Module Description/Course Syllabi

Study Programme: Magister of Soil Science
Department of Soil Science and Land Resources

Faculty of Agriculture Universitas Andalas

1.Course number and name

MIT 82110 Land Evaluation and Suitability

2.Credits and contact hours/Number of ECTS credits allocated

3 scs (3-0) / 5,739

3.Instructors and course coordinator

- 1. Prof. Dr. Ir. Dian Fiantis, MSc;
- 2. Prof. Dr. Ir. Azwar Rasyidin, M Agr Sc;
- 3. Dr. Juniarti, SP, MP

4. Text book, title, outhor, and year

- 1. Verheye, W. H., Koohafkan, P., Nactergaele, F. <u>The Fao Guideline for Land Evaluation</u>. UNESCO-EOLSS.
- 2. Alan Wild · 1993. Soils and the Environment
- 3. Constantini, E. A. C. 2009. <u>Manual of Methods for Soil and Land Evaluation</u>. Science Publishers. 570 p.
- 4. Deckers, J., O. Spaargaren, S. Dondeyne. 2005. <u>Soil</u> <u>Survey as a BasisforLand Evaluation</u>. Encylopedia of Life Support System (EOLSS).
- 5. de la Rosa D., Van Diepen, C. A. 2002. <u>Qualitative and Quantitative Land Evaluation.</u>
- 6. Verdoodt, A., Van Ranst, E., Van Averbeke, W. 2003. <u>Modelling crop production potentials for yield cap analysis under semiarid conditions in Guquka, South Africa</u>. Soil Use and Management 19. 372-380.
- 7. Willy H. Verheye. 2009. <u>Encyclopedia of Land Use, Land Cover and Soil Sciences</u>. EOLSSPublications, 1322 pSys, C.,
- 8. Van Ranst, E., J. Dibaveye. 1991. Land Evaluation Part I, II and III.Agricultural Publications No. 7. General Administration for Development Cooperation. Brussels Belgium. 733 p.
- 9. Van Ranst, E., A. Verdoot. 2005. Land Evaluation, Part I, II and III. International Centre for Physical Land Resources Universiteit Gent, Gent Belgium. 550 p.

5. Specific course information

A. Brief description of the content of the course (catalog description)

This course discusses the importance of land survey and mapping in relation to land use planning; explanation of soil characteristics and the differences due to the influence of soil formation factors; methods of land survey; interpretation of survey data for land

suitability, capability, and for irrigation, as well as for non- agricultural use; use of computer

in creating land survey and suitability as well as agricultural production potential modeling.

B. Course Content

- 1 Definition and role of Evaluation of Land Suitability Influencing factors, Evaluation of Land Suitability, History of Evaluation of Land Suitability
- 2 Land use planning: project identification, phases and tages of land use planning,
- 3 Land resources, climate, vegetation, hydrology and water, landform, soil
- 4 Evaluation of climate suitability according to Papadakis, USDA, parametric system
- 5 Evaluation of land characteristics and land quality: limited approach and parametricapproach
- 6 Plant production, minimum climate data, photosynthesis and plant adaptation, plantgrowth models (FAO and Wageningen)
- 7 Rainfall (predicted rain, effective rain), evapotranspiration, maximum plantevapotranspiration, actual evapotranspiration, water use efficiency
- 8 Determination of planting start and period, crop coefficient, harvest response factor, crop water requirement for maximum yield
- 9 The potential for crop production based on solar radiation, water-stress conditions, land productivity potential
- 10 Land evaluation method based on specific plant needs, FAO land suitability classification
- 11 Land evaluation method for irrigated land.
- 12 Classification of land capability for the tropics, approaches, land properties and characteristics, landcapability index, parametric approach
- 13 Plant growth agro-ecological zone

Land evaluation application based on visual basic, web and android

C. Semester when the course unit is delivered

Even Semester

D. Mode of delivery (face-to-face, distance learning)

Face to face

6.Intended Learning Outcomes (CPL)

- **ILO 2**: An ability to classify soil, to evaluate land capability and suitability, as well as todetermine the alternative utilization for sustainable agriculture and environment
- **PI 2** : Anability to evaluate soil capability
- **PI 3**: An ability to determine suitable land use management
- **ILO 3**: An ability to use technology in identifying and solving problems of soil, land resource, environment problems independently, eligibly, and accurately
- PI 2 : Anability to work independently in determining soil properties
- 7. Course Learning Outcomes (CPMK) ex. The student will be able to explainthesignificance of current research about a particular topic.
- A. Students will be able to use soil data to evaluate soil capability and land suitability

- B. Students will be able to determine suitable land management to reach sustainableagriculture and environment
- C. Students will be able to analyze soil independently either at laboratory or at field site

8.Learning and teaching methods

Cooperative and Case Base Method

9. Language of instruction

Indonesia and English (English Class)

10. Assessment methods and criteria

Summative Assessment:

1. Tasks : 5% 2. Quiz : 5 %

3. Mid Semester: 25%4. Final Semester: 25%5. Practicum: 30%

Formative Assessment:

6. Attendance: 5%

1. Minutes paper