
CS2113T UniTracker Project

(✓
)

Week Task Personal Deadline Actual Deadline

✓ 4 Set Direction: Fill out TEAMMATES Tue 2 Feb 1400-1500 Wk 4

✓ 5 Gather requirements (brainstorm & choose user stories) Tue 9 Feb 1400-1500 Wk 5

✓ 6 Conceptualise the product (creating User Guide) Tue 16 Feb 1400-1500 Wk 6

✓ 7 Get ready for iterations (create development environment, split work up) Tue 2 Mar 1400-1500 Wk 7

✓ 8, 9 Iteration 1 (v1.0) (need Minimum Viable Product)
✓Writing Progress Report (participation marks) (for CS2101 Week 9.1)
✓OP2 Consultation (for CS2101 Week 9.2)

Thu 18 Mar 2359 Thu 18 Mar 2359

✓ 10, 11 Iteration 2 (v2.0) (Free peer testing to fix bugs)
✓CS2101 Lesson 10.1 → no need to go for class on Monday
✓UGDG in-class peer review (for CS2101 by Week 10.2)
✓→ put link to UGDG inside 10.2 Google Doc
✓UG Consultation @ 12pm-12:25pm (for CS2101 Week 11.1)

Tue 30 Mar 2359 Thu 1 Apr 2359

 12 Iteration 3 (v2.1) (bug fixes, no more new features)
OP2!!!
✓12.1 Demo (Mon)
✓12.2 Pitch (Thu)
✓Draft PPP (individual)
✓Consult during CS2113T tutorial

Sun 11 Apr 2359 Mon 12 Apr 2359

 13 V2.1 FINAL SUBMISSION - executable jar file, product website + UG + DG
→ submit on LumiNUS folder! → submit for BOTH CS2113T & CS2101
→ product release on GitHub
Instructions: CS2113/T - Week 13 - Project (nus-cs2113-ay2021s2.github.io)

 Mon 12 Apr 2359

 V2.1 FINAL SUBMISSION - demo video Wed 14 Apr 2359

 (Practical Exam) - Evaluation (Peer Testing) Fri 16 Apr lecture

https://nus-cs2113-ay2021s2.github.io/website/schedule/week13/project.html

Group 4 Weekly Team Meeting (Tuesdays, 1400-1500):

Meeting
Date & Time

Meeting Minutes/Notes/Agenda

Tue 2 Feb
1400-1500

Agenda:

-- decide on overall project direction: Scheduling for modules in Uni

-- Product Name: UniTracker

-- Target User Profile: This product is for NUS students and can keep track/add/edit

module information, and deadlines. This product is for users who prefer CLI over

GUI.

-- Value Proposition: Our product is user-specific as it allows users to customize

and personalize their own module information and deadlines to suit their needs.

Our product allows users to organize their own daily schedules and keep track of

their deadlines all on one platform.

-- problem to tackle: Information is everywhere

Submission: Submit your product name, target user profile, the value proposition,
and the public link to your collaborative project notes via TEAMMATES. You'll
receive an email from TEAMMATES with the submission link. Only one member
needs to submit on behalf of the team. All members can view/update the
submission.

Tue 9 Feb
1400-1500

Agenda:

-- Brainstorm user stories (at least 30)

-- Choose user stories for v1.0 (supposed to be during tutorial)

-- Fill out individual TEAMMATES (practice peer review)

Tue 16 Feb
1400-1500

Agenda:

-- Create Feature List (Conceptualise v1.0)

-- Draft User Guide → split up the sections/features among ourselves

-- Refine product design (more cohesive/smooth)

Tue 23 Feb
1400-1500

Agenda:

-- Finalise Feature List (cut down on existing features)

-- Determine work allocation: Split UG and feature list among ourselves

Sat 6 Mar
2200-2330

Agenda:

-- Set up/ Figure out how GitHub works

-- Decide what to code finish by Friday’s tutorial based on work allocation

-- Back Up meeting date: Tuesday 9 Mar 2130

What are we supposed to do by Friday:
Li Ping: Add/View module description, Add/View components and their weightage,
start on helpGraduation.

