
Background
Here's some code that turns "Hello" into "Hippo" in various mainstream
languages:

"Hello".replaceAll("l", "p").replaceFirst("e", "i")
Java
"Hello".replaceAll("l", "p").replaceFirst("e", "i")
JS
"Hello".replace("l", "p").replace("e", "i", 1)
Python
"Hello".gsub("l", "p").sub("e", "i")
Ruby
"Hello".Replace("l", "p").Replace("e", "i")
C#
"Hello".replace("l", "p").replacen("e", "i", 1)
Rust

Although the function names differ—Java calls it .replaceFirst whereas
Ruby calls it .sub—the basic structure of these chained calls looks identical
across the board: "Hello".foo("l", "p").bar("e", "i").

Here's the equivalent code in some functional languages:

"Hello".replace("l", "p").replace("e", "i")
Scala
"Hello".Replace("l", "p").Replace("e", "i")
F#

(-> "Hello"
Clojure

​ (str/replace "l" "p")
​ (str/replace-first "e" "i"))

"Hello"
Haskell
& replace "l" "p"
& replace "e" "i"

"Hello"
OCaml
|> Str.global_replace (Str.regexp "l") "p"
|> Str.replace_first (Str.regexp "e") "i"

"Hello"
Elixir
|> String.replace("l", "p")
|> String.replace("e", "i", global: false)

"Hello"
Gleam
|> string.replace("l", "p")
|> string.replace("e", "i")

"Hello"
Elm
|> String.replace "l" "p"
|> String.replace "e" "i"

"Hello"
Roc
|> Str.replaceEach "l" "p"
|> Str.replaceFirst "e" "i"

Among these functional languages, only F# and Scala write this in the
mainstream way.

This makes life easier for F# and Scala beginners coming to either language from
a mainstream one, because the structure of common expressions like this is
familiar. It also lowers the barrier to people trying out those languages in the
first place, because when they encounter code snippets before they've started
learning the language, those code snippets look more comfortable to them.
They don't look alien, they look familiar.

In contrast, the other examples from the functional languages not only diverge
from the mainstream structure, their structures also have inconsistencies with
one another.

●​ Clojure chains the calls with the -> operator; Haskell uses & instead; Roc,
Elm, Gleam, Elixir, and OCaml use the |> operator.

●​ Haskell, OCaml, Elm, and Roc separate function arguments with spaces
and do not require parens for function calls, whereas Elixir and Gleam use
the mainstream design of commas and touching parens in function calls.
Clojure, being a lisp, requires parens—but on the outside—and no
commas.

Besides familiarity and learning curve, there are some other observable
differences between the |> examples and the . examples:

●​ The |> examples fully qualify their calls (e.g. Str.replaceFirst), so
the source code tells you exactly where the function can be found. In the .
examples, you have to infer that these are string operations. (In these
specific examples, inferring that these are string operations is trivial, but
other cases can be less so.)

●​ Because the |> examples are fully qualified, they are necessarily more
verbose.

●​ The . examples are nicer to use with autocomplete.
○​ The autocomplete menu appears when you tap the . key instead of

having to hold shift (on most keyboards) and tap at least two keys
(plus maybe a space first), namely: |>

○​ In languages where |> is used, it's most common to call functions
directly—without using the |> operator. When calling without the
operator, autocomplete works differently and also less effectively (it
can't start with a subject and autocomplete based on what
operations work on that subject).

○​ In contrast, in languages where . is used, it's the most common way
to call functions, so autocomplete always appears after the . and
most often gets to facilitate the "start with a subject and
autocomplete operations that are supported on that subject"
experience.

Looking again at the Scala and Roc examples side by side…

"Hello".replace("l", "p").replace("e", "i")
Scala

"Hello"
Roc
|> Str.replaceEach "l" "p"
|> Str.replaceFirst "e" "i"

Both of these are functional languages calling pure functions on immutable
data.

The Scala one gets nicer autocomplete, a more familiar learning experience for
beginners, more conciseness, and a bigger strangeness budget. The Roc version

is more self-documenting, but inlay hints in an editor can surface the same
information without needing it to be written out in the source code.

The parens-and-commas calling style everywhere has a downside when it
comes to certain DSLs. For example, roc-lang.org is built in part using a Roc
HTML DSL that makes extensive use of calling via whitespace. Here's a snippet:

footer [] [
 div [id "footer"] [
 div [id "gh-link"] [
 a [id "gh-centered-link", href "…"] [
 ghLogo,
 span [id "gh-link-text"] [text
"…"],
],
],
 br [] [],
 text " powered by ",
 a [href "…"] [text "Netlify"],
],
],

With parens-and-commas calling, it would have the same shape, but more
punctuation:

footer([], [
 div([id("footer")], [
 div([id("gh-link")], [
 a([id("gh-centered-link"), href("…")],
[
 ghLogo,

https://github.com/roc-lang/roc/blob/589ec1d453643ea437817bda1b9d79b008477d37/www/main.roc#L152-L164

 span([id "gh-link-text"],
[text("…")]),
]),
]),
 br([], []),
 text(" powered by "),
 a([href("…")], [text("Netlify")]),
]),
]),

There's precedent for both of these DSLs in the wild. Elm has had success using
the whitespace-calling DSL (we got this DSL directly from Elm), and Lustre—a
Gleam framework which is also directly descended from Elm—uses the
parens-and-commas style, and that style seems to be working out just fine for
them too.

