DrawBerry

CS3217
Final Report

Calvin Chen, Ho Hol Yin, Jon Chua, See Zi Yang

Requirements

Overview
Classic mode
Competitive mode
Cooperative mode
Team Battle mode

Features and Specifications
Features

Design
Overview

Runtime Structure

Representation of BerryCanvas using PencilKit
Representation of CompetitiveView in Competitive game mode

Module Structure
Canvas
Game
Network Component
Competitive Mode
Network Game Interaction
Authentication

Testing

Test Strategy
Unit Tests and Integration Tests
Ul Tests
Stress Test and Performance Test
Other Tests

Reflection

Evaluation
Lessons

Known Bugs and Limitations

Appendix
Test Cases

GUI Screenshots

User Manual

o o A AW WW

N

© © ©

1"
11
13
15
17
20
22

23
23
24
25
26

27
28
28

29
41
43

Requirements

Overview

DrawBerry is a competitive multiplayer drawing game. It is inspired by other drawing games
currently available, such as Drawful, Draw Something and so on. DrawBerry is developed
natively for iOS and allows for single-device multiplayer and multi-device multiplayer.
Furthermore, there are multiple game modes for DrawBerry players to play. These game
modes are described below.

Classic mode

In each round of this mode, players draw based on a topic set by a particular player, known
as the round master. Players will then try to guess the drawing of the round master. The
position of the round master then rotates among the players.

Furthermore, instead of having the player draw a certain word/object, by allowing users to
enter any topic, this can elucidate different kinds of drawing and also act as a trivia
game/friendship test between friends. This also adds some competitiveness element to the
game as players can try to deceive each other.

Players can choose between rapid games or non-rapid games. In rapid games, players are
given a limited time to draw. They then have to vote for the drawing they think is drawn by
the round master. A correct pick will earn them points, and if others incorrectly pick another
player’s drawing, that player will also earn some points.

Whereas for non-rapid games, players do not have to draw and guess immediately, they can
resume the game as and when they like and the game lasts for as many rounds as they
want.

Competitive mode

This mode is similar to classic mode, where players can draw anything under the sun.
However, this mode is played on a single iPad device and allows up to 4 players.
Furthermore, players have to draw their drawings within a single stroke (draw without
removing their finger from the iPad).

Powerups will spawn randomly at a random location on their canvas while they are drawing.
To activate the powerup, players have to draw onto the powerup. This activates the powerup
but risks destroying their own drawing because they have to draw onto the powerup to
activate it. Some examples of powerups include blocking other player’s view of the canvas
partially with an ink splotch, getting an extra stroke for your drawing and so on.

After the time limit, players will vote for the best-looking and second-best drawing. Voting for
the best drawing is worth 2 votes while voting for the second-best drawing is worth 1 vote.

After all players have voted, these votes are collated and results are shown on each player’s
screen. Points are then awarded to each player according to their standings and a new
round begins. After 5 rounds, the game ends and the player with the highest number of
points is declared the winner.

Cooperative mode

Players will each take turns to draw a portion of the entire drawing. When a player is
drawing, he can only see a small portion of the drawing done by the player before him, so as
to connect the current drawing with the previous drawing. After every player has completed
drawing, the drawings will be pieced together.

Team Battle mode

Players can team with a partner and compete with one another in this mode. Players will be
divided into teams of 2, with one player drawing based on a given topic, and the other player
guessing the word based on the drawing. Each team will be given 3 topics, so the game will
last for 3 rounds. The drawing will only be viewable by the guesser after the drawer has
submitted it.

When every team has finished their drawings and guessing, the team score for each team
will be calculated and the team’s ranking among all teams will be displayed.

Features and Specifications

Features (features bolded and in blue were done in Sprint 3)

1. Drawing canvas
a. Different colours
b. Different widths
c. Different types of brushes/opacity
d. Undo last stroke
e. Clear drawing
2. User account
a. Signup and create account
b. Login and logout
3. Single-device multiplayer support - Competitive mode
a. Support for four players drawing simultaneously on one iPad
b. Powerups:
i. Hide Drawing
ii. Extra Stroke
iii. Ink Splotch
iv. Invulnerability
v. Earthquake
c. Voting and Ranking screens
4. Multi-device multiplayer support - Classic mode
a. Host room to play with friends
b. Enter room code to enter a room
c. Start classic mode game (both rapid/real time rounds and non-rapid rounds)
d. Enter topic before each round
e. Timer for drawing in rapid mode
f. See drawings done by other players
g. Guess and vote for a drawing
h. View who voted for a player’s drawing
i. View each players’ cumulative points
j- Results screen at the end of rapid game mode
k. Pause or join back a round for non-rapid games
I. See list of active non-rapid games the user is in
m. View non-rapid game’s results at any time
5. Multi-device multiplayer live - Cooperative mode
a. Host room to play with friends
b. Enter room code to enter a room
c. Start cooperative mode game
d. View players drawing live as soon as they complete it
6. Team Battle Mode:
a. Host room to play with friends
b. Enter room code to enter a room
c. Start team battle game

d. Word bank to generate random word list

e. Sharing word list across network

f. Drawer draws based on word list

g. Guesser guesses word based on drawing

h. Calculate team result

i. Compare results of all teams and display final game result
7. Profile feature

a. View other player’s profile in game rooms

b. Auto save drawings to profile

c. View other profile’s drawings

User Manual

Please refer to the appendix document titled “DrawBerry User Manual”.

DrawBerry adopts the Model-View-Controller (MVC) architectural pattern.

