
Different type 
Models - bert, distilbert 
Datasets - GLUE task/ MRPC 
Pytorch - f32, int8 
Tensorflow - f32, int8 
ONNX implementation - int8, f32 
Input data type - f32/int8 
 
Basic algorithm for using bert based models: 
There are two kind of applications using 1) encoder and decoder and 2) encoder 
The encoder is used as a feature generator, where the input sentence is passed through an 
encoder to get a feature list which is then optimized by a classifier network above it. 
So this would require fine-tuning training for different tasks. This would involve regression or 
classification output 
 
Encoder-Decoder based would involve a structured input-output. This would involve tasks like 
language translation. Sentence completion etc.  
 
So it involves a stage of training followed by inference. 
 
Transformers library inherently supports models exported in Pytorch and Tensorflow float32. 
They are then converted to onnx based models for inference. Initially, Transformer themselves 
supported an exporting framework. Convert_graph_to_onnx 
 
Model used: bert-base-cased 
opset=11 
The Pytorch  Bert Pytorch 0.014789018630981445 
The ONNX  onnx/bert-base-cased_pt.onnx 0.028888933658599854 
 
ARM 
The Pytorch  Bert Pytorch 0.03160018444061279 
The ONNX  onnx/bert-base-cased_pt.onnx 0.038375723361969 
 
 
Why is IBERT consuming more time? 
The Pytorch  IBert Pytorch 0.016733992099761962 
ARM: The Pytorch  IBert Pytorch 0.03542795419692993 
 
ARM: Pytorch works only with numpy 1.21 while the Tensorflow version works only with 1.19.2 
 
 
 
 
 



Inference: 
Tensorflow numbers seems to be always higher than Torch and ONNX numbers 
 
ONNX optimization and Torch numbers seems to be almost close.  
 
Torchscript seems to produce more optimization than ONNX optimization. It has a JIT compiler 
 
Int8 quantization does not seem to produce that much optimization in Intel platforms? 
 
Int8 seems to produce good optimization on a ARM platform 
 
DistillBert produces the most optimization 
 
TorchScript int8 seems to be the best optimized configuration for Intel 
 
The best configuration for ARM platform is distillbert onnx int8 configuration converted from 
pytorch model 
 
ONNX exported from tensorflow 
 
Int8 for torch and torchscript does not work since it does not have the necessary operations 
self._packed_params = torch.ops.quantized.linear_prepack(weight, bias) 
RuntimeError: Didn't find engine for operation quantized::linear_prepack NoQEngine 
 
Onnx conversion for BERT fails with Graph not DAG when used with pytorch 
The onnx module converted from pytorch also seems to produce similar values as  
 
BERT: Pytorch onnx conversion 
Size of full precision ONNX model(MB):417.6670169830322 
Size of quantized ONNX model(MB):106.50384902954102 
 
 
DistilBERT:  Pytorch onnx conversion 
Size of full precision ONNX model(MB):253.1628122329712 
Size of quantized ONNX model(MB):63.48833084106445 
 
 
The next is using run_benchmark.sh which uses onnxruntime for optimization for different runs 
 
 
 
 
 



The next step is to train models for specific applications. In this experiment, we try to train the 
model for GLUE applications, specifically MRPC tasks. 
The task involves matching a pair of sentences that are semantically similar or not.  
 
Pytorch quantization values: 
Size (MB): 417.72501850128174 
Size (MB): 173.08655261993408 
 
f32 
{'acc': 0.8602941176470589, 'f1': 0.9018932874354562, 'acc_and_f1': 0.8810937025412575} 
Evaluate total time (seconds): 15.5 
 
Int8 
{'acc': 0.8504901960784313, 'f1': 0.8942807625649914, 'acc_and_f1': 0.8723854793217114} 
Evaluate total time (seconds): 14.8 
 
ONNX full precision model size (MB): 417.6695041656494 
ONNX quantized model size (MB): 104.80780410766602 
 
F32 Onnx conversion 
{'acc': 0.8602941176470589, 'f1': 0.9018932874354562, 'acc_and_f1': 0.8810937025412575} 
Evaluate total time (seconds): 11.0 
 
Int8 Onnx optimization: 
{'acc': 0.8529411764705882, 'f1': 0.8989898989898989, 'acc_and_f1': 0.8759655377302435} 
Evaluate total time (seconds): 8.0 
 
The pytorch int8 conversion does not seem to optimize the model.  
This function uses quantize_dynamic instead of quantization 
The loss in accuracy is very small. 
The model is initially trained model for the specific task 
 
TFLITE conversion: 
Intel CPU For 100 inferences 
Total time inference wo conversion  4.535388469696045/4.617389917373657 
Total time inference int32  3.7203991413116455/1.049537181854248 
Total time inference int16  3.633791446685791/3.2079484462738037 
Total time inference int8  2.4201579093933105/2.3827571868896484 
 
Total time inference wo conversion  8.767888307571411 
Total time inference int32  2.1622798442840576 
Total time inference int16  6.5904576778411865 
Total time inference int8  4.854951620101929 
 