Nikhila: Main menu method on duke.java, Main menu method (case thing) for
module info on ModuleInfo.java, Delete Module method on ModuleInfo.java

Hazel: add and delete tasks, and add message to print after task

Yong Han: Links menu, Add zoom links

Sat 13 Mar
1400-1600

Discuss:
V1.0 stuffs

-​ Finalise v1.0 features

-​ User guide

for CS2101 Week 9.1: Writing Progress Report (participation marks)

for CS2101 Week 9.2: OP2 Consultation @ 12:45pm

-​ Split into demo and pitch teams
-​ What to include in both presentations

For CS2101 Week 10.1: UGDG in-class peer review

-​ Start working on UG

What we are supposed to do by Wednesday:

-​ Finish up the remaining allocated parts on the code
-​ Finish up our UG individual parts

Wed 17 Mar
2030-2130

Discuss:
-​ Runtest.sh → told to focus on JUnit tests
-​ Informal Demo screenshots for UG DONE

Sat 20 Mar
2100 (?)

Discuss:
For v2.0
-- user errors
-- make the user interface more consistent? yesu
-- storage?
-- the other features on our V2.0 list below
-- finalise features

OP2
-- choose theme? Both teams can use same theme but work on their own, so some
sort of teamwork here

To save time, some possible themes: (i feel like she prefers pictures > cartoons so i
included some themes with more like “serious” tones idk)

-​ https://slidesgo.com/theme/economics-thesis#search-Minimalist&position-5
&results-18

-​ https://slidesgo.com/theme/minimalist-grayscale-pitch-deck#search-Minimali

https://slidesgo.com/theme/economics-thesis#search-Minimalist&position-5&results-18
https://slidesgo.com/theme/economics-thesis#search-Minimalist&position-5&results-18
https://slidesgo.com/theme/minimalist-grayscale-pitch-deck#search-Minimalist&position-11&results-18

st&position-11&results-18
-​ https://slidesgo.com/theme/minimalist-hs-weekly-planner#search-Minimalist

&position-14&results-18&variant-598 +1
-​ https://slidesgo.com/theme/vacom-pitch-deck#search-Minimalist&position-2

&results-18
-​ https://slidesgo.com/theme/intellectual-property#search-Minimalist&position-

6&results-18
-​ https://slidesgo.com/theme/annual-report#search-Minimalist&position-9&res

ults-18
-​ https://slidesgo.com/theme/simple-meeting#search-Minimalist&position-16&

results-18 +1
-​ https://slidesgo.com/theme/engineering-project-proposal#search-Business&

position-7&results-18 +1

UGDG for presenting during Lesson 10.2 (Thursday of Week 10)

Sat 27 Mar
2145

Discuss:
V2.0 features
UGDG (diagrams etc.)
Questions to ask during UG consult

Sat 3 Apr
2100

Discuss:
-​ OP2 coming up - make sure content is consistent
-​ What is PPP lmao
-​ Choose theme for UGDG

→ need to put product intro at Duke | tp (ay2021s2-cs2113t-f08-4.github.io)

-​ Bug fixes for v2.1 (no more new features?)
Look through code to:

-​ Make code more protected
-​ Make code more consistent

-​ → logging?
-​ → check if storage is consistent (e.g. delete a module deletes

everything related to module - links, tasks, MCs, etc.)

Tue 6 Apr → logging

https://slidesgo.com/theme/minimalist-grayscale-pitch-deck#search-Minimalist&position-11&results-18
https://slidesgo.com/theme/minimalist-hs-weekly-planner#search-Minimalist&position-14&results-18&variant-598
https://slidesgo.com/theme/minimalist-hs-weekly-planner#search-Minimalist&position-14&results-18&variant-598
https://slidesgo.com/theme/vacom-pitch-deck#search-Minimalist&position-2&results-18
https://slidesgo.com/theme/vacom-pitch-deck#search-Minimalist&position-2&results-18
https://slidesgo.com/theme/intellectual-property#search-Minimalist&position-6&results-18
https://slidesgo.com/theme/intellectual-property#search-Minimalist&position-6&results-18
https://slidesgo.com/theme/annual-report#search-Minimalist&position-9&results-18
https://slidesgo.com/theme/annual-report#search-Minimalist&position-9&results-18
https://slidesgo.com/theme/simple-meeting#search-Minimalist&position-16&results-18
https://slidesgo.com/theme/simple-meeting#search-Minimalist&position-16&results-18
https://slidesgo.com/theme/engineering-project-proposal#search-Business&position-7&results-18
https://slidesgo.com/theme/engineering-project-proposal#search-Business&position-7&results-18
https://ay2021s2-cs2113t-f08-4.github.io/tp/

2100 → DG
→ fix bugs
→ jUnit test

Team
Member:

Main Work Allocation:

Things to do:

Everyone will contribute to the figure 6 thingy.