Architecture Diagram

i

DrawBerry

Helper

StringHelper

AlertHelper

Message

ViewController

ViewController

Authentication

Authentication
AuthenticationUpdateDelegate

Gonsants R
// \\ Network ‘ Realtime Database

) —

View ‘ Model N Cloud Storage

J
Network o
View Model
ViewController
ClassicGame CooperativeGame CompetitiveGame TeamBattleGame

« ,
Ko Firebase

Authentication

EnterClassicRoomViewController

‘ EnterCooperativeRoomViewController

ClassicGameRoomViewController

‘ CooperativeGameRoomViewController

CooperativeGameViewController

VotingViewController

‘ CompetitiveNameEntryViewController ‘

‘ CompetitiveViewController ‘

‘ CompetitiveVotingViewController ‘

EnterTeamBattleRoomViewController

TeamBattleRoomViewController

TeamBattleViewController

TeamBattleGuessingViewController

VoteResultsViewController

’ CanvasDelegateViewController ‘

TeamBattleEndViewController

ClassicViewController ‘
ClassicGameEndViewController ‘

DrawingViewController

‘ EnterRoomViewController ‘

WaitingViewController ‘
EndViewController ‘

‘ ViewingViewController

HomeViewController ‘

UserProfileViewController ‘

‘ GameRoomViewController ‘

UserAuthentication

LoginViewController

SignUpViewController

View

Network

CanvasView UlIElements
‘ InkView ‘ ‘ PlayerCollectionViewCell ‘
‘ StrokeView ‘ ‘ ImageCollectionViewCell ‘

CompetitiveVliew

CompetitiveView

‘ CompetitiveVotingVlew ‘

PowerupView

Model

‘ VoteResultCollectionViewCell ‘

‘ TimerBarView ‘

‘ ErrorToastView ‘

Networkinterface

ClassicGame

RoomEnteringNetwork

| FirebaseNetworkAdapter

RoomNetwork

|FirebaseRoomEnteringNetworkAdapter

| FirebaseRoomNetworkAdapter

UserProfileNetwork

| FirebaseGameNetworkAdapter

GameNetwork ‘

UserProfileNetworkDelegate

| FirebaseUserProfileNetworkAdapter

‘ UllmageExtension ‘

‘ UllmageViewExtension ‘

| FirebaselnvalidStrings

Canvas GameRoom CompetitiveGame TeamBattleGame | Player |
Canvas		RoomPlayer		CompetitivePlayer		Team		ComparablePlayer
CanvasDelegate		RoomCode		CompetitiveGame		TeamBattlePlayer		MultiplayerPlayer
Palette		GameRoom	Powerups	TeamBattleGuesser		Game		
PaletteObserver		TeamBattleGameRoom		Powerup		TeamBattleDrawer		NetworkGame
BerryCanvas		GameRoomType		PowerupManager		TeamBattleGame		MultiplayerGame
BerryPalette		GameRoomStatus		ExtraStrokePowerup		TeamBattleGameViewDelegate		MultiplayerNetworkGame
BerryConstants		GameRoomDelegate		HideDrawingPowerup		TeamBattleTeamResult		
Stroke		InkSplotchPowerup		TeamBattleGameResult				
CanvasRectGenerator		InvulnerabilityPowerup		TeamBattleResultDelegate				

| EarthquakePowerup | | TeamBattleGameViewDelegate |
ClassicGame CooperativeGame
| PowerupAssets | | Word |
| ClassicPlayer | | CooperativePlayer |
CompetitiveCanvas | WordDifficulty |
| ClassicGame | | CooperativeGame |
. | TopicWord |
K K . ComepetitiveCanvas
NonRapidClassicGame CooperativeGameDelegate
" | WordList |
K . N CompetitiveBerryCanvas
ClassicGameDelegate CooperativeGameViewingDelegate
| WordBank |
InvulnerableBerryCanvas

DrawBerry also makes use of Google’s Firebase for its backend services, including user
authentication and the database. As seen from the architectural diagram, aside from the 3
main components, Model, View and View Controller, we have:

e Network component to deal with the real-time syncing of data and game state
between online players
Authentication component to deal with user signups and logins
Helper component for constants, error messages and convenience functions.

In this sprint, we kept to the same architecture and similar design choices when
implementing the new features.

Runtime Structure

Representation of BerryCanvas using PencilKit (Apple’s custom drawing
library)

We refer to our custom canvas class as BerryCanvas. To support our features, we have
defined BerryPalette (a UlView), which contains the colours, thickness and eraser for the
player to choose from. The inclusion of BerryPalette will, therefore, affect the choice of our
implementation.

Option 1: Apply inheritance, making BerryCanvas extend from PKCanvasView, a UlView
from PencilKit that detects finger/pencil touches.

In Option 1, we will consequently add BerryPalette as a subview of PKCanvasView and
subsequently break the Liskov Substitution Principle. This is because BerryPalette will be a
subview of PKCanvasView and therefore become drawable, and this unintended behaviour
will force us to manually disable the ability to draw in the region of BerryPalette, within
BerryCanvas. Since BerryPalette should not even be drawable in the first place, we should
not let it be a subview of PKCanvasView.

Option 2: Apply composition, allowing BerryCanvas to contain a PKCanvasView.

Composition will allow us to compose the PKCanvasView with BerryPalette, and this was
rather useful for us since we can separate PKCanvasView and BerryPalette into different
components that behave differently. Consequently, we can provide a Canvas protocol that is
conformed by BerryCanvas, which ties these components up together such that they
behave as a single entity to the outside world.

We have chosen Option 2.
Representation of CompetitiveView in Competitive game mode

The competitive game mode splits the iPad screen into four equal parts, one for each player
to draw. In this game mode, Powerups are added to the game to make it more interesting, as
well as a time limit of 45 seconds for players to complete their drawings. In order to draw
these powerups and timers on the screen, we needed to make a design decision regarding
how the CompetitiveView is structured.

Option_1: The competitive game has one big CompetitiveView which contain _multiple
subviews of PowerupView

At first, we started off with this option where the competitive game is made up of one big
competitive view that composes the entire screen. The competitive view has a set of
PowerupViews, where each powerup has its own x and y values relative to the iPad’s origin.

However, after adding more features to the application, we realized that this design could
definitely be improved. This chosen design requires a lot of conversions to convert between
a player’s current drawing coordinates (which was given relative to the canvas origin) to the
coordinates relative to the iPad’s origin. This was a big hint that our design could be split into
each player having their own view and thus we switched our design to Option 2, as
described below.

tion 2: Each pl r h its own mpetitiveView which encl their nv n
contains multiple subviews of PowerupView

In this design, the View Controller maintains a mapping between each player and their
CompetitiveView, which is sized to fit over their canvas. Each CompetitiveView contains a
set of PowerupViews, which represent the Powerups available on each player’s
CompetitiveView.

