppose 18, it will correspond to “dog” category.

PATH_TO_LABELS = 'object_detection/data/mscoco_label_map.pbtxt'​
category_index =
label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,
use_display_name=True)

this is the path to your test images. This will help you to check your
model detections over the given class. You can change your test
images by going to models/research/object_detection/test_images
to check the accuracy of SSD mobilenet over the given class.

PATH_TO_TEST_IMAGES_DIR = pathlib.Path('object_detection/test_images')​
TEST_IMAGE_PATHS = sorted(list(PATH_TO_TEST_IMAGES_DIR.glob("*.jpg")))​
TEST_IMAGE_PATHS

step 7

load your object detection SSD mobilenet v1 model for object
detection

model_name = 'ssd_mobilenet_v1_coco_2017_11_17'​
detection_model = load_model(model_name)

Now, check the model’s input signature.

print(detection_model.inputs)​
detection_model.output_dtypes

Now add this wrapper function which is calling the model and
returns the output.

def run_inference_for_single_image(model, image):​
 image = np.asarray(image)​
 input_tensor = tf.convert_to_tensor(image)​
 input_tensor = input_tensor[tf.newaxis,...]​
 output_dict = model(input_tensor)​
 num_detections = int(output_dict.pop('num_detections'))​
 output_dict = {key:value[0, :num_detections].numpy() ​
 for key,value in output_dict.items()}​
 output_dict['num_detections'] = num_detectionsoutput_dict['detection_classes'] =
output_dict['detection_classes'].astype(np.int64)​
 ​
 if 'detection_masks' in output_dict:detection_masks_reframed =
utils_ops.reframe_box_masks_to_image_masks(​
 output_dict['detection_masks'], output_dict['detection_boxes'],​
 image.shape[0], image.shape[1]) ​
 detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5,​
 tf.uint8)​
 output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy()​
 ​
 return output_dict

step 8

Now, this is the main step where you can just pass on the class id
corresponding to the category you want to detect in the class_id
parameter of the function given below.(provided it should be
present in the coco dataset). You can check the class id and their
respective classes here.

def show_inference(model, image_path,class_id):​
 image_np = np.array(Image.open(image_path))​
 output_dict = run_inference_for_single_image(model, image_np)​
 boxes = []​
 classes = []​
 scores = []​
 for i,x in enumerate(output_dict['detection_classes']):​
 if x==class_id and output_dict['detection_scores'][i] > 0.5:​
 classes.append(x)​
 boxes.append(output_dict['detection_boxes'][i])​
 scores.append(output_dict['detection_scores'][i])​
 boxes = np.array(boxes)​
 classes = np.array(classes)​
 scores = np.array(scores)​
 vis_util.visualize_boxes_and_labels_on_image_array(​
 image_np,​
 boxes,​
 classes,​
 scores,​
 category_index,​
 instance_masks=output_dict.get('detection_masks_reframed', None),​
 use_normalized_coordinates=True,​
 line_thickness=2)​
 ​
 display(Image.fromarray(image_np))

step 9

this is the final step to see your output on the test images.

for image_path in TEST_IMAGE_PATHS:​
 show_inference(detection_model, image_path, class_id)

Results

https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt

Let’s suppose we have two images in the test_images directory and
I’ve passed class_id to be 1 which corresponds to “person” so in
both the images only persons are detected.

Classes of object -
https://drive.google.com/file/d/1ds-UMrPqAG3NQUXQ9itDyb1N06t4SYWb/view?us
p=sharing

 for image_path in TEST_IMAGE_PATHS:​
 show_inference(detection_model, image_path, 1)

In this case only persons are detected in the second image and no other
object is detected.

https://drive.google.com/file/d/1ds-UMrPqAG3NQUXQ9itDyb1N06t4SYWb/view?usp=sharing
https://drive.google.com/file/d/1ds-UMrPqAG3NQUXQ9itDyb1N06t4SYWb/view?usp=sharing

Now, let’s change the class_id to be 18 which corresponds to “dog”
category.

for image_path in TEST_IMAGE_PATHS:​
 show_inference(detection_model, image_path, 18)

Here, only dogs are detected and no other object.

	Implementation
	Results