Architecture: plant - follow Vishruti style

Create at least 2 UML diagrams for each member.

Sequence diagram: plant

Class diagram: plant

Storage class diagram: Hazel

Ui class diagram: Hazel

Main framework for class diagrams: Yong Han

Manual testing: Nikhila

Glossary: Li Ping

User stories (joint) -- for your individual features - copy from issues

Class diagrams(joint) -- like figure 6 - the feature folder

Logging for text file - Yong Han

Do your own logging parts

Sequence diagrams (individual) -- individual methods

JavaDoc

PPP

If have time:

JUnit testing

Video thing, over weekend or do next monday

Due next wednesday.

See Yong Han Links menu, Add zoom links, UG: command summary

Wong Li Ping Help Graduation, Add/View module description, Add/View components and their

weightage, UG: editor

Hazel
Hedmine Tan

Task management, Add and delete tasks, UG: quick start

Ravikumar
Nikhila

Main menu, Main menu for Module Info, Add a review, View all reviews, Delete

module, UG: introduction, viewAModule

v1.0

Main Menu

1)​ moduleInfo
2)​ helpGraduation
3)​ manageTask
4)​ externalLinks
5)​ exit

Task management menu
1)​ Add new task:

a)​ Choose 1:
i)​ Normal Task
ii)​ Assignment
iii)​ Mid-Terms
iv)​ Finals

Module information menu
1)​ Add/View module description
2)​ Add/View components and their weightage
3)​ View All Modules
4)​ Add a review
5)​ View all reviews
6)​ Delete module
7)​ Delete tasks
8)​ Exit

Help Graduation menu

1)​ View/Edit Current CAP + Number of graded MCs
taken

2)​ Simulate future CAP
3)​ Exit

b)​ Add message to print after deleting tasks
2)​ View all tasks

E.g. ​ Here are your pinned tasks:
pinned

Here is all your tasks:
[CS2101] Task 1
[CS2113T] pinned

3)​ Pin task
4)​ Exit

Links menu

1)​ External links
External links menu

1)​ Add links
2)​ Delete links
3)​ View links
4)​ Exit

2)​ Add Zoom links (Synced to Mod Info)
3)​ View zoom links
4)​ Exit

GITHUB/SOURCETREE/INTELLIJ WORKFLOW
1.​ Pull from upstream(team’s repo) to my sourcetree master (local repo).
2.​ Push sourcetree master to my github master (own remote repo).
3.​ Make a branch.
4.​ CREATE AN ISSUE ON GITHUB
5.​ Make changes in that branch via IntelliJ.
6.​ Commit changes to the branch you made.
7.​ Push this branch onto my github master(own remote repo).
8.​ Create pull request for that branch to team repo. DON’T MERGE PULL REQUEST YET.
9.​ BEFORE MERGING PULL REQUEST, type “Fixes #<issue number>” under the PR comment (Linking a pull request to an

issue - GitHub Docs)
10.​Accept your pull request and resolve merge conflict if have.
11.​Inform group members.

QnA
Do we merge our branch to our own master branch? NAH not necessary. We only touch our own master branch in sourcetree when
we pull from upstream [Yes or No?]

