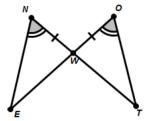
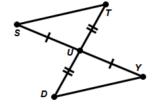

Sec. 1.6 Proof Problems Due 3-25-20 (You are NOT turning this document into me!!)

In order to complete this document and get credit for it, you need to do the following:

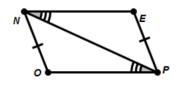
- Go to "file"
- "Make a copy"
- Title this document with your full name and class period.
- Only share me on this document. If anyone else is shared, you will not receive any credit.


Completely type your responses in the two-column proof provided. Make sure you end each proof correctly.

Example of how to complete the first couple of problems on this document

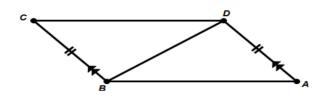


1. Tell which of the following triangle provide enough information to show that they must be congruent. If they are congruent, state which theorem suggests they are congruent (SAS, ASA, SSS, AAS, HL) and write a congruence statement. Circle one of the following: Circle one of the following: Circle one of the following: Not Enough Information Not Enough Information Not Enough Information SSS SAS ASA AAS SSS SAS ASA AAS SSS SAS ASA AAS Congruence Statement Congruence Statement Congruence Statement if necessary: if necessary: 1A) Congruence Statement if necessary: 1B) Congruence Statement if necessary: 1C) Congruence Statement if necessary: Circle one of the following: Circle one of the following: Circle one of the following: Not Enough Information SSS SAS ASA AAS SSS SAS ASA AAS SSS SAS ASA AAS Congruence Statement 1D) Congruence Statement if necessary: 1E) Congruence Statement if necessary:


1F) Congruence Statement if necessary:

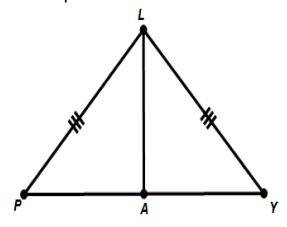
Circle	one of th	e followi	ng:		Not Enough
SSS	SAS	ASA	AAS	HL	Information
Cong	gruence S	Statement			
l	if n	ecessarv:			

Circle	Circle one of the following:					
SSS	SAS	ASA	AAS	HL	Not Enough Information	
Cong	gruence S	Statement	t			
	20					

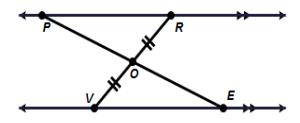


Circle one of the following:					Not Enough
SSS	SAS	ASA	AAS	HL	Information
Con	gruence S	Statement	t		
l	if n	ecessary:			

|--|

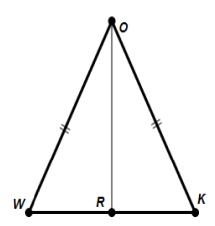

2. Prove which of the following triangles congruent if possible by filling in the missing blanks:

a. Given $\overline{CB}\cong \overline{AD}$ and $\overleftarrow{CB}\parallel \overleftarrow{AD}$


Statements	Reasons
1. $\overline{CB} \cong \overline{AD}$	
2. $\overrightarrow{CB} \parallel \overrightarrow{AD}$	
3. <i>∠CBD</i> ≅ ∠ <i>ADB</i>	
$4. \ \overline{BD} \cong \overline{BD}$	
5. $\triangle BCD \cong \triangle DAB$	

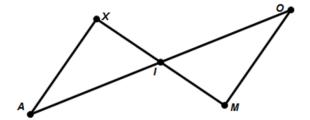
b. Given $\overline{PL}\cong \overline{YL}$ and Point A is the midpoint of \overline{PY}

Statements	Reasons
1.	Given
2.	Given
3.	Definition of Midpoint
4.	Reflexive property of congruence
5.	By steps 1,3,4 and SSS

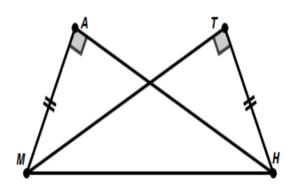

c. Given $\overline{VO}\cong \overline{RO}$ and $\overrightarrow{PR}\parallel \overleftrightarrow{VE}$

Statements	Reasons
1.	Given
2.	Given
3.	
4.	
5. $\triangle PRO \cong \triangle EVO$	

Prove the Isosceles Triangle Theorem and the rest of the suggested proofs.


d. Given ΔWOK is isosceles and point R is the midpoint of \overline{WK}

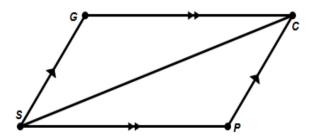
Statements	Reasons
1. ΔWOK is isosceles	
2. $\overline{WO} \cong \overline{KO}$	
3. R is the midpoint of \overline{WK}	
$4. \ \overline{WR} \cong \overline{KR}$	
5. $\overline{OR} \cong \overline{OR}$	
6. $\Delta WRO \cong \Delta KRO$	
7. <i>ΔOWR</i> ≅ <i>ΔOKR</i>	


Statement	Reason

e. Given point I is the midpoint of \overline{XM} and point I is the midpoint of \overline{AO}

Statements	Reasons
1. I is the midpoint of \overline{XM}	
2.	Definition of Midpoint
3. I is the midpoint of \overline{AO}	
4.	
5. <i>≰AIX</i> ≅ <i>≰OIM</i>	
$6. \ \Delta AXI \cong \Delta OMI$	

f. Given \measuredangle MAH and \Alpha HTM are right angles and $\overline{MA}\cong \overline{TH}$



Statements	Reasons
1. $\angle MAH \& \angle HTM$ are right angles	
$2. \ \overline{MA} \cong \overline{TH}$	
3. $\overline{MH} \cong \overline{MH}$	
$4. \ \Delta MAH \cong \Delta HTM$	

Statement	Reason

Prove the suggested proofs by filling in the missing blanks.

g. Given $\overrightarrow{GC} \parallel \overrightarrow{PS}$ and $\overrightarrow{GS} \parallel \overrightarrow{CP}$

Statements	Reasons
1. GC ∥ FS	
2.	
3. <i>ĠS</i> ∥ <i>ĊP</i>	
4.	
5.	
6. $\triangle GCS \cong \triangle PSC$	