The reason Lustre uses parens-and-commas is that the Gleam language
supports only that calling style. For a long time I didn't know this, but Gleam
actually used to have a calling style just like Roc, Elm, and Haskell—with spaces
and no parens! In an interview last year, Gleam's creator Louis explained why
Gleam uses parens-and-commas today:

"Rather than having an Elm syntax—although we did originally have a
syntax like that, [now] we have a syntax that's much more familiar to
JavaScript programmers, C programmers…and I originally thought,
what's the point of that? It's just syntax, it doesn't matter. And then we
switched syntax, and suddenly everyone was like, ‘Oh, this language is
great now!’ And I was like…nothing's changed! So I was wrong, syntax
really does matter."

I appreciate this point. And while I consider both of the above snippets readable,
I do prefer reading the Elm-style DSL over the Lustre-style one—mostly because

https://github.com/lustre-labs/lustre/blob/db2fe8a1a1f85f96991ebe28d3104dd670479b71/README.md
https://www.youtube.com/watch?v=RntfkL8lUY4&t=344s

the extra punctuation feels like unhelpful clutter in this case. So even
considering Gleam's data point of people preferring the parens-and-commas
style so much that it dramatically changed peoples' willingness to try out the
language, there isn't a clear, unambigious winner here. Each style has pros and
cons compared to the other.

That said, this proposal introduces some semantic features to Roc which
essentially require a parens-and-commas calling style to be ergonomic. As such,
this proposal also introduces a parens-and-commas calling style as an
alternative to the current whitespace style. Whether or not the new style should
become the "only way to do it" (with the associated DSL drawbacks) is left out of
scope in this proposal, because:

●​ There's precedent for languages that do parens-and-commas calls having
an optional whitespace-based style that coexists with the
parens-and-commas style—for example, CoffeeScript and Ruby both have
this.

○​ Notably, Ruby allows whitespace calls but has a style guideline of
"only use it in DSLs" (such as RSpec and ActiveRecord, both of
which are widely used).

○​ So there's mainstream precedent for having both calling styles
coexist, and we can discuss whether we want that as a separate
topic from this proposal.

●​ Regardless, we'd implement the new syntax as a nonbreaking change
anyway, so we'll have an opportunity to try out having both supported at
the same time no matter what.

●​ We can use that experience to inform whether we want to keep both or
just one.

Paren Placement

Here's a call that comes up in the Roc port of the Bash script that builds
roc-lang.org:

Dir.copyAll! "public" "build"

If I want to nest another function call inside this call, today the only way to write
it is:

Dir.copyAll! (Str.append "pub" "lic") "build"

I've seen a lot of Elm beginners trip over this paren placement requirement in
nested function calls. Back when I used to do a lot of in-person Intro to Elm
workshops, it was extremely common to see beginners write it like this out of
habit:

Dir.copyAll! Str.append("pub", "lic") "build"

This, of course, wouldn't compile. It was also common for beginners to add an
extra comma that wasn't needed, and which would cause a different compiler
error:

Dir.copyAll! Str.append("pub", "lic"), "build"

I saw mistakes like this happen so often that I added an explicit section on
nested function calls to my Intro to Elm workshop, spelling out exactly where
the parens go, and went out of my way to say, "This is a really easy beginner
mistake to make, so don't feel bad if you do it! But if you get an error,
remember…the parens go on the outside."

Even with that explicit section on where the parens go, I'd see a few beginners in
every class make the mistake anyway. Muscle memory is powerful!

This proposal adds full support for a parens-and-commas calling style in Roc. So
as a beginner, you can write the following and it will Just Work the way you
expect.

Dir.copyAll!(Str.append("pub", "lic"), "build")

This should eliminate that common beginner stumbling block from the learning
curve.

The same beginner concern about nested paren placement applies to tags as
well, and this same style could be used for them. (Rust uses this syntax too.) For
example:

answer = someFn(arg1, Ok(arg2), arg3)

This could be used in any tag application, nested or not, and in pattern matching
too:

Ok(foo) -> …

Just like with function calls, for the scope of this proposal, using this style would
be optional; we can later discuss whether we want to narrow our set of allowed
styles.

Parsing Ambiguity

Over the years, a recurring common suggestion for Roc's function calling syntax
has been to add commas between the arguments. This is because of the
inconsistency between Roc's function types (which have commas separating the
arguments), function declarations (that is, lambdas—which also have commas
separating the arguments), and function calls (which today never have commas
separating the arguments).

In the context of this proposal, you could think of this idea as "parens are
optional" when doing the parens-and-commas calling style. So the idea is that
either of these styles would Just Work, and would compile to the same thing:

Dir.copyAll!("public", "build")

Dir.copyAll! "public", "build"

Unfortunately, supporting commas-without-parens would create a parsing
ambiguity in collection literals. Consider the following, from the earlier HTML
DSL example:

[id "gh-centered-link", href "…"]

Today, this unambiguously parses as two function calls. It's equivalent to the
following:

[id("gh-centered-link"), href("…")]

However, if Roc were to adopt the "commas always separate arguments, but
parens are optional" calling style, then this could be parsed as a standalone
expression:

id "gh-centered-link", href "…"

On its own, this expression would unambiguously parse to the equivalent of:

id("gh-centered-link", href("…"))

…which would mean that one might reasonably expect that adding square
brackets around it would not change its meaning. That would have unfortunate
consequences for our HTML DSL though, because it would mean that this:

[id "gh-centered-link", href "…"]

…would now parse as this:

[id("gh-centered-link", href("…"))]

That would break the DSL.