This chosen design is preferable as the powerups that belong to each player are added to
their view directly instead of one master view. Additionally, since the views are placed and
sized to fit the canvas, we do not need to do any conversions to convert between the
player’s current drawing coordinates to the coordinates relative to the canvas origin when
checking for powerup collisions.

In sprint 2, we continued implementing this option to our voting view controllers. The

CompetitiveVotingViewController maintains a mapping between each player and their
CompetitiveVotingView, which encapsulates all artists’ drawings as DrawingViews.

10

Module Structure

Canvas

Class Diagram for Canvas

BerryCanvas

<<protocols>
Canvas

<<protocobss
CanvasDelegate

isAbleToDraw: Bool
isClearButtonEnabled: Boaol
isUndoButtonEnabled: Bool
isEraserEnabled: Bool
numberOfStrokes: Int
currentCoordinate: CGPoint
drawing: PKDrawing
history: [PKDrawing]

tool: PKTool

delegate: CanvasDelegate?

isAbleToDraw: Bool
isClearButtonEnabled: Bool
isUndoButtonEnabled: Bool
isEraserEnabled: Bool
numberOfStrokes: Int
currentCoordinate: CGPoint
drawing: PKDrawing
history: [PKDrawing]

tool: PKTool

delegate: CanvasDelegate?

handleDraw(UJIGestureRecognizer, Canvas)

undo(on canvas: Canvas): PKDrawing

clearicanvas: Canvas)

T

CanvasDelegateViewController

handleDraw(UIGestureRecognizer, Canvas)

undo(on canvas: Canvas): PKDrawing

clearicanvas: Canvas)

undaf()
randomiselnkTool()

select{tool: PKTool)

undo()
randomiselnkTool()

select(tool: PKTool)

BerryPalette

<<protocols=
PaletteObserver

isUndoButtonEnabled: Bool
isEraserEnabled: Bool

observer: PaletteObserver

undo()

select(tool: PKTool)

Y

<<protocobs
Palette

isUndoButtonEnabled: Bool
isEraserEnabled: Bool

observer: PaletteObserver

addicolor: UIColar)
addistroke: Stroke)
selectFirstColorFirstStroke()
setObserver(PaletteObserver)
randomiselnkTool()

contains(tool: PKTool)

add{color: UIColor)
add(stroke: Stroke)
selectFirstColorFirstStroke()
setObserver(PaletteObserver)
randomiselnkTool{)

contains(tool: PKTool)

¥

<<enumerationss
Stroke

thin=1
medium =5

thick = 10

Shown above is the class diagram for the classes related to the Canvas component.

11

Canvas - Observer Pattern

We have employed the Observer design pattern in BerryCanvas class (our custom canvas
class that conforms to our defined Canvas protocol). The BerryCanvas class observes the
BerryPalette and is alerted when a colour or thickness is selected. The BerryPalette simply
informs the observer of these changes, and therefore, we have made the BerryCanvas
conform to the PaletteObserver class as well, allowing it to be added as an observer of the
BerryPalette. This way, we reduce the coupling between the BerryPalette and BerryCanvas,
and BerryPalette does not have to know (and should not know) the existence of
BerryCanvas that is containing it. This also complies with the Dependency Inversion
Principle, where both BerryCanvas and BerryPalette depend on protocols Canvas and
Palette, and these protocols serve as an abstraction that does not depend on details of
implementation.

Canvas - Delegate Pattern

We have employed the Delegate design pattern in BerryCanvas class. Since BerryCanvas
is a Ul element, we do not want it to be involved with any logic handling. Therefore, when
detecting a draw, it simply invokes the delegate’s handleDraw method without having to
handle the state of the drawing. Since we also support undo functions, we also require the
delegate to revert to the previous state for the BerryCanvas. By doing this, we decouple the
domain logic with the presentation logic, adhering to the Single Responsibility Principle.

12

Game

Class Diagram for Game model

<<Protocol==
CompetitiveGame | _______________. [Game

associatedtype GamePlayer: Player
—1={ players: [GamePlayer] < }F—

currentRound: Int

<<Protocol=>
«Pratocol»
NetworkGame MultiplayerGame
gameNetwork: GameNetwork where GamePlayer: MultiplayerPlayer

roomCode: RoomCode
upload(image: Ullmage, currentRound: Int)
observe<T: ComparablePlayer=(player: T, round: Int)

endGame(isRoomMaster: Bool, numHRounds: Int)

MultiplayerNetworkGame
TeamBattleGame <T: MultiplayerPlayers

var players: [T]

varuser: T

var currentRound: Int

ClassicGame 1| var maxRounds: Int

j} var isLastRound: Bool

var gameNetowrk: GameNetwork

MNonRapidClassicGame var roomCode: RoomCode

init{room: GameRoom, maxRounds: Int)

init(roomCode: RoomCode, players: [T],
currentRound: Int, maxRounds: Int)

addUsersDrawing(image: Ullmage)

CooperativeGame = getindex(player: T): Int?

For the module structure of our different game modes, we chose to use some base protocols
and protocol extensions to define the kinds of game we can have. The base protocol, Game,
is defined as a game that contains players and goes through rounds. Since the competitive
game mode has all players playing on the same device, CompetitiveGame directly
implements this protocol.

We also have the NetworkGame protocol for games that require the internet network, and
inside this protocol, we also used protocol extensions to provide default implementations of

13

core methods such as uploading a player’s drawing, observing another player’s drawing and
ending the game.

The MultiplayerGame protocol is for games where each of the players are playing on
different devices. The MultiplayerNetworkGame class conforms to both of these protocols
and provides default implementation of functions that multiplayer network games have.

ClassicGame and CooperativeGame inherits from MultiplayerNetworkGame as these 2
game modes consist of players playing against each other over the network. Whereas, for
TeamBattleGame, since we are dealing with teams instead of individual players, it directly
conforms to NetworkGame.

The rationale for such a modular structure and inheriting the protocols this way is to better
allow code reusability and ease of extension, and to also better adhere to SOLID principles,
especially, Single Responsibility Principle, Open-Closed Principle and Interface
Segregation Principle. For example, the NetworkGame is responsible for dealing with the
network and implementing game modes do not have to provide additional code for syncing
their game state over the network. Moreover, in the future, we can easily extend our Game
protocol to other protocols, such as LocalMultiplayerGame for local bluetooth game modes,
etc. Such a structure also allows each of us to easily work on different game modes without
worrying about merge conflicts and integration issues.

