
Bukkit Metadata API Usage
Guide
Overview:
The Bukkit Metadata API privides a new framework for exchanging information between plugins
without requiring plugins to be dependant on each other. Metadata providers attach metadata
values to existing Bukkit entities such as players, blocks, and worlds. Metadata consumers then
read these values as needed. Example uses of Metadata are:

●​ Attaching chat prefixes to Players
●​ Marking areas of the world as “owned” by a player
●​ Publishing a player’s bank account balance, factional allegiance, or NPC emnity

The following architectural goals were used when developing the Metadata framework:

●​ All metadata is lazy. Metadata values are not actually computed until another plugin
requests them. Memory and CPU are conserved by not computing and storing
unnecessary metadata values.

●​ All metadata is cached. Once a metadata value is computed its value is cached in the
metadata store to prevent further unnecessary computation. An invalidation mechanism
is provided to flush the cache and force recompilation of metadata values.

●​ All metadata is softly referenced. The metadata framework only keeps soft references to
the values in metadata as a way to facilitate garbage collection. Since all metadata is
both lazy and cached, metadata values will be transparently regenerated should the
garbage collector purge the values due to memory constraints.

●​ Metadata access is thread safe. Care has been taken to protect the internal data
structures and access them in a thread safe manner.

●​ Metadata is exposed for all objects that descend from Entity, Block, and World. All Entity
and World metadata is stored at the Server level and all Block metadata is stored at the
World level.

●​ Metadata is NOT keyed on references to original objects - instead metadata is keyed off
of unique fields within those objects. Doing this allows metadata to exist for blocks that
are in chunks not currently in memory. Additionally, Player objects are keyed off of player
name so that Player metadata remains consistent between logins.

●​ Metadata convenience methods have been added to all Entities, Players, Blocks,
BlockStates, and World allowing direct access to an individual instance's metadata.

●​ Players and OfflinePlayers share a single metadata store, allowing player metadata to

be manipulated regardless of the player's current online status.

Metadata Keys
All metadata values are referenced by a unique string called the metadataKey. Most metadata
keys are plugin specific, but common ones like “ChatPrefix” can be shared between many
plugins. To get or set a metadata value you only need to know the metadataKey. You don’t need
to know anything about any other plugin that will read or write to that metadata. Multiple plugins
can publish values for the same metadataKey without conflicting. If two plugins publish a
metadata value to the same object with the same metadataKey, both values will be available for
metadata consumers to use.

Metadatable Objects and Getting/Setting Metadata

Game objects that implement Metadatable are able to have metadata set on them. All
Metadatable objects have four key metadata methods:

1.​ setMetadata(String metadataKey, MetadataValue newMetadataValue);
2.​ getMetadata(String metadataKey);
3.​ hasMetadata(String metadataKey);

4.​ removeMetadata(String metadataKey, Plugin owningPlugin);

Types of Metadata

There are two standard types of metadata provided by the Metadata framework.

●​ LazyMetadataValue - these metadata values are computed only as needed. When you
create a LazyMetadataValue, you must pass a Callable<Object> implementation to the
constructor so that the LazyMetadataValue knows how to ask your plugin for the latest
value. By default, a lazy metadata value will remember the last value it computed until its
invalidate() method. LazyMetadataValues also have an optional cache strategy which is
discussed below.

●​ FixedMetadataValue - a specialization of LazyMetadataValue that always returns the
same result when asked for its value. Once constructed with an initial value, these
objects never change.

Caching Strategies
If you choose to publish a LazyMetadataValue instead of a FixedMetadataValue, you have the
option of using one of three possible cache strategies. A cache strategy is a way of telling the
metadata value how frequently it should ask your plugin for a new value.

●​ CACHE_AFTER_FIRST_EVAL - this is the default caching strategy. When used, a
metadata value will compute and cache its value the first time it is accessed and only
recompute if the invalidate() method is called or the garbage collector collects the
internally cached value.

●​ NEVER_CACHE - when this caching strategy is used, the metadata value is recomputed
every time it is asked for.

●​ CACHE_ETERNALLY - when this caching strategy is used, the metadata value will only
be computed the first time it is accessed. Future calls to invalidate() will be ignored. This
strategy is normally only used by FixedMetadataValue objects.

Sample Plugin
A sample plugin that uses the metadata framework can be found at
https://github.com/rmichela/MetadataDemo/blob/master/src/com/ryanmichela/metadatademo/M
etadataDemo.java

	Bukkit Metadata API Usage Guide
	Overview:
	Metadata Keys
	Metadatable Objects and Getting/Setting Metadata
	Types of Metadata
	Caching Strategies
	Sample Plugin