Alternatively, if we were to say that commas inside collection literals take
precedence over function arguments, then it could parse the way the DSL wants
it to—namely:

[id("gh-centered-link"), href("…")]

…but now, adding square brackets around a totally valid standalone function
call like the earlier example of id "gh-centered-link", href "…"
suddenly changes the meaning of that call, and introduces a compiler error—just
because you put it in a list. You'd have to add parens to fix it, which means that
now multi-arg function calls look different depending on whether they happen
to be inside collection literals or not.

The fundamental problem here is that if functions can be called using commas
but not parens, then when using that style inside collection literals (such as list
literals) where elements are also separated by whitespace and commas, the
meaning of a comma becomes ambiguous.

As such, this proposal does not propose a "commas but no parens" option.

Instead, this proposal would result in (perhaps temporarily) two supported
calling syntaxes: the status quo (no parens, no commas), and
parens-and-commas. There would be no in-between option of "commas but no
parens," because that would introduce a parsing ambiguity.

In the future, we may decide that we only want to support one of these two
styles, but as mentioned earlier, that question is left intentionally out of scope
for this proposal. This is because we'll naturally want to implement the new
style as a backwards-compatible change anyway, and our answer to that
question can be strictly better-informed once we've had a chance to actually try
it out with both styles supported at the same time.

Chaining with Dots

The Dir.copyAll! call we've been using is part of a larger expression in that
script:

Dir.copyAll! "public" "build"
|> Result.mapErr CopyAllFailed
|> try

Here's how this expression could look in this proposal:

Dir.copyAll!("public",
"build").mapErr(CopyAllFailed)?

This could parse as valid Rust code, and if you removed the ? at the end, it could
parse as valid Ruby too. If you also removed the ! in copyAll!, it could be
syntactically valid in basically every mainstream programming language. This
would make Roc feel more familiar and approachable to a lot of beginners!

Also notice that at each step of the way, autocomplete can now work
consistently whenever you tap the . key. First, you have no subject to
autocomplete on, because you want to create a new directory from scratch. So
you type:

Dir.

Autocomplete could list all the exposed functions in the Dir module, including:

Dir.copyAll!(_, _)

So you select that one, fill in the blanks, and then add a dot after the close
paren:

Dir.copyAll!("public", "build").

Again, after tapping the dot, you get a list of autocomplete options. This time,
thanks to type inference, they are operations that work on a Result (we'll
discuss how the compiler knows this in the next section). They might include:

Dir.copyAll!("public", "build").mapErr(_)

So you select that option, fill in the blank, and finally add the ? at the end. Every
step of the way, "press dot for autocomplete" was the consistent editor
experience.

Also, this ? design works in an obvious (and convenient) way between calls:

Foo.bar("a", "b")?.blah(Bar.baz)?.stuff(etc)?

Essentially, ? works just like how it does in Rust—where it's used all over the
place!

Static Dispatch
How did the compiler know this .mapErr refers to Result.mapErr
specifically? Not just the autocomplete, but the Roc compiler itself—now the
code no longer says Result.mapErr, so how does it know which exact
mapErr function to call?

The answer is a form of static dispatch. The proposed algorithm works like this:

1.​ After type-checking, we know that .mapErr is being called on a Result.
2.​ Result is a nominal type which is defined in the Result module. (Well,

it's not today…but let's pretend for a moment that it is and come back to
that later.)

3.​ Therefore, we're going to look for this mapErr function in the top level of
the Result module.

4.​ There it is! Pass the value in front of the dot to that function as its first
argument, and we're done. (If the Result module did not define a
top-level mapErr, or if we couldn't have accessed it in this module
because it wasn't exposed, we'd get a compile-time error.)

In an earlier draft of this proposal, I was referring to calls in this document like
foo.mapErr(…) as "static dispatch calls," because I felt that "method call"
(which is the term I instinctively associate with that syntax) might suggest that
mapErr is formally defined in some other way than just an an ordinary function
declaration—after all, in most languages, it is! (Not just object-oriented
languages, either…Haskell's typeclasses have "methods" and Rust's traits also
have "methods"—and neither are defined as ordinary functions the way these
are in Roc.)

However, after many instances of trying to correct myself from referring to these
as "method calls," I realized it would be easier to embrace that terminology and
just explain it as "in Roc, a method is an ordinary function whose first argument

https://en.wikipedia.org/wiki/Static_dispatch
https://www.haskell.org/tutorial/classes.html
https://doc.rust-lang.org/book/ch10-02-traits.html

happens to be defined in the same module." So if I refer to "the mapErr
method," what I mean is:

●​ A normal function
●​ …that happens to be named named mapErr
●​ …which takes a nominal type as its first argument
●​ …and which is defined in the same module as that nominal type

Note that this "method-calling syntax" implies changing what the dot operator
means:

●​ x.0 is still a tuple access; just from looking at this, I can can tell that x is a
tuple.