Each of the GameMode can also easily be subclassed to provide slightly different
functionalities. For example, the newly introduced Non-rapid Classic Game, whereby
players do not have to play in real time like normal classic games, extends from
ClassicGame and overrides some of its functions in order to support this feature. Such
polymorphism allows the view controllers for the classic game screens to easily update the
model based on the player's input.

14

Network Component

Class diagram for Network

«Protocol»
> Networkinterface <
I
«Protocol» «Protocol» «Protocol» «Protocol»
RoomEnteringNetwork RoomNetwork GameNetwork UserProfileNetwork
A A A A
__________________E_ «Protocol» : __________________
: 1 > FirebaseNetworkAdapter <
FirebaseRoomEnteringNetworkAdapter FirebaseUserProfileNetworkAdapter
FirebaseRoomNetworkAdapter FirebaseGameNetworkAdapter

The network component follows the Dependency Inversion Principle and heavily utilizes
the Adapter Pattern, where the classes in our model, such as the GameRoom and the
different game modes, rely on a network interface to reduce coupling; while the concrete
implementations of these protocols are Firebase adapters. The network adapter classes
allow the client to work with the Firebase services without knowing the underlying
implementation. Additionally, in the future, if we change our backend service provider, we
can easily add new classes that conform to the existing protocols without having to heavily
modify the code in the classes of our model component.

Furthermore, as we are using multiple services provided by Firebase, including the Realtime
Database and Cloud Storage, the protocols act as interfaces with simpler and more readable
methods for syncing data between the players on different devices. This abstracts away the
database’s data model and Firebase’s convoluted API from the application’s model
component.

This leads to better separation of concerns as the model classes (GameRoom and Game)
do not include code that directly interacts with the backend, while the adapter contains all the
code that interacts with the various services of Firebase. This also fulfils the Single
Responsibility Principle as it separates the data conversion logic from the business logic
of the application.

Moreover, the use of the protocols also allows better testability as they can easily be

extended and stubbed in test cases. Thus, this decouples the reliance on the third-party
library’s code and services to work correctly in the test cases.

15

We chose to use callback closures instead of delegates to update the model once the
asynchronous network calls are done as some of the completion callbacks are different even
for the same function. Moreover, the call to network functions in the model classes were
called from both within the model to sync state from other players and also from the view
controller where the user updates state through Ul input. Thus, the delegate pattern would
not be as appropriate.

Nevertheless, we felt that we could further improve our code with greater protocol
segregation for our GameNetwork protocol, as advised by the Interface Segregation
Principle. For example, some functions in GameNetwork protocol are only used by
ClassicGame and another two functions only used by TeamBattleGame. We wanted to
segregate out these game-specific functions into separate protocols and subsequently utilize
associated types in the NetworkGame protocol and generics in the MultiplayerNetworkGame
class to allow the different types of Games to contain different subtypes of GameNetwork
protocol. However, due to a limitation with Swift, since we are programming to a protocol, our
classes’ generics could not contain the protocol types. Hence, we had to go with a slightly
more loaded interface for our GameNetwork protocol as we could not find an elegant way to
achieve what we want while maintaining our usage of protocols for the network component.

16

Competitive Mode

Class Diagram for Competitive Mode

Model
«Protocol» «Profocol»
Canvas Player
2~ [
CompetitiveCanvas : Powerups

CompetitiveCanvas ‘RepeatingTolggleF'owerup}d ------------ EarthquakePowerup
- 7

3

[% grmms InvulnerabilityPowerup
‘CompetitiveBerryCanvas } 5 : TogglePowerup Kt------= '

[HideDrawingPowerup
Avi o ExtraStrokePowerup

‘ InvulnerableBerryCanvas } ——————— .

i «Profocol» |
: Powerup '
CompetitivePlayer| ... ! [) S InkSplotchPowerup
4 players
PowerupManager
CompetitiveGame A
A
. —_—
ViewController
‘ CompetitiveVotingViewController ‘ ‘ CompetitiveViewController ‘ ‘C0mpetitiveNameEntryViewControHer

View
h 4 h 4
‘ CompetitiveVotingView ‘ CompetitiveView

Shown above is a class diagram for the competitive game mode.

The CompetitiveCanvas protocol extends from the original Canvas protocol, describing
additional functionality that the competitive game should support, such as the adding of ink
splotches and hiding the player’s drawings, which is used by the Powerups. Both
CompetitiveBerryCanvas and InvulnerableBerryCanvas implement this protocol and are
used in the decorator pattern as described below.

The Powerup protocol describes the functionality of powerups, such as the powerup’s owner,
targets and location. Additionally, it defines an activate() and deactivate() function which
executes and unexecutes each powerup’s functionality. This is used in the command
pattern as illustrated below. Furthermore, it defines a required initializer which is used by
PowerupManager in the factory pattern as depicted below. TogglePowerup extends upon
the functionality described by the Powerup protocol and defines a duration in which
powerups deactivate themselves when a certain amount of time has elapsed after they have
been activated. Next, RepeatingTogglePowerup extends upon the functionality described by
TogglePowerup and defines the number of times each powerup repeats itself toggling
between the powerup’s activation and deactivation.

17

Powerups - Factory Pattern

We have employed the Factory design pattern in the Powerup protocol. The Powerup
protocol defines a designated initializer which all Powerups must conform to. In this way, the
manager class PowerupManager can easily create new Powerup objects using the defined
initializer in the Powerup protocol.

Therefore, we do not have to resort to clunky switch statements to initialize each Powerup
separately depending on its type. We are able to reduce the coupling between Powerup and
PowerupManager because PowerupManager just needs to call .init() for each Powerup to
get an instance of that Powerup. This is important as PowerupManager generates random
Powerups for each player and does not care what is the underlying type of the returned
Powerup.

Furthermore, supporting new Powerups to the game is easy as we just need to conform to
the Powerup protocol (and ensure that PowerupManager knows of this new Powerup by
adding its type into the defined static variable ALL_POWERUPS).