We should pull into our master branch in sourcetree AND also pull into other branches in sourcetree to keep them updated.

https://docs.github.com/en/github/managing-your-work-on-github/linking-a-pull-request-to-an-issue
https://docs.github.com/en/github/managing-your-work-on-github/linking-a-pull-request-to-an-issue

V1.0 features demo

Main Menu

Module information menu

1)​ Add/View module description

2)​ Add/View components and their weightage

3)​ View All Modules

4)​ Add a review

5)​ View all reviews

6)​ Delete module

CAP simulator/calculator menu

4)​ Edit Current CAP + Number of graded MCs taken

5)​ View Current CAP + Number of graded MCs taken

6)​ Simulate future CAP

7)​ Exit

Task management menu

5)​ Add new task

a)​ Task:

b)​ Assignment/Midterm/Final Exam

6)​ Delete a task

7)​ View all tasks

8)​ Pin task

9)​ Exit

Links menu

1)​ Add links

​ ​

2)​ Delete links

3)​ View links

4)​ Add zoom links

5)​ View zoom links

Target audience: NUS Students Product Name: UniTracker
Target Users: This product is for NUS students and can keep track/add/edit module information, and deadlines. This product is for

users who prefer CLI over GUI.

Value Proposition: Our product is user-specific as it allows users to customize and personalize their own module information and

deadlines to suit their needs. Our product allows users to organize their own daily schedules and keep track of their deadlines all on

one platform.

Brainstorm Ideas for UniTracker

Main feature: Store information about modules & assignments

1.​ 2113 - description
-​ Graded components: …
-​ Deadlines: …

2.​ CAP Calculator?
3.​ Hyperlink - for NUSMods
4.​ On CLI - can search for modules on NUSMods and choose to add it in their notes

Brainstorm User Stories

Team
Member

User stories
Bolded stories: v1.0

See Yong
Han

As a user, I can add a date to a task, so that I can record when a task
needs to be done.

As a student, I want to be able to look at all my academic information on one
platform so that it is more convenient for me.

As a busy person, I want all my information to be on the same platform so that
it makes things easier for me.

As a lecturer, I want to use the same platform each time so that it is more
convenient for me.

As a forgetful person, I want a platform that sets deadlines so that it
reminds me of my next assignment submission.

As a new user, I want a guide that teaches me how to use the app so that I am
aware of the features.

As an impatient user, I want a platform that doesn’t crash or have many
bugs so I know I can trust it.

As a student that travels a lot, I want a platform that can be used offline
so that I can access the platform anytime and not worry about using
data.

As a user that prefers using CLI over GUI, I can have direct control over the
features so that I can do things more efficiently.

As a user that has used NUSMods previously, I can use the hyperlink to
access it so that I can retrieve information that might not be available on
uniTracker.

As a student, I want a link to NUS subreddit so that I can ask for help if
needed and socialize.

Wong Li Ping As a freshman, I can see the links useful for each faculty, so that I can refer to
the links I am interested base on my course.

As a potential NUS undergraduate, I can see the general links NUS
students access, so I do not miss out any important information.

As a user ready to start using the app, I can add modules and its related
information, so I keep track of my modules for the semester.

As a long-time user, I can add module grades, so I can calculate my
cumulative average point after the semester.

As a user, I can see the pending tasks that have the earliest deadline, so that I
know what I need to do. (from 2113 website lol)

As a student, who is new to the module, I can see the module information, so
that I know what to expect for the module.

As a student, I can mark my modules as completed, so that I can better plan
for my subsequent semesters ahead.

●​ As a long-time user, I can archive/hide unused data, so that I am
not distracted by irrelevant data.

^from 2113 website too, just thought this may be relevant.

As a student, I can add personal reviews on modules I have taken, so I
know what to recommend to my peers

As a student, I can key in grade details, so I can see how different
grades will affect my cumulative average point.

As a student, I can add module descriptions to each module, so I am
aware of the objectives of the module.

Hazel
Hedmine Tan

1.​ As a student, I can list out my module assignments so that I know
the component weightage of my assignments for different
modules.

2.​ As a TA, I can keep track of what to do for the modules I am TA-ing so
that I will stay on task while completing my own studies.

3.​ As a student planning modules for a semester, I can get a link to
module information on modreg so that I won’t need to always open up
modreg.

4.​ As a student, I can keep track of my grades and estimate my cap so
that I am aware of my academic progress.

5.​ As a student that likes to use planners, I can have one platform to
keep track of my todolist, module and grades information so that I don't
have to refer to multiple sites or platforms.

6.​ As a student, I can see pending assignments according to the closest
deadlines so that I will know which assignment to prioritise.