●​ x.foo is still a record field access; I can tell x is a record just from looking
at this.

●​ x.foo(y) is now a statically-dispatched method call, which I can also tell
just from looking at it. (This use of the dot operator is unrelated to records
and tuples.)

Calling x.foo(y) is technically valid Roc syntax today, but it accesses a
function from a record field and then calls it. This sees almost no use in practice,
which is why it seems fine to repurpose the syntax. That said, if you really want
to do that, this proposal still allows it: just write (x.foo)(y) (which you can
also already do today if you like) so that the parens around (x.foo) isolate the
record field access as its own expression.

Earlier, I noted that Result is not a nominal type today. This is true, and may or
may not remain true. There's a proposal unrelated to this one which could make
Result a nominal type, but this proposal can work either way. Just like how
the compiler can infer Ability implementations for structural types, it can also
infer method implementations for them too, meaning that
myResult.mapErr(foo) can Just Work.

https://docs.google.com/document/d/10OFeNl9KAYAErajE0Wio4AAR66yM2u13bku0mTUawVk/edit?tab=t.0

To be more specific: if you call .mapErr() on a type that's inferred to be a tag
union with no tags other than Ok and Err, then the method call would resolve
to the function Result.mapErr. The same could be done with all the relevant
functions exposed by the Result module. (If Result were a nominal type, it
wouldn't need special-casing, but the point is that .mapErr() can be made
available on Result values either way.)

Static Dispatch can replace Abilities

In the expression !foo.bar("hi"), the type of foo would be inferred as:

a where a.bar(Str) -> Bool

You can read this as "some value (whose type has been named a) that has a
method named foo which returns a Bool and takes a Str as its second
argument." (The first argument in a method is always the value it's being
dispatched on.)

The where in this syntax might look familiar: it's similar to the type syntax for
Abilities.

As it turns out, static dispatch is more than a syntactic convenience; it can also
replace Abilities altogether! Consider this static dispatch call:

foo.isEq(bar)

If foo is a nominal type, and its module exposes a function named isEq, this
code will call that function passing bar. Now suppose all the builtin modules
exposed functions which followed this convention:

Str.isEq : Str, Str -> Bool

Bool.isEq : Bool, Bool -> Bool

List.isEq : List a, List a -> Bool
 where a.isEq(a) -> Bool

I can call myStr.isEq(other), myBool.isEq(other),
myList.isEq(other), etc., and they all work. From there, we change the
expression a == b to desugar to a.isEq(b) (instead of today's desugaring to
Bool.isEq a b), and we end up with equality working the same way as
today—just presented differently.

Notice that type for List.isEq, which includes the where a.isEq(a) ->
Bool clause to express that you only have equality for a List if its elements
also support equality. Today, expressing this requires special
syntax—implements Eq if a implements Eq —which isn't very
discoverable, and doesn't appear anywhere else in the language. Methods can
express this constraint using an ordinary where clause!

The compiler could infer .isEq() method implementations for structural
types just like it does for the Eq Ability today. It would follow the same rules; the
compiler wouldn't infer .isEq() for functions, just like how it doesn't infer Eq
for functions today, so calling myFn.isEq(otherFn) would still give a
compile-time error.

And just like that, Abilities can be be completely removed from the language,
and replaced by static dispatch. We've added one language feature but
subtracted another. And it's better than that, because the replacement feature is
not only simpler, it turns out to have more benefits than the ones we've
discussed so far!

For example, replacing Abilities with methods simplifies module
documentation, because what a module exposes becomes a plain list of types
and functions. There's no special category of documentation for "Abilities
defined on this type" because the equivalent in the dispatch design is just the
plain functions the module already exposes.

In other words, instead of formally specifying a new relationship on the Str
type…

Str implements [Eq, …]

…we add one plain function to the rest of the functions in the Str API:

Str.isEq : Str, Str -> Bool

It's looks and works exactly like all the others. There's no separate categorization
for it!

We can also include a convenience syntax for auto-generating some of these
functions, similarly to what we do today with Abilities—e.g. in the module
header for Str.roc:

exposes [Str generating [toHash, encode, decode], …]

Just like today with abilities, there would be a hardcoded list of supported
functions that could be auto-generated in this way. (The generating keyword
could also be used in the definition of a nominal type itself, for the uncommon
case where you want to generate the function but not expose it.)

Here are some implications of this design, all of which I think are major positives
for Roc:

1.​ Modules expose functions and types and that's it. I love this. Elm has that
property, Roc had that property before Abilities, and static dispatch allows
Roc to have that property again while still addressing the use cases that
Abilities address today.

2.​ In contrast to Abilities, there is no concern here for the "classification trap"
where time gets wasted defining and implementing abilities for the sake
of classifying types and formally naming what they "are," instead of
focusing on their APIs. In this design, the API is literally all there is to
consider—exactly as it should be!

3.​ Despite shifting the language even more strongly toward its philosophical
foundation of "plain old functions and types and that's it," at the same
time this change makes Roc—astonishingly—more familiar (at least
syntactically) to beginners who have only used mainstream languages
before.