Powerups - Command Pattern

We have also employed the Command design pattern in the Powerup protocol. The
Powerup protocol defines a method activate() and deactivate() which executes and undoes
the Powerup effects respectively. The invoker class PowerupManager calls this activate()
method on each Powerup to execute it, without knowledge of its actual underlying Powerup

type.

This allows for separation of concerns where the actual code that the Powerup executes
when it is activated is decoupled from PowerupManager.

Powerups - Decorator Pattern

With the introduction of the invulnerability powerup for Competitive mode in Sprint 2,
changes have to be made to how powerups interact with the canvas. For example, the
Powerup that is currently being activated should not affect the target player’s canvas if the
current player is currently invulnerable.

In Sprint 2, we used a wrapper over the canvas to decide if the player was invulnerable
which Powerups interact with. If the player was invulnerable, this wrapper returns nil, else it
returns the player’s canvas. This can be combined with Swift’s higher-order functions to get
the list of player’s canvases to effect. However, in Sprint 3, we have decided to refactor this
to the Decorator pattern instead. The design outlined above, while meeting the
requirements, was not general enough to allow future modifications to the application.
Furthermore, we had to resort to using a boolean flag islnvulnerable, which may not be the
best design if we wish to extend the Powerup system to support more varied powerups.

18

This new design now defines a protocol CompetitiveCanvas which extends from the original
canvas. It defines further functionality that the canvas used for competitive mode must
support, such as adding ink splotches, hiding and showing the drawings and so on.
CompetitiveBerryCanvas and InvulnerableBerryCanvas then implement this protocol. When
the player draws over an invulnerability powerup, an instance of InvulnerableBerryCanvas is
created and ‘decorates’ the player's original CompetitiveBerryCanvas. This new
InvulnerableBerryCanvas now interacts with other powerups as it implements the same
protocol. However, it makes the user ‘invulnerable’ by containing an empty implementation
for addInkSplotch for example, hence the ink splotch call does not go through to the original
CompetitiveBerryCanvas that the invulnerable canvas wraps over. This continues until the
timer expires for the player’s invulnerability duration, after which the
InvulnerableBerryCanvas removes itself from the player’s canvas.

This new design is extensible as it is general enough to support future extensions of
powerups, fulfilling the Open Close Principle. For example, a powerup that reduces harmful
effects by half (such as reducing the size of ink splotches by half) would be easily
implementable in this design, we can just create another canvas type that implements
CompetitiveCanvas with the required functionality.

19

Network Game Interaction

Class diagram for GameRoom and ClassicGame

Model
«Protocol» 1 «Protocol» 1 «Protocol»
Player ComparablePlayer MultiplayerPlayer
D .
GameRoom ;T ClassicGame
RoomPlayer ClassicPlayer
1--8T players 1--8T players
Ty -o---nitfom {0 <
f — GameRoom ——— ~—— ClassicGame — h
| A
vV NonRapidClassicGame
GameRoomStatus <., -
0..1
«Protocol» «Protocol»
GameRoomDelegate : ClassicGameDelegate
A i A
Network | i+ 1
RoomNetwork GameNetwork

ViewController |;

- GameRoomViewController View Controllers for Classic Game ~

The class diagram and interaction is similar for other network game modes like the
cooperative game, where we employ the delegate pattern to update the Ul whenever our
model updates.

The GameRoom encompasses the room lobby which players enter before the game start.
The GameRoomViewController consists of a GameRoom, which is the model, which then
consists of a RoomNetwork.

When another player enters the room, the RoomNetwork updates the list of RoomPlayers in
GameRoom. The update in GameRoom causes the function playersDidUpdate to be called
in the GameRoomDelegate protocol, hence updating the list of players in the Ul through the
GameRoomViewController.

Similarly each of the different screen’s ViewController during the actual classic mode
gameplay consists of a ClassicGame object. When the user finishes drawing, or votes for
another player etc, the ClassicGame’s NetworkGame protocol methods are called which
updates the database through the GameNetwork object.

20

Likewise, at the appropriate screen, the ClassicGame also listens for other player’s actions
by observing the database through NetworkGame functions that call the methods in
GameNetwork. When there is an update, the ClassicGame model will be updated, which
then calls the method in ClassicGameDelegate protocol such as drawingsDidUpdate and
votesDidUpdate to update the view controllers which then updates the views.

Hence, our usage of the MVC Architectural Pattern leads to high cohesion as the game
classes in model focus on game logic and modelling state of the game, the view controller
focus on updating the views and handling user interaction, while the network component
deals with interacting with the backend and data conversion logic. Therefore, we also
achieve loose coupling between the components which increases testability and ease of
extension.

user action ViewController update
View Model
update notify via
delegate pattern
update,
observe
Network

21

Authentication

Authentication - Facade Pattern

We have also employed the Facade design pattern in the Authentication class. The
Authentication class acts as a Facade that provides a simple interface to complex
authentication services in Firebase.

Although the facade provides limited functionality as compared to working with Firebase
directly, it provides only the relevant functions that we are interested in, which is sufficient.
Furthermore, the facade simplifies the use of a complex library which allows for easier
understanding and reduces the coupling between our code and third-party libraries.

The rationale for us using facade pattern instead of through an interface and adapter pattern
is because the View Controller for the login and signup page directly interacts with the
Authentication module’s class level methods which is more appropriate than having
authentication classes in the model component that do not contain any properties.

22

Testing

Test Strategy

The overall test strategy for our application is a bottom-up approach. We first start with unit
tests and integration tests, before proceeding to Ul tests. We will outline our strategy for
stress tests and performance tests. Our testing strategy employs a mix of scripted and
exploratory testing which is the most suitable as we developed our app in rapid iterations.