7.​ As a student, I want to know the grades I need to get for my modules
to reach my expected CAP, so that I will know how to prioritise or how
much effort to put into my modules.

8.​ As a student, I want to keep track of my grades of previously taken
modules so that i know what grades I got and what modules I have
SU-ed

9.​ As a student, I want to see the number of SU MCs I have left so that I
can plan my modules accordingly.

10.​As a student, I want to create and view a weekly todo list so that I can
plan in advance and help me manage my time well.

11.​As a student, I want to be able to categorise my tasks to normal tasks
or assignments and exams.

Ravikumar
Nikhila

1.​ As a new user, I can have a list of command suggestions to
choose from so that it will be easy for me to navigate the
platform.

2.​ As a long-time and regular user/student, I can rank / edit the priority
level for the different tasks/information I have.

3.​ As a student, I can see the percentage of my grades for my
assignments and exams so that I can prioritise the ones with a bigger
percentage.

4.​ As a student, I can see how many MCs I have yet to complete to
satisfy graduation requirements, so that I can see my progress in
terms of graduation, and not just the upcoming semester.

5.​ As a student, I can view all my current modules’ integrated deadlines
and exam dates so that I can plan my revision accordingly and pace
myself.

6.​ As a student, I can add the approximate time taken to complete
different tasks so that I can submit my work on time. (v2 has ranking
according to duration)

7.​ As a regular user, I can create tags for different modules, information
and tasks so that I can categorise my module information.

8.​ As a TA, I can include the module information of classes that I am
teaching and integrate it with my timetable.

9.​ As a student heavily involved in CCA/with other interests, I can block
out time slots to dedicate a recommended time outside of academics.

10.​As a student with financial constraints, I can track my expenses for the
week/month and ensure I stay within my budget?

11.​As a student with health issues, I can track my appointments/food and
calories I take/the time I spent outdoors or exercising/the amount of
water I drink/record my temperature and other symptoms so that I can
take care of myself.

12.​As a student, I can manually add follow-up tasks to be automatically
added onto the list after I complete a task (e.g. finish a module -> finish
module survey, add module review, etc.)

13.​As a student, I can add a message that I want to be printed out
after I complete a task, so that it can remind me about future
tasks/what I should do next.

Feature Examples
Color code:
User input
Prompt

moduleInfo ->print menu (1-4)
1
-> What module would you like to modify? [moduleName]
Cs2113t ownon dao1704x -> logically no one would do this
-> This module doesn’t exist, would you like to add it? [Y/N]
Y
-> Are you a student or TA? [student/TA]
student
-> Hey student ! <print out 1-7>
->What would you like to do?
1
<if module info alr exists>
-> Your previous module info: ………………………….
-> Would you like to redo the information? [Y/N]
Y
-> <same as below>
-> Input module info:
Blah blah blah
-> info added! <print 1-7 again>
8
-> <print out main menu 1- 4>

helpGraduation Prompt: <helpGraduation front page>
/calcap
Prompt: <list missing grade info e.g. cg1112 cs2040c, else calculate
existing module grades>
/sim calcap

Prompt: enter <MCs> <expected grade>
4 A
Prompt: enter <MCs> <expected grade>
4 A+
Prompt: enter <MCs> <expected grade>
4 B+
done
Prompt: <Stops prompting for MC and expected grades>
Prompt: <prints calculated CAP and exits to helpGraduation front page>
/suleft
Prompt: <list number of su left and exits to helpGraduation front page>
/1kleft
Prompt: <list number of 1k MCs available to take and exits to
helpGraduation front page>

manageTask -> print task menu
2
<say after inputting task>
-> what message would you like to receive upon completing this task?
Woohoo! Congrats, you’re free!
-> message saved.
-> Is this your TA work or Student work? [TA/Student] <assume TA>
TA
-> I have tagged this under TA work.
3
-> here are your tasks sorted by the deadlines! <print sorted list>
4
-> print main menu (exited already)
 HI I think we might have to discuss the deadline/todo/event bc it shouldnt
be exact same as ip i think otherwise itll just be copying :(so i think this
part we can discuss together on thurs!!

