Move DOM attributes to prototype chains
What may happen and how to fix

Author: Yuki Shiino <yukishiino@chromium.org>

Typical issues
The followings are typical issues that web developers would face to.

Issue 1: JSON.stringify(domObject) returns {}

or some properties are missing in the returned object
JSON. stringify stringifies only own properties, and does not traverse prototype chains.
Before the change, we had implemented DOM attributes as own properties, so
JSON. stringify worked for DOM attributes, but it was incorrect. The correct behavior is that
DOM attributes are ignored by JSON. stringify unless DOM object has an own serializer.

How to fix?
Create a temporary object (regular object, not a DOM object) which stores the values of DOM
attributes you’d like to stringify.
var tmp = {attrl: domObject.attrl, attr2: domObject.attr2};
var s = JSON.stringify (tmp)
More generally, you can copy all the DOM attributes in a DOM object into an Object and then
stringify it.
function stringifyDOMObject (object)
{
function deepCopy (src) {
if (typeof src != "object")
return src;
var dst = Array.isArray(src) ? []1 : {};
for (var property in src) {
dst [property] = deepCopy(src[property]):
}
return dst;
}
return JSON.stringify (deepCopy (object));

}
var s = stringifyDOMObject (domObject) ;


mailto:yukishiino@chromium.org

For those who are working on specs, consider to support stringi fier so that
JSON. stringify work for a DOM object.

Issue 2: Assighment to readonly attributes throws an exception in strict mode
In strict mode, assignment to readonly DOM attributes throws a TypeError exception, as the
Web IDL spec requires. After the change, Blink detects this error more correctly and accurately.

Example
function foo () {
'use strict';
document.contentType = 'foo';
}
foo();
where document.contentType is a readonly attribute, so a TypeError will be thrown.
When run on console, an error message looks like:
Uncaught TypeError: Cannot set property contentType of #<Document>
which has only a getter
at foo (<anonymous>:2:53)
at <anonymous>:2:1
at Object.InjectedScript. evaluateOn (<anonymous>:895:140)
at Object.InjectedScript. evaluateAndWrap (<anonymous>:828:34)
at Object.InjectedScript.evaluate (<anonymous>:694:21)

How to fix?
1. Remove such code that assigns to readonly DOM attributes.
2. Surround such code with try-catch block and handle the error appropriately.
3. Stop using strict mode (not recommended). Then, assignment to readonly attributes is
simply ignored. The value doesn’t change as same as before.

Issue 3: Cannot detect a feature that must be existing by using hasOwnProperty.
Since DOM attributes were moved to prototype chains, the attributes are no longer own
properties. So domObject.hasOwnProperty ('attribute') returns false. If you're
trying to detect a feature by using hasOwnProperty, it fails and seems as if the feature were
not supported.

Example
if (!domObject.hasOwnProperty ('maybeSupportedFeature')) {
// A feature is not supported.


https://heycam.github.io/webidl/#idl-stringifiers

How to fix?
Use in operator instead.
if (! ('maybeSupportedFeature' in domObject)) {
// A feature is not supported.



	Move DOM attributes to prototype chains 
	What may happen and how to fix 
	Typical issues 
	Issue 1: JSON.stringify(domObject) returns {}​​or some properties are missing in the returned object 
	How to fix? 

	Issue 2: Assignment to readonly attributes throws an exception in strict mode 
	Example 
	How to fix? 

	Issue 3: Cannot detect a feature that must be existing by using hasOwnProperty. 
	Example 
	How to fix? 