Unit Tests and Integration Tests

For unit tests and integration tests, we are employing Xcode’s XCTest framework. We have
unit tests for each of our classes in the model component and helper component. The unit
tests and integration tests can be found under the DrawBerryTests folder of our Xcode
project as seen below.

v [l DrawBerryTests
v [l ModelTests
h StringHelperTest.swift
v . CooperativeGameTests
n CooperativeGameTests.swift
n CooperativePlayerTests.swift
v . CompetitiveGameTests
B CompetitiveGameTests. swift
B PowerupTests.swift
! Competitive PlayerTests.swift
v . GameRoomTests
n RoomPlayerTests.swift
n GameRoomTests. swift
n RoomCodeTests. swift
v - TeamBattleGameaTests
B TeamBattlePairTest.swift
B TeamBattleGameResultTests.swift
B TeamBattleTeamResultTests.swift
v . ClassicGameTests
n ClassicPlayerTests. swift
n ClassicGameTests.swift
n MonRapidClassicGameTests. swift
! AuthenticationTests. swift
B UserProfileNetworkAdapterTest.swift
B GameRoomStub.swift
B RoomNetworkStub.swift
h GameMetworkStub. swift
h BerryCanvasTest. swift
h BerryPalattaTest. swift

h TestConstants.swift

For model components that rely on third-party libraries and the correct provision of external
services, we utilise dependency injection and stubbed these classes. For example, the

23

GameRoom class in model depends on the RoomNetwork interface in Network component
to provide the syncing of players in the room. In our unit tests, we stubbed a
RoomNetworkStub class that does not rely on our Firebase implementation.

Our tests are written using a gray-box approach, where we design our test cases based on
some important information about the class and methods. We also adhere to tried and tested
test case design heuristics such as using equivalence partitions and boundary value
analysis. For example, this can be seen extensively in our test case that handles user inputs
such as emails and room code.

We believe using a gray-box approach is more appropriate as compared to using the
glass-box approach, it will be less prone to developer oversight or bias. Whereas, it is also
more comprehensive and time-saving compared to the glass-box approach as we have
some idea how a function handles different partitions of inputs. Thus, we can have more
meaningful test cases that are more effective and efficient. We also track the statement
coverage of our test cases through Xcode.

Ul Tests

We have employed the use of FBSnapshotTestCase to compare the actual screenshot of the
app and the expected screenshot of the app. This method compares the screenshots pixel
by pixel and will therefore be effective in ensuring that the layout of the app in the various
views is how we expect it to be. We have made use of XCUIApplication to programmatically
(and automatically) navigate through the app to obtain the required screenshots for
comparisons.

In each view controller, we have a UlLayoutTest that asserts that all Ul elements are in
place. For view controllers that have unique behaviours (for instance, the Classic Mode view
controller has a drawable canvas with selectable colors and thickness of brushes), we
programmatically interact with the view controller and assert the resulting view from the
interactions. In the example of the canvas, a sample test would be to draw a stroke, press
the undo button, and then compare the current screen with an empty canvas screen.

The Ul tests can be found under the DrawBerryUITests folder of our Xcode project as seen
below.

24

v [l DrawBerryUITests
B ClassicGameUITest.swift
B DrawBerryUITest.swift
B LoginviewUITest.swift
B ClassicRoomUITest.swift
B EnterClassicRoomViewUITest.swift
B EnterCooperative...ViewUITest.swift
B EnterTeamBattle...mViewUITest.swift
B EnterRoomUITest.swift
B CompetitiveGameUITest.swift
B SignUpViewUITest.swift
B CooperativeGameUITest.swift
B TeamBattleUITest.swift
B Info.plist
B uiTestConstants.swift
B user.swift

Stress Test and Performance Test

Classic/Cooperative mode

Since the classic and cooperative mode is online, when the number of concurrent users
exceeds a large number (~1000), it is possible that there might be some decrease in
performance for our app. Some metrics for stress testing include:

1. Network Response
e Average time taken to join/host a room
e Average time taken to retrieve drawing images after game ends

2. Failures
e Number of failed connections by the client

This can be done by simulating numerous users and logging the requests on our backend
side.

Competitive Mode

By tweaking the probability in which powerups spawn to 1 (instead of the current value of
0.005), we can perform an ad-hoc performance and stress test on the system. On an iPad

10.5”, the current design is able to handle around 3000 powerups before showing some
sluggish performance when handling drawing strokes.

25

Other Tests

Aside from the aforementioned tests, other test strategies that may be harder for us to
implement includes end-to-end testing to test the flow of the whole application. Other than
scripted testing, we may want to employ some more manual testing such as user
acceptance testing.

26

Reflection

In this final sprint, we focused on refactoring our code and also managed to complete all the
core features of our application.

Evaluation

In Sprint 1 and Sprint 2, we focused on churning up the features in the short deadline to
have a MVP. In this sprint, we shifted our focus to refactoring and future-proofing our code.
This also included the cleaning up of our codebase to remove duplicated code we added
when added new game modes in previous rounds. We also improved the implementation of
a few of our components, such as refactoring the Network component to better utilise
protocols and allow for ease of extension/usage of other network services, refactoring the
Game model, and refactoring the View Controllers for similar screens in different game
modes. In Competitive mode, we refactored the Powerup system to make it more general in
order to allow further extensions to the Powerup system, as well as refactoring some voting
functionality to the Player instead of the View Controllers. We also extended the Network
Component to support a new Cooperative Game Mode that reuses the network code that
was initially only supporting the Classic Game Mode.

In Sprint 3, the Network component was further refactored to become more general so that it
becomes easily extendable to support new game modes in the future. One example is the
new Team Battle Mode that we had introduced in Sprint 3, again making use of the
extensibility of the Network Component to support it. In addition, we now define the Network
Component as a protocol instead of a concrete class in accordance to the Dependency
Inversion Principle, and created an instance of FirebaseNetwork classes that conform to
the Network Protocol. This is done so that in the future if we decide to use other backend
services like AWS, we will just need to conform to the same Network Protocol for the new
service to be compatible with our application.

We were able to extend the application with more features mainly due to the adequate
design choices we had made in the first sprint. By adequately specifying the base classes of
the types of game, we could easily use inheritance to implement new game modes. For
example, by having a protocol NetworkGame for games that require the networking and with
the use of the adapter pattern for the implementing classes of our network interface, the
new game modes do not have to worry about dealing with connecting to our database and
syncing game state between players. This is in line with the Open Close Principle where
our design of the game model is open for extensions (the new team battle game mode) and
closed for modifications (that we do not need to rewrite code within the adapter since the
existing functions are generic enough to allow reusability for future game modes).