externalLinks -> print menu (1-4)
4
-> <print links menu 1-3>
1
-> <print out default links: NUSMod, Luminus, Edurec, Talentconnect>
-> <print external links menu 1-3>
1
-> input new link:
Smth.com
-> <print out default + added links>
-> <print out external links menu>
3
-> <print links menu 1-3>
2
-> <print out current zoom links if exist>
-> <print zoom links menu 1-3>
2
-> what is the name of the link you want to delete?
Cs2113t lab
-> cs2113t lab deleted! <print out zoom links + menu 1-3>
3
-> <print out links menu 1-3>
3
-> <print out main menu 1-3>

V2.0

Logo:
https://patorjk.com/software/taag/#p=display&h=0&v=0&f=Train&t=UniTracker%0A%
0A%0A%0A%0A%0A%0A%0A
CHANGE DUKE logo​

Storage (create class, file reader…)

-​ module info[N]
-​ Task management [H]
-​ Current cap [LP]
-​ Links [YH]

Main Menu

1)​ moduleInfo
2)​ helpGraduation
3)​ manageTask
4)​ externalLinks
5)​ Exit

Print pinned task [h]

Module information menu

1)​ Add new module[N]
2)​ View a module[N]

[INTEGRATION; our own respective parts]
CS2113T

Description: werwe

MC:

Help Graduation menu
1)​ View/Edit Current CAP + Number of graded MCs taken
2)​ Simulate future CAP
3)​ Exit

Task management menu

1)​ Add new task:
Only add tasks to modules that exist
These are the modules:

-​ CS2113T
-​ CS2101

-​ Error message: add module from moduleinfo [h]

a)​ Choose 1:

i)​ Normal Task
ii)​ Assignment
iii)​ Mid-Terms
iv)​ Finals

Add task suggestion for each task type (top 2 common ones)
b)​ Add message to print after deleting tasks

2)​ Mark/Unmark Task as Done (message prints here)[H]
3)​ Delete task
4)​ View all tasks

sort according to time /module name

Components:
W - 3
Wq -239%

Tasks:
Wqemq
Weqe

Zoom links:
Qeeqeqwq

Review:
Wqeqweq

3)​ Add/View components and their weightage
4)​ Add module MC (LP)
5)​ Add module grade (LP)
6)​ View All Modules
7)​ Add new task[H]
8)​ Add zoom links[YH]
9)​ Add a review
10)​View all reviews
11)​Delete module
12)​Delete task[h]
13)​Delete zoom links[YH]
14)​Delete review[N]
15)​Exit

5)​ Pin task
6)​ Exit

Links menu

1)​ External links
External links menu
(Add default links) [YH]

1)​ Add links
2)​ Delete links
3)​ View links
4)​ Exit

2)​ Add Zoom links (Synced to Mod Info)
3)​ View zoom links
4)​ Delete zoom links[YH]
5)​ Exit

Things to fix:

1)​ [DONE]Module info menu prints extra line before user input [N]
2)​ Organise moduleInfo menu: Small horizontal lines to separate features (separate module stuff, tasks, links)
3)​ [DONE]Pinned tasks at top of welcome page after unitracker message [H]
4)​ [DONE]Move “returning to module info menu” message to main code [N]
5)​ [DONE]Rename Storage class [N]
6)​ [DONE]Storage methods very bulky in main code [N]
7)​ Standardise “Return to smth menu …” message
8)​ [DONE]Add horizontalLine to readCommand method (so line will print after every user input) [H]
9)​ “Welcome to CAP Simulator” + remove extra blank line after menu printed out [LP]
10)​After links menu should not have horizontal line, line should be after user input
11)​[DONE]User Guide Bug - fix website version (from 3.1.5 onwards) [N]
12)​Different colour for inputs in UG
13)​Collapsible section for DG

-- fix our own bugs; make our own parts better
-- zoom links delete method
-- Mark as done
-- Storage to load and store information
-- FAQ section in UGDG
-- universal quit command /q - exit to main menu
for sorting: can have more filters based on how many MCs, can S/U or not…
-- sorting tasks based on estimated time taken
Sort by:
-- dates/time
-- how many MCs
-- weekly to-do list: with time slots for CCA/Academics
-- tags
-- help command