Static Dispatch facilitating Functional Programming Techniques

The first time I heard about function composition and partial application (which
happened to be in a Haskell tutorial), I was pretty confused. I don't remember
the exact example anymore - it was too long ago - but I vaguely remember the
tutorial example building up to a refactor of some expression like this:

map (\num -> abs num - 1) [-2, 0, 2]

If you put this into a Haskell repl, you get this answer:

[1, -1, 1]

So far, so good. Now for the refactor using partial application and function
composition:

map (flip (-) 1 . abs) [-2, 0, 2]

This does the same thing, except it's expressed in a way where now, at a glance, I
have no idea what it's doing. I have to mentally desugar it to understand it.

As I spent more time writing code in a functional style I learned a trick: I could
write down the desugaring one step at a time instead of trying to keep it in my
head. That way, it's harder to lose track of what I'm doing, and overall it gets me
to the a correct understanding more quickly. Later I learned an even better trick:
stop doing this.

If you're curious how this refactor works, the steps are:

map (\num -> abs num - 1) [-2, 0, 2]
original
map ((\num -> num - 1) . abs) [-2, 0, 2]
composition
map ((\num -> (-) num 1) . abs) [-2, 0, 2] prefix
application
map ((\num -> (flip (-)) 1 num) . abs) [-2, 0, 2]
flip (-)
map ((flip (-) 1) . abs) [-2, 0, 2] partial
application
map (flip (-) 1 . abs) [-2, 0, 2] drop unnecessary
parens

In comparison, how long does it take you to figure out what this code does?

[-2, 0, 2].map(.abs().sub(1))

Personally, I don't need to mentally desugar that to understand it. I'm not even
sure I need to explain how it works, do I? If the document ended right here, with

no explanation of how the feature worked, do you think you could turn around
and explain to a beginner what it desugars to? I bet you could!

Nevertheless, let's be clear about it: here's what the expression
.abs().sub(1) would desugar to in this proposal.

\x -> x.abs().sub(1)

It's just like how .foo already desugars to \x -> x.foo and .foo.bar
could reasonably desugar to \x -> x.foo.bar (but doesn't yet, as of this
writing).

Here's an example of some real-world Roc code that could make use of this
syntax:

reqHeader.value
|> Str.fromUtf8
|> Result.try \s -> s |> Str.split "=" |> List.get
1
|> Result.try Str.toI64

This could become:

Str.fromUtf8(reqHeader.value)
.try(.split("=").get(1))
.try(Str.toI64)

For comparison, here it is again but with the .split("=").get(1)
desugared:

Str.fromUtf8(reqHeader.value)
.try(\s -> s.split("=").get(1))

https://github.com/lukewilliamboswell/roc-htmx-playground/blob/18c94a7afa1e10767c209c5e1b7538ce31eca12d/src/Sql/Session.roc#L39-L42

.try(Str.toI64)

(Note that the last line could also be .try(.toI64()), but that only saves
one character…and the two characters in () are much less helpful than the
three in Str.)

None of the concerns I wrote about in the FAQ apply to this syntax for partial
application and pointfree function composition. It's so easy to understand, I feel
weird labeling it as "partial application" and "pointfree function composition"
even though that's what it technically is. I guess what feels weird is that it offers
the benefits of both without the struggles that I've come to associate with them
over the years in other languages!

This sugar is so straightforward, the formatter could even rewrite the desugared
one to remove the \s -> s without needing any information besides its usual
parse tree, just like it could shorten \s -> s.foo today. (Whether or not the
formatter should shorten either of those is a separate discussion, and
intentionally out of scope for this proposal.)

In fairness, Roc wouldn't be the first language to support opt-in partial
application. One of the many uses of underscore in Scala is something similar;
Scala would even let you write the (\num -> abs num - 1) example as
(abs _ - 1), and so would LiveScript. It's always been possible to add
something that flexible to Roc, but it comes with a much deeper rabbit hole of
tradeoffs than the much simpler .abs().sub(1).

Operator Overloading

We've discussed operator overloading a lot in the past. One of the main concerns
with adding it to the language is that it could be misused to create confusing
code, which was one of the main reasons James Gosling decided to omit it from
Java even though he was accustomed to having it from C++.

https://www.roc-lang.org/faq#curried-learning-curve
https://www.baeldung.com/scala/underscore#2-variable-argument-sequence
https://livescript.net/#property-access

Still, there seem to be certain domains where it ranges from valuable to crucial.
Game development, for example, wants a different in-memory representation of
matrices and vectors from what other domains want (there's a more efficient
representation which follows different conventions from the ones in normal
mathematics), and all representations of vectors and matrices want the normal
math operators to be available. There are also use cases for things like complex
numbers, currency, and so on.

I think it's likely that at some point Roc will introduce some form of operator
overloading, simply because Roc targets the long tail of domains, and we've
already seen several domains where it's important enough to be a deal-breaker
that Roc can't do it.

This is not a proposal about operator overloading, but this proposal does impact
the design space for it. Today, if we want to implement operator overloading, we
would need to change the type of common functions like Num.add to use
abilities, e.g.

Num.add : Num a, Num a -> Num a

…becomes:

Num.add : a, a -> a
 where a implements Add

I certainly prefer the first type! Unfortunately, this change would need to be
repeated for each operator; it would affect Num.sub too, and Num.mul, and so
on.