For competitive mode, in Sprint 3, we received feedback from Prof. Wai Kay after Sprint 2
and decided to change the Powerup design from a simple wrapper to the decorator pattern.

27

This allows us to make the design more general so that we can accommodate future
modifications and extensions to the Powerup system. This is explained further in the
Competitive Mode section under Module Structure.

Lessons

Throughout the three weeks of sprint 3, we learnt a lot, including:

e How to take requirements that were given/assigned to us and implement them

e How to apply design patterns to allow easier understanding and maintenance of our
code
How to model each game round properly in the database
How to fix random Firebase bug that gives null keys
How to design protocols and objects such that they are easily extensible and
modifiable

e How to refactor protocols and objects to make them more reusable and also to
reduce code duplication

e Things seem easier to implement until you start implementing and getting random
bugs

We will definitely be applying this newfound knowledge to future Software Engineering
projects and modules as we share with each other what we learnt.

Known Bugs and Limitations

Known limitations that we plan to address in the upcoming sprints include:

e Unfortunately, close to the end of sprint 3, we realised certain ISPs, such as the ISP
NUS network is on, have blocked FirebaseStorage’s links and API calls, thus, if you
are on these ISPs, you will not be able to play the multiplayer network game modes.
As it was too close to the deadline of our project, we did not have enough time to
explore other backend service providers.

Multiple logins on the same account should not be allowed

Players do not leave active game rooms if they quit the app suddenly

In competitive mode, it may be hard for players to judge the amount of invulnerability
time they have left.

28

Appendix

Test Cases

Unit Tests and Integration Tests - Under “DrawBerryTests” of our project on Github
Ul Tests - Under “DrawBerryUlTests” of our project on Github

The following is the test plan for Ul Testing. Do note that we have written test cases
(programmatically) to test the layout of the Ul elements in the view controllers.

Login Page Ul Testing

Password

2
4

(4

A N

These are the following Ul elements that we check when we first enter the page:

1) The background is loaded properly as seen in the screenshot above

2) Email text field

3) Password text field

4) “Login” button

5) “Sign up” button

6) Error message (Not shown initially)

Test Buttons:
1) Login
Error message shown when:
e Empty/ whitespaces filled text fields

29

e Email address not containing “@” or “.” separated by at least 1 alphabet each.

e Password not alphanumeric (contains special characters)
e Password less than 8 characters

If no error:
e (Goes to the main menu page

2) Signup

e Goes to the sign up page

Sign Up Page Ul Testing

These are the following Ul elements that we check when we first enter the page:

1)
2)
3)
4)
5)
6)
7)
8)

Username

Password

Confirm Password

The background is loaded properly as seen in the screenshot above
Username text field

Email text field

Password text field

Confirm password text field

“Sign up” button

“Back” button at top left

Error message (Not shown initially)

Test Buttons:

1)

Sign up

30

Error message shown when:
Empty/ whitespaces filled text fields
Email address not containing “@” or “.” separated by at least 1 alphabet each.
Password not alphanumeric (contains special characters)
Password less than 8 characters
Password confirmation does not match password
If no error:
e (Goes to the main menu page

2) Back
e (Goes to the login page

Classic Mode Ul Testing

7:44

In the classic mode, these are the following Ul elements that we check when we first enter
the gameplay:

3) The background is loaded properly as seen in the screenshot above

4) Three colours (black, green and red) are visible at the bottom left of the screen.

5) Three strokes of varying thickness visible at the bottom right of the screen.

6) An eraser icon to the right of the three strokes.

31

7) An undo button to the right of the eraser icon
8) A clear button at the top right of the screen
9) A done button in the bottom third of the screen, centralised as seen in the screenshot

Additionally, the state of the screen is as seen in the screenshot above:

1)
2)
3)
4)

5)

The black ink is selected and has full opacity

The blue and red ink is not selected and both of them have half opacity

The thinnest (leftmost) stroke is selected and has full opacity with yellow stripes
The medium and thick strokes to the right are not selected and both of them have
half opacity, with no yellow stripes

The eraser button, undo button and clear button all have full opacity

Competitive Mode Ul Testing

In the competitive mode, these are the following Ul elements that we check when we first
enter the gameplay:

1)
2)

3)
4)

The background is loaded properly in 4 canvases as seen in the screenshot above.
The two canvases at the top are rotated 180 degrees, with their Ul elements in place
with respect to the degree of rotation.

Three colours (black, green and red) are visible at the bottom left of each canvas.
Three strokes of varying thickness visible at the bottom right of each canvas.

32

a0

There is no eraser icon to the right of the three strokes in each canvas.

There is no undo button to the right of the eraser icon in each canvas.

There is no clear button at the top right corner of each canvas.

A countdown timer is seen in the middle of each canvas, centralised and faded.
Players can see the current round, score and their name on the top left-hand corner
of their screen.

10) Players can also see the number of strokes they have left below the countdown
timer.

()]

(o]

O ~
~— N N ~— ~~—

Additionally, the state of the screen is as seen in the screenshot above:

1) The black ink is selected and has full opacity for each canvas.

2) The blue and red ink is not selected and both of them have half opacity for each
canvas.

3) The thinnest (leftmost) stroke is selected and has full opacity with yellow stripes for
each canvas.

4) The medium and thick strokes to the right are not selected and both of them have
half opacity, with no yellow stripes for each canvas.

5) The eraser button, undo button and clear button all have full opacity for each canvas.

We also test for the following gameplay mechanics:

6) The timer decrements by 1 every second.

7) Once a player has used all of their strokes, they are not allowed to draw any more on
the canvas. This includes cases such as users drawing off their canvas bounds
which ends their stroke prematurely.

8) Powerups will spawn on each player’s canvas at random locations randomly while
they are drawing.

9) When a player draws on a powerup, the powerup activates and disappears from that
view. Furthermore, a message explaining the activated powerup will appear.

a) When a player draws over an Extra Stroke powerup (green powerup), they
get an extra stroke. The Extra Stroke message appears on the owner’s view.
We can test that the extra stroke is indeed given to the player by releasing our
finger and drawing a new stroke.

b) When a player draws over a Hide Drawing powerup (purple powerup), all
other players’ canvases disappear for 1 second, then reverts back to normal.
The Hidden Drawing message appears on all targets’ views.

c) When a player draws over an Ink Splotch powerup (yellow powerup), all other
player’s screens will render an ink splotch of random size and random
location. This ink splotch appears over the player’s drawings and the timer.
The Ink Splotch message appears on all targets’ views.

d) When a player draws over an Earthquake powerup (brown powerup), all other
players’ screen shake. The Earthquake message appears on all targets’
views.

e) When a player draws over an Invulnerability powerup (pink powerup), the
player is given invulnerability to all opposing powerups for 5 seconds. The
Invulnerability message appears on the owner’s view.

