Тема: «Преобразование алгебраических выражений, решение уравнений. Построение графиков в системе»

Преобразование алгебраических выражений

<u>Задание 1.</u> Выполните задания в таблице. Для вставки символьной операции выберите Математика/Операторы и символы/Символьные операции.

No	Описание	Обозначение	Пример
1.	Упрощение алгебраических выражений	simplify	$\dfrac{\left(x^3+y^3 ight)}{x\!+\!y} \dfrac{simplify}{}{} y^2 - x\!\cdot\! y \!+\! x^2$
2.	Приведение подобных членов	collect	$a \cdot x^2 + b \cdot x^2 - c \cdot x \xrightarrow{collect, x} (b+a) \cdot x^2 - c \cdot x$
3.	Разложение на множители	factor	$x^3-y^3 \xrightarrow{factor} -ig((y-x)ig\cdotig(y^2+xig\cdot y+x^2ig)ig)$
4.	Разложение выражений в более простые суммы	expand	$(x-1)^4 \xrightarrow{expand} x^4 - 4 \cdot x^3 + 6 \cdot x^2 - 4 \cdot x + 1$
5.	Разложение на элементарные дроби	parfrac	$\frac{\left(x^{3}-2\ x^{2}+1\right)}{x^{2}+1} \xrightarrow{parfrac} \frac{-x+3}{x^{2}+1} + (x-2)$
6.	Подстановка переменной	substitute	$substitute, x = \frac{1}{y^2}$ $2 x^2 - x + 4 \xrightarrow{\qquad \qquad } -\frac{1}{y^2} + \frac{2}{y^4} + 4$
7.	Формирование вектора коэффициентов полинома для последующего определения корней полинома	coeffs	$P := 2 x^{3} - 3 x^{2} - 4 x + 2$ $P \xrightarrow{coeffs} \begin{bmatrix} 2 \\ -4 \\ -3 \\ 2 \end{bmatrix}$

Решение уравнений

Уравнения в математическом пакете Mathcad в символьном виде решаются с использованием специального оператора символьного решения **solve**.

Задание 2. 1) Решите уравнение $2x^2+3x-4=0$ с помощью оператора **solve**:

$$2 x^2 + 3 x - 4 \xrightarrow{solve} \begin{bmatrix} \frac{\sqrt{41} - 3}{4} \\ \frac{-\sqrt{41} - 3}{4} \end{bmatrix}$$

2) Решите уравнение $3x^2+14x-12=0$ с помощью оператора **solve.**

Построение графиков в системе

Задание 3. Построить график изменения напряжения \cup (t) = $100sin\left(\omega t - \frac{2\pi}{3}\right)$ в интервале времени t ∈ [0; 0,02] с шагом 0,002с и частотой f=50 Γ ц (рис.1). Угловая частота изменения напряжения ω = $2\pi f$.

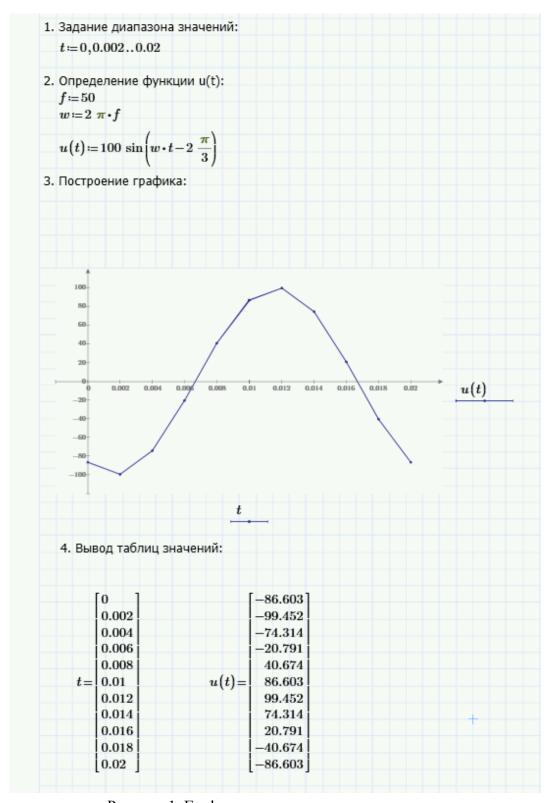


Рисунок 1. График изменения напряжения

Задание 4. Построить поверхность $Z = e^{2x-1} + cos(x^2 - y^2)$, x ∈ [-8; 0], Δ x=2, y ∈ [2; 6] с шагом Δ y=0,5 (рис. 2).

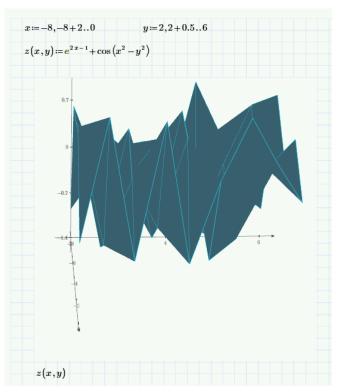


Рисунок 2 Поверхность

Задание 5. Построить таблицу и график изменения тока $I(t) = 3sin\left(\omega t + \frac{\pi}{6}\right)$ в интервале времени t∈[0;0,3] с шагом 0,0125с при частоте f=250 Гц.

Задание 6. Построить график и таблицу изменения кинетической энергии $E(t) = \frac{mg^2t^2}{2}$ падающего тела массой m=1 кг, при значениях времени t, изменяющихся от 0 до 10 с шагом 0,1 с.