 
ARM 
Total time inference wo conversion  10.378628253936768 
Total time inference int32  2.429830551147461 
Total time inference int16  8.733739614486694 
Segmentation fault (core dumped) 
 
 
Profiler ONNX: 
Convert Pytorch and Tensorflow int8 to onnxruntime and profile it for understanding different 
functions at a framework level https://onnxruntime.ai/python/auto_examples/plot_profiling.html 
 
 
 
 
 
 
 
 
 
 
 
 
 
Onnx optimizations: 
 
 
 
Onnx quantization results 
 
Pytorch quantization results: f16 and int8 
 
Tensorflow quantization results: TFLITE quantization, f16 
 
Training different applications glue benchmark 
 
Try reasoning out absolute values across pytorch, tensorflow and onnx. But atleast show the 
relative performance improvements 
 
Explore optimized_model.use_dynamic_axes() 
optimized_model.save_model_to_file(optimized_model_path) 
 
Explore different onnx providers - the runner for onnx is good in onnx_converter.py 
Explore keras2onnx 



Explore QA dataset 
 
 
 
 
Different optimizations 
 
 
ONNX implementation: 

-​ Pytorch implementation seems to be faster than Tensorflow implementation only on Intel 
Machines 

-​ Pytorch converted to ONNX  
 
 
 
 
 
 
The Pytorch  Bert Pytorch 0.025295858383178712 
The ONNX  onnx/bert-base-cased.onnx 0.01583794355392456 
The ONNX  bert.opt.onnx 0.010543863773345947 
 
ARM: Works with onnx runtime 1.8 version but Huggingface is optimized for 1.4 version 
The Pytorch  Bert Pytorch 0.030496835708618164 
The ONNX  onnx/bert-base-cased.onnx 0.03884810924530029 
 
bert-base-uncased              8               8             0.063     - Tensorflow 
bert-base-uncased              8               8             0.081     - Pytorch 
 
  distilbert-base-uncased           8               32            0.062     - TensorFlow 
  distilbert-base-uncased           8               32            0.072     - Pytorch 
 
Convert_graph_to_onnx.py - seems to work good for Pytorch models but not for tensorflow 
 
Tensorflow Inference time for sequence length 512 = 976.23 ms 
ONNX Runtime cpu inference time for sequence length 512 (model not optimized): 1870.42 ms 
 
Tensorflow Inference time for sequence length 512 = 991.14 ms 
ONNX Runtime cpu inference time for sequence length 512 (model not optimized): 1001.24 ms 
 
 
 
Tensorflow Inference time for sequence length 512 = 836.99 ms 
ONNX Runtime cpu inference time for sequence length 512 (model not optimized): 994.39 ms 



ONNX Runtime cpu inference time on optimized model: 997.64 ms 
 
Onnxruntime tensorflow - static and dynamic quantization 
https://github.com/microsoft/onnxruntime/blob/master/tools/python/remove_initializer_from_input
.py  
https://onnxruntime.ai/docs/how-to/mobile/ - arm service provider - 
https://onnxruntime.ai/docs/reference/execution-providers/  
 
Various GLUE benchmark tasks - https://openreview.net/pdf?id=rJ4km2R5t7 
 
 
Pytorch supports int8 quantization 
Ibert int8 on ARM processor 
 
 
pip install onnxruntime-tools - looks like it is deprecated and not working 
 
https://netron.app/ - try showing models before and after 
https://huggingface.co/models?sort=alphabetical - all pre-trained models 
Talk about memory consumed 
 
ARM build: transformers requires tokenizers==0.10.1 
 
ARM Build tensorflow: 
  
Clean tensorflow: bazel clean --expunge 
BUILD_OPT=1 ./remake_arm_64_natively.sh 
 
 
 
 
Tensorflow requires numpy version 1.19.5 
While torch requires numpy version >1.20. This seems to work for Intel CPU since that torch 
build seems to work well with 1.19.5 version but it is not available for arm. 
https://download.pytorch.org/whl/torch_stable.html 
Trying benchmark.py without torch does not seem to help. 
https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/be
nchmark.py  
Issue: https://bugs.archlinux.org/task/69495 
 
https://onnxruntime.ai/docs/tutorials/inferencing/ 
https://github.com/microsoft/onnxruntime/pull/8457/files  
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pip install --upgrade onnxruntime==1.4.0 - ARM support not present and PyTorch seems to be 
optimized with this version. The later version seems to degrade the performance 
 
https://docs.google.com/spreadsheets/d/1QeVtuVBjfhB6v-DVdXN9P136fxczlTM3Xf7U98TGmE
4/edit#gid=0 - Performance 
 
 
Benchmarking Application: 
https://github.com/huggingface/notebooks/blob/master/examples/token_classification.ipynb 
https://github.com/huggingface/notebooks/blob/master/examples/text_classification.ipynb  
 
Tokenizer profiling: 
 
 
 
Explore IQUANT, Bert as a Service, ONNX implementation 
 
https://arxiv.org/pdf/2010.13382.pdf - FastFormers 
 
Later: 
 
 
Pytorch implementation 
Bert as a service 
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