33

i) While the player is invulnerable, we test the Ink Splotch, Hide Drawing
and Earthquake powerups on that player. These powerups should not
activate on the invulnerable player. The status message still appears
on the invulnerable player’s view, but there is a message appended
informing that the player that he/she is invulnerable and hence there is
no effect.

ii) While the player’s canvas is under effect by a Hide Drawing /
Earthquake powerup, we test activating the Invulnerability powerup.
The powerup that was activated before Invulnerability should still run,
and should be able to deactivate itself normally. However, all
powerups activated within 5 seconds after the Invulnerability powerup
was activated should have no effect on the invulnerable player’s
canvas.

10) When all players have finished drawing (i.e. all players have used all strokes), the
timer decreases to 3 or the current countdown time, whichever is lower.

11) When the timer hits 0, all players are unable to continue drawing, even if they have
strokes remaining or are in the middle of their stroke. Next buttons appear on each
player’s view, and when they are tapped, the next button disappears (which means
that they are ‘ready’).

12) When all players touch the next button, the voting screen is shown.

34

We test the voting screen as follows:

13) Players are able to vote for two players’ drawings. The first vote represents their vote
for the best drawing (worth 2 votes) while the second vote represents their vote for
the second-best drawing (worth 1 vote). When the user votes, the text should update
to show that they have voted for that player. We test corner cases such as:

a) The player votes for themselves (the text should inform the player that they
cannot vote for themselves)

b) The player has already cast their vote for that artist and wants to vote for the
same artist’s drawing again (the text should inform the player that they cannot
cast multiple votes for the same player)

c) The player has already used all their votes (the text should inform the player
that they have already used all their votes)

14)Once all players have voted, the results will be tallied. 50 points are given to the
player(s) with the most votes and 20 points are given to the player(s) with the
second-most votes. Again, next buttons will be shown on each player’'s view and
tapping them removes the next buttons (they are ‘ready’).

35

15) Once all players have tapped the next button on the voting screen, we transition to
the results screen.

36

We test the results screen as follows:

16) We test that the score is updated correctly (50 points for the player(s) with the
highest number of votes and 20 points for the player(s) with the second-highest
number of votes). Next buttons appear here as well for players to indicate that they
are ‘ready’ to move on to the next round/end the game.

a) If this was their final round, the “Current Scoreboard:” message would be

changed to “Final Results:” instead, indicating that this is the final scoreboard.

17)If this round was not the last round (there are 5 rounds in total in 1 competitive

game), the game moves to the next round after all players are ready. Else, the game
moves back to the main menu screen.

37

Cooperative Mode Ul Testing

In the cooperative mode, these are the following Ul elements that we check when we first
enter the gameplay:

1)
2)
3)
4)
5)
6)
7)
8)

The background is loaded properly as seen in the screenshot above

Three colours (black, green and red) are visible at the bottom left of the screen.
Three strokes of varying thickness visible at the bottom right of the screen.

An eraser icon to the right of the three strokes.

An undo button to the right of the eraser icon

A clear button at the top right of the screen

A done button in the bottom third of the screen, centralised as seen in the screenshot
A shaded portion to denote the out-of-bounds area in the canvas.

Additionally, the state of the screen is as seen in the screenshot above:

6)
7)
8)
9)

The black ink is selected and has full opacity

The blue and red ink is not selected and both of them have half opacity

The thinnest (leftmost) stroke is selected and has full opacity with yellow stripes
The medium and thick strokes to the right are not selected and both of them have
half opacity, with no yellow stripes

10) The eraser button, undo button and clear button all have full opacity

38

Team Battle Mode Ul Testing

As a drawer in the team battle mode, these are the following Ul elements that we check
when we first enter the gameplay:

1)
2)
3)
4)
5)
6)
7)
8)

The background is loaded properly as seen in the screenshot above

The topic word is at the top of the screen, centralised as seen in the screenshot
Three colours (black, green and red) are visible at the bottom left of the screen.
Three strokes of varying thickness visible at the bottom right of the screen.

An eraser icon to the right of the three strokes.

An undo button to the right of the eraser icon

A clear button at the top right of the screen

A done button in the bottom third of the screen, centralised as seen in the screenshot

39

Guess is wrong!

As a drawer in the team battle mode, these are the following Ul elements that we check
when we first enter the gameplay:

1)
2)
3)
4)
5)
6)

The background is loaded properly as seen in the screenshot above

An input text field at the bottom of the screen

A guess button at the bottom left of the screen

A next button at the bottom right of the screen

A done button in the bottom third of the screen, centralised as seen in the screenshot
If the player inputs a wrong guess, an error message is shown on the bottom right in
red as seen in the screenshot.

40

GUI Screenshots

You can refer to the User Manual affixed below for more screenshots.

8:57PM Sun 5 Apr F @ o7 mm)

¢
EZ
posswors |

Password

42

	
	Requirements
	Overview
	Classic mode
	Competitive mode
	Cooperative mode
	Team Battle mode

	Features and Specifications
	Features (features bolded and in blue were done in Sprint 3)

	User Manual
	
	Design
	Overview
	Runtime Structure
	Representation of BerryCanvas using PencilKit (Apple’s custom drawing library)
	Representation of CompetitiveView in Competitive game mode

	Module Structure
	Canvas
	
	Game
	
	Network Component
	
	Competitive Mode
	
	Network Game Interaction
	Authentication

	
	Testing
	Test Strategy
	Unit Tests and Integration Tests
	UI Tests
	
	Stress Test and Performance Test
	Other Tests

	Reflection
	Evaluation
	Lessons
	Known Bugs and Limitations
	
	Appendix
	Test Cases
	
	
	GUI Screenshots