In this proposal, we can have operator overloading while still maintaining the
current (simpler) Num APIs. All we'd have to do is to desugar a + b as

a.add(b) and we're done. That's it, that's operator overloading. Want your
type to work with the plus operator? Expose an add method.

On the one hand, this is an extremely simple design for operator overloading. On
the other hand, it does become a bit easier to unintentionally opt into having
operators work with your API.

For example, it's common in many languages to have a function like Set.add.
(We happen to call it Set.insert, but Set.add was considered too.) If that's
the best name for your function, is it okay that + now Just Works on your type,
even if that usage doesn't make sense? It's a valid question. Also, the + operator
in arithmetic is commutative, but nothing says a.add(b) has to be
commutative; b doesn't even have to be the same type as a!

So, on the one hand, this design makes operator overloading extremely simple
and straightforward. The learning curve is near zero. On the other hand, it does
mean that we might want to revisit some of the Num names. For example,
should it become Num.plus instead of Num.add? That seems less likely to
cause collisions, and a.plus(b) is more clearly coupled to the semantics of +
because it's literally the same word. count.plus(1) still reads fine to me.

This proposal wouldn't change how any of the existing operators desugar, and
operator overloading in general is out of scope for this. However, since this
proposal woul remove abilities in favor of methods, it seemed notable to
mention the impact that would have on a (likely but not certain) future operator
overloading addition to the language.

Chaining methods with non-methods

We've seen how this proposal's method calling syntax can be used as an
alternative to the |> pipeline operator (at least, in cases where you'd be piping
into a function from another module). However, sometimes you want to include

a locally-defined function in a chain of function calls. In other words, you don't
want any kind of dispatch, you just want to call a function that's already in
scope.

Doing that with the |> operator doesn't work great in method call chains. For
example:

makeStr(a, b) |> transform(otherArg).append("!")

The precedence of the pipeline operator means this expression would desugar
to:

transform(makeStr(a, b), otherArg).append("!")

In other words, the pipeline doesn't continue the previous chain of dot-calls, but
rather it always separates two independent chains of dot-calls.

There's an additional ergonomics problem here: when we tap dot, we get
autocomplete suggestions only for method calls on the subject. Local functions
couldn't be included in that list, even if they would be perfectly valid calls to
make on the given subject, because dot-syntax couldn't be used to add those
calls to the chain.

This proposal fixes both of these problems by changing the |> syntax to
something that looks more like our string interpolation syntax:

makeStr(a, b).(transform(otherArg)).append("!")

This .(transform(otherArg)) part of the chain would instead be written
today as |> transform otherArg. The differences are:

●​ Since this starts with a dot, it works seamlessly with autocomplete. When
you press dot, you can see both dispatchable operations as well as local
functions.

●​ Since it's both dot-based (instead of pipe-based) and enclosed in parens,
you can continue a chain of dots normally afterwards, including any
combination of dispatch calls and local function calls you like. There's no
precedence problem!

Here's a concrete example of this in action, taken from the Rocci Bird source
code:

Today

​ pipes =
 ​ prev.pipes
 ​ |> updatePipes
 ​ |> List.appendIfOk pipe

Proposed

​ pipes = prev.pipes.(updatePipes).appendIfOk(pipe)

If desired, this could also be written in a multiline style like so:

pipes =
 prev
 .pipes
 .(updatePipes)
 .appendIfOk(pipe)

Amusingly, this is a real-world example of using all the dot syntax varieties
except tuples:

●​ .pipes adds a record field access
●​ .(updatePipes) adds a local updatePipes call
●​ .appendIfOk(pipe) adds a .appendIfOk(pipe) method call

Importantly, although the syntax now looks more like a mainstream language,
the semantics are exactly the same as before. It's still just a chain of pure
function calls!

Inlay Type Hints

As mentioned earlier, one tradeoff here is that the dots version has removed
module qualifiers from its calls. Specifically, it has .appendIfOk(pipe) in
place of of the original's List.appendIfOk pipe. One way to compensate
for this is an editor feature that's common today (but was not when Roc was first
created)—inlay hints.

As of this writing, no Roc editor integration supports inlay type hints, but
supposing we did have that, the proposed version could display in the editor like
so:

pipes =
 prev GameState
 .pipes List Pipe
 .(updatePipes) List Pipe
 .appendIfOk pipe List Pipe

Here's the original |> version again, with the same inlay hints:

​ pipes =
 ​ prev GameState
 .pipes List Pipe
 ​ |> updatePipes List Pipe

 ​ |> List.appendIfOk pipe List Pipe

Here, the last inlay hint is redundant; assuming we already know that the builtin
List.appendIfOk returns a List, we could infer that it was a List Pipe
based on the other hints.

Of course, another way to look at this is that the inlay hint makes the qualified
List. module name redundant. If we know the .appendIfOk call is taking a
List Pipe, we can infer that it must be List.appendIfOk because that's
where the List type is defined, and that's how static dispatch works.

Given that the information has become redundant, in this case the more concise
dispatch version feels overall nicer to me (among the two versions with inlay
hints), in that there are fewer tokens of source text on the screen, but it still
shows all the same information. And the version with the inlay hints shows more
info than the one without, because in that version I have to guess the types of
the unqualified .pipes and updatePipes.