-- As a student, I can manually add follow-up tasks to be automatically added onto the list after I complete a task (e.g. finish a module
-> finish module survey, add module review, etc.) (lp - that would be a diff layout from what we are heading for i supposed but really
interesting. So it's like you key in all the deadlines first. When you list the work, it's not categorised by modules+earliest within the

module BUT it shows the work first to be done in each module + auto-follow up, V V interesting!! hahah - I would suggest maybe can
just do for tests and exams that has fixed schedule?)
AUTOMATED TASK SUGGESTION
-- Do you want to add this for next week? - since it is tiring to keep adding it every week
--top 2 frequent suggestions
REMINDERS SECTION? → can use current date and time to check if smth has to be reminded

Deleted features:
-- nusMods integrated if possible??
--prerequisite tracker?? (method: extract info from modreg (in a jar file?)then package it into our project, then somehow extract the
info from there. But file may be very large. Seems very hard so not sure if we should do it cause idt it will give us extra marks since
we’re only supposed to spend around same level as ip) - (nikhila) yea this seems too much for a simple project so maybe we should
drop it; INSTEAD we can ask user to input messages to be printed out once a task is complete e.g. if (CS1010 is completed) -> print
“yay you can now code in C! You can now take CS2040C…”
-- print follow-up modules

Tips to make a good User Guide (UG):

-​ Bulleted points / numbered steps
-​ Screenshots with labels, arrows
-​ Icons to show the user what to click
-​ Tips (1-liners)

Tips to make a good Developer’s Guide
-​ How to use the guide
-​ How to use the product
-​ Diagrams
-​ Concise
-​ Code examples
-​ Consistent! Use same formats for every team member

Things we lack for ug:

Intro

1)​ Target audience(identify audience clearly) and purpose of the user guide
2)​ Clear and complete information on how to use the guide (how to navigate doc, meaning of icons and formatting etc), legend

for colors/icons/whatever used
3)​ Explain what gui and CLI is (in intro paragraph)

Instructions for each implementation

1)​ Include warnings, tips, important notes
2)​ Include expected message for wrong input
3)​ For us: discuss formatting, what should be bolded, marked up or whatever

-​ Less draggy
-​ Example formatting

Language:
1)​ YOU language e.g. “You can do this…” instead of “User can do this…”

-​ Standardise this!!!!

Presentation:

1)​ For us: use better theme?

Things we lack for dg:

Intro

1)​ Purpose for developer guide
2)​ Target reader should be identified and addressed directly
3)​ Explanation on how to use user guide (meaning of icons, colors etc)

Description of system design

1)​ Describe how each enhancement is linked to/situated within the overall architecture system
2)​ Describe how system reacts to user input
3)​ UML diagrams with clear descriptions

Presentation

1)​ Graphics should be labelled

Questions for CS2101 User Guide Consult

1)​ Are using colors recommended to customize our user guide? For example, different colors for headers. Can - but don’t have
to.

2)​ Which User Guide link will we be graded on? Will it be the one we sent to the Prof?
3)​ How should we structure our examples? RN for each example, it is input output with many intermediate input output for a

command (e.g. adding of tasks). In this case, should we only give only the first and final input and output?
4)​ Can we simply give format for each command, however this will skip the intermediate outputs in the UG.
5)​ Put intermediate inputs inside an appendix?
6)​ What sections is the Prof looking for?
7)​ Do we need an example for every command? Big block of code for input and output

(not recommended)
Collapsable section:
https://gist.github.com/pierrejoubert73/902cc94d79424356a8d20be2b382e1ab

Instead use hyperlinks to move to another section (e.g. back to Table of Contents)
Big block of code for input and output
Lesson 4.1 slide 96 - convert to PDF for submission!

RAW from Prof Catherine:
Table of contents is OK. which is fine. Think about introduction. Front matters 20%. Identify who the users are, who the ug is for.
Keep track of what. All information, what information? RN nothing is known for front matters, at most pass.

Instruction is 50%. Make it less dragging. Make sure input and output are clear to show it is a certain command.

Fonts. Paragraphing. Consistent spacing has to be done.

Need to use more YOU language.
3.1.1 - have consistent language.

https://gist.github.com/pierrejoubert73/902cc94d79424356a8d20be2b382e1ab

I wrote this on previous page! Can add on to there. Okay, can rephrase all this up there.