Granted, inlay hints are not always a complete replacement for the benefits of
fully-qualified calls. There's a style difference, e.g. I can look at |>
List.appendIfOk pipe and know that it's List.appendIfOk, whereas
with .appendIfOk pipe I need to look at the previous line's type hint to be
able to tell which function is being dispatched to.

There are also situations where inlay type hints are unavailable—for example, in
the middle of single-line expressions. Although it's certainly possible for an
editor to show inlay type hint in the middle of expressions, it isn't commonly
done today. Similarly, code review tools (e.g. GitHub) also tend not to support
inlay hints, at least not today.

Personally, even with inlay hints, I still have a minor aesthetic preference for the
qualified call style. (Nostalgia probably plays some role in that.) But taken

together with all the other advantages of this style, to me it isn't even close. The
sum of all the benefits of the dispatch style overwhelms this comparatively
minor stylistic difference.

Type Aliases for where Constraints

The last thing to note about this proposal is that it would be desirable to have a
way to make type aliases for where constraints, so that you wouldn't have to
list out all the method names every time.

For example, consider a List.sort function (which we don't have today, but
let's just think about how it would be defined today compared to in this
proposal).

Today:

List.sort : List elem -> List elem
 where elem implements Sort

Proposed:

List.sort : List elem -> List elem
 where elem.order(elem, elem) -> [LT, EQ, GT]

Rather than writing it out like this every time—some Abilities like Hasher,
Encoding, and Decoding, all have quite a lot of functions on them, so doing it
like this could get very verbose and repetitive—in this proposal, we could use a
type alias like so:

List.sort : List elem -> List elem
 where elem.Sort

Sort a : a
​ where a.order(elem, elem) -> [LT, EQ, GT]

Basically the where elem.Sort constraint is saying that Sort is a type alias
that only adds a where constraint to a value (if Sort is anything other than
that, it would be a compile-time error to write elem.Sort), and all this code
does is to propagate the constraints in the alias's where.

For an example of multiple constraints, we can look at Dict.insert:

Today:

Dict.insert : Dict k v, k, v -> Dict k v
 where k implements Hash & Eq

Proposed:

Dict.insert : Dict k v, k, v -> Dict k v
 where k.Hash, k.Eq

Hash a : a
​ where
 a.hash(hasher, a -> hasher),
 hasher.Hasher,

Hasher a : a
 where
 …etc

So everything ends up being about as concise as today's Abilities syntax.

Summary of Proposal
Here's what would change in this proposal:

Function Calling Syntax

●​ You can now call functions in the mainstream way, e.g. foo(bar, baz)
○​ This style can also be used for tag applications and patterns.

●​ You can also continue call them in the current style, at least for now.
○​ In the future, we may decide to reduce this down to only allowing

one style or the other, but that's out of scope for this proposal.

Methods

●​ You can now call statically-dispatched "methods" on any value, e.g.
foo.bar(baz)

○​ These always use the mainstream calling style; there is no
whitespace option

●​ Structural types get method implementations inferred like how Abilities
do, e.g. they all have .isEq() (or don't) according to the same rules as
today

●​ The way method dispatch gets resolved for nominal types is:
○​ Look at the top-level declarations in the module where the type was

defined
○​ Look for a function with the same name as method name
○​ Call it, passing the subject of the method as its first argument.

■​ If it's inaccessible, e.g. the calling module can't import it, give
an error.

●​ There is a "method accessor" syntax, e.g. .foo()
○​ The methods can be pre-applied with arguments, e.g. .foo(bar)
○​ It can be a chain of multiple method calls, e.g.

.foo(bar).baz(etc)
●​ As an example of method types, the type of .foo("x").bar(!baz)

would be:​

​
 a -> c​
 where​
 a.foo(Str) -> b,​
 b.bar(Bool) -> c,

●​ You can use type aliases to define where constraints, so that you don't

have to keep writing out all the method names and types every time.
●​ Abilities become deprecated in favor of methods.

"Dot-style pipe" syntax

●​ You can now write .(foo) as an alternative to |> foo
○​ Also .(foo(bar, baz)) as an alternative to |> foo bar

baz
●​ The |> operator becomes deprecated in favor of this.

The ? Operator

●​ You can now use the postfix ? operator. It works exactly the same way as
try.

●​ The try keyword becomes deprecated in favor of this.

Examples
Here are some examples of existing Roc code refactored based on this proposal.

For example, here's a longer snippet from how the roc-lang.org build script
would look in Roc today:

 # Check jq version
 try Cmd.exec! "jq --version"

 # Create the build directory

 if try File.exists! "build" then
 try Dir.deleteAll! "build"

 try Dir.create! "build"

 # Copy public/ to build/
 Dir.copyAll! "public" "build"
 |> Result.mapErr CopyAllFailed
 |> try

 # Download the latest examples
 try Cmd.exec! "curl -fL -o examples-main.zip
https://…"
 try Cmd.exec! "unzip -o examples-main.zip"

 # Replace links in content/examples/index.md
 try replaceInFile!
 "content/examples/index.md"
 "](/"
 "](/examples/"

Here's the same code again, with parens-and-commas calling and the ? suffix:

 # Check jq version
 Cmd.exec!("jq --version")?

 # Create the build directory
 if File.exists!("build")? then
 Dir.deleteAll!("build")?

 Dir.create!("build")?

 # Copy public/ to build/
 Dir.copyAll!("public",
"build").mapErr(CopyAllFailed)?

 # Download the latest examples
 Cmd.exec!("curl -fL -o examples-main.zip
https://…")?
 Cmd.exec!("unzip -o examples-main.zip")?

 # Replace links in content/examples/index.md
 replaceInFile!(
 "content/examples/index.md",
 "](/",
 "](/examples/",
)?

Here's some HTTP request parsing logic today:

when headers |> List.keepIf \{ name } -> name ==
"cookie" is
 [reqHeader] ->
 reqHeader.value
 |> Str.fromUtf8
 |> Result.try \s -> s |> Str.split "=" |>
List.get 1
 |> Result.try Str.toI64
 |> Result.mapErr _ -> BadCookie

 _ -> Err NoSessionCookie

Here's what it could be in this proposal:

https://github.com/lukewilliamboswell/roc-htmx-playground/blob/18c94a7afa1e10767c209c5e1b7538ce31eca12d/src/Sql/Session.roc#L37

when headers.keepIf(\{ name } -> name == "cookie") is
 [reqHeader] ->
 Str.fromUtf8(reqHeader.value)
 .try(.split("=").get(1))
 .try(Str.toI64)
 .mapErr(_ -> BadCookie)

 _ -> Err(NoCookie)

Note that the .try(Str.toI64) could also be .try(.toI64()), but I
think it's worth the extra two letters to make it more self-documenting.

With inlay hints, it could look like this:

when headers.keepIf(\{ name } -> name == "cookie") is
 [reqHeader] ->
 Str.fromUtf8(reqHeader.value) Result Str
BadUtf8
 .try(.split("=").get(1)) Result Str […
]
 .try(Str.toI64) Result I64 […
]
 .mapErr(_ -> BadCookie) Result I64
[BadC…]

 _ -> Err(NoCookie) Result *
[NoCookie]

Some DSLs, such as parsers, can get more concise to use even without having to
import things unqualified. For example, here's some code from a markdown
parser:

https://github.com/lukewilliamboswell/roc-parser/blob/d7cd800cbd1a18a8f7d2db6605134f42420e9ee4/package/Markdown.roc#L93-L102
https://github.com/lukewilliamboswell/roc-parser/blob/d7cd800cbd1a18a8f7d2db6605134f42420e9ee4/package/Markdown.roc#L93-L102

Today:

 Parser.const (\str -> Heading One str)
 |> Parser.keep (
 Parser.chompWhile notEol
 |> Parser.map Parser.utf8
)
 |> Parser.skip eol
 |> Parser.skip (Parser.strConst "==")
 |> Parser.skip (
 Parser.chompWhile \b -> notEndOfLine b && b ==
'='
)

Proposed:

​ Parser.const(\str -> Heading(One, str))
​ .keep(Parser.chompWhile(notEol).map(Parser.utf8))
​ .skip(eol)
​ .skip(Parser.strConst("=="))
​ .skip(Parser.chompWhile(\b -> notEol(b) && b ==
'='))

Writing .skip instead of|> Parser.skip makes the DSL more concise,
without having to import the keep and skip functions unqualified—which is
not only a convenience, it also means there's no chance of keep and skip
shadowing anything (which could happen if they were imported unqualified).

Here's the HTML DSL snippet from the intro again:

footer [] [
 div [id "footer"] [

https://github.com/roc-lang/roc/blob/589ec1d453643ea437817bda1b9d79b008477d37/www/main.roc#L152-L164

 div [id "gh-link"] [
 a [id "gh-centered-link", href "…"] [
 ghLogo,
 span [id "gh-link-text"] [text
"…"],
],
],
 br [] [],
 text " powered by ",
 a [href "…"] [text "Netlify"],
],
],

Here it is again with parens-and-commas calling:

footer([], [
 div([id("footer")], [
 div([id("gh-link")], [
 a([id("gh-centered-link"), href("…")],
[
 ghLogo,
 span([id "gh-link-text"],
[text("…")]),
]),
]),
 br([], []),
 text(" powered by "),
 a([href("…")], [text("Netlify")]),
]),
]),

Finally, for a much larger example, here's roc-ray-ball-physics today and in the
proposal:

Today: https://gist.github.com/rtfeldman/2b9b64dcfd7f3fbed4b85111e8e02783
Proposed:
https://gist.github.com/rtfeldman/ed83433a21c1ed28cabec71657003b06

Note that the proposed version in this case is using operator overloading, to give
an additional sense of how that might look.

https://lukewilliamboswell.github.io/roc-ray-ball-physics/
https://gist.github.com/rtfeldman/2b9b64dcfd7f3fbed4b85111e8e02783
https://gist.github.com/rtfeldman/ed83433a21c1ed28cabec71657003b06

	Background
	Paren Placement
	Parsing Ambiguity
	Chaining with Dots

	Static Dispatch
	Static Dispatch can replace Abilities
	Static Dispatch facilitating Functional Programming Techniques
	Operator Overloading
	Chaining methods with non-methods
	Inlay Type Hints
	Type Aliases for where Constraints

	Summary of Proposal
	Examples

