
Text in black gives basic requirements. Text in blue gives advanced requirements. Every student 
at the beginning of the exam picks a favourite part out of the four below. Then a question is 
drawn uniformly and independently at random from each part. A student should answer the 
basic requirements in all questions and advanced in the question in the favourite topic. 
 
In general, by a sketch of a proof we mean understanding statements of consecutive steps of 
the proof and a general idea how they are proved. A full proof means ability to reproduce a 
complete argument on the board, possibly with some slackness in numerical constants. 
 
Part 1: Basics (Lectures 1, 2, 3) 

1.​ Basic definitions: parameterized problem, XP, fixed-parameter tractability. Examples of 
different problems and parameterizations. 2^k * (n+m) FPT algorithm for Vertex Cover, 
and any improvement to c^k * (n+m) for some c<2. k^O(k) * (n+m) FPT algorithm for 
Feedback Vertex Set via branching (with proof). [Platypus 1 and 3.1-3.3] 

2.​ Definition of kernelization. Proof that the existence of any kernelization algorithm is 
equivalent to the problem being FPT. Some easy examples of problems with polynomial 
kernels, including a quadratic kernel for Vertex Cover. Sunflower Lemma (statement or 
full proof) and its application for a O(k^d) kernel for d-Hitting Set. [Platypus 2.1, 2.2 and 
2.6] 

3.​ Crown Decomposition Lemma (statement and sketch or full proof) and its application to 
give a 3k kernel for Vertex Cover. [Platypus 2.3] 

4.​ Iterative compression: presentation of the technique and its applications in two of the 
following problems: Vertex Cover, Feedback Vertex Set, Feedback Vertex Set in 
Tournaments, Odd Cycle Transversal. One of these examples should be the 5^k * 
poly(n) algorithm for Feedback Vertex Set. [Platypus 4, scanned notes] 

5.​ 3^|T| * poly(n) algorithm for Steiner Tree and 2^|U| * poly(|U|+|F|) algorithm for Set Cover 
via dynamic programming on subsets. Two more examples of FPT algorithms obtained 
by dynamic programming on subsets. [Platypus 6.1] 
 

Part 2: Color coding, algebraic techniques, repsets (Lectures 4, 7, 8, 11) 
1.​ Color coding and random separation with two (three) different applications, including 

k-Path in time (2e)^k * poly(n) [Platypus 5.2.1], Subgraph Isomorphism in bounded 
degree graphs [Platypus 5.3] and long directed cycle in 4^k*poly(n), [Scanned notes, 
paper]. Statement of derandomization through perfect hash families and universal sets 
[Platypus 5.6]. 

2.​ Inclusion-Exclusion principle and at least one algorithmic application [Platypus 10.1]. 
Definitions of zeta and Moebius transforms, Inversion formula (statement), Yates’ 
algorithm (computing all values of zeta/Mobius transform in 2^n*poly(n) time) [Platypus 
10.2], fast cover product and fast subset convolution [Platypus 10.3], with applications to 
dynamic programming over tree decomposition [Platypus 11.1]. See also [scanned 
notes] 

3.​ k-Path in 2^k*poly(n) time by a reduction to detecting monomials linear in a set of 
variables (proof that the monomial linear in x1..xk can be detected in a polynomial which 
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is k-homogeneous n x1..xk by a randomized algorithm in time 2^k) [scanned notes]. 
Remark: alternative exposition, by a direct 2^k algorithm for k-path [Platypus 10.4.1] is 
also permitted. 

4.​ Definition of representative sets. Existence and computation of a small representative 
set using Gaussian elimination (statement or full proof) [Platypus 12.3.1]. One (two) 
examples of applications of parameterized algorithms (e.g. k-path in 5.19^k*poly(n) 
[scanned notes], kernels for d-Hitting Set, d-Set Packing [Platypus 12.3.2, 12.3.3]) 

 
Part 3: Treewidth, cut problems and applications of LP (Lectures 5, 6, 9, 10) 

1.​ Definition of treewidth, nice tree decompositions, example of dynamic programming over 
a tree decomposition, Courcelle’s theorem (statement), 4-approximation algorithm for 
treewidth in FPT time (statement or full proof). [Platypus 7.1-7.4 and 7.6] 

2.​ Grid minor theorem and its applications for parameterized algorithms. Treewidth and grid 
minors in planar graphs. Bidimensionality: applications in exact and parameterized 
algorithms. Baker’s technique in parameterized algorithms. Proof that the treewidth of a 
planar graph is linear in the radius. [Platypus 7.7] 

3.​ Definition of important cuts. Upper bound on the number of important cuts of size at most 
k (statement and full proof). Application for a parameterized algorithm for Edge Multiway 
Cut in time 4^k * poly(n). [Platypus 8.1-8.3] 

4.​ FPT algorithm for Directed Feedback Vertex Set (sketch or full proof) [Platypus 8.5 and 
8.6] 

5.​ Nemhauser-Trotter Theorem (proof) and its application in kernelization of vertex cover 
[Platypus 2.5]. LP-guided branching: 4^(k-LP)*poly(n) algorithm for vertex cover 
[Platypus 3.4]. Also see [scanned notes] 
 

Part 4: Lower bounds (Lectures 12, 13, 15) 
1.​ Basic definitions: FPT reductions, W[1]- and W[2]-hardness and completeness. 

Examples of W[1]- and W[2]-problems with corresponding reductions (including 
examples with gadgets for choosing edges). [Platypus 13.1, 13.2 and 13.6] 

2.​ Definitions of ETH and SETH. Transferring ETH/SETH lower bounds via reductions. 
Examples, including non-linear parameter blow-ups. Statement of the sparsification 
Lemma, refutation of subexponential algorithm for 3SAT in terms of formula size 
(statement or full proof). Proof that SETH implies ETH. [Platypus 14.1, 14.2, 14.3.1] 

3.​ Lower bounds for W-hard problems under ETH. Hardness of Clique under ETH 
(statement and sketch, or full proof). [Platypus 14.4] 

4.​ Hardness based on SETH: k-DominatingSet: n^(k-epsilon), Independent Set for graphs 
with given path decomposition of width p: 1.99^p*poly(n), 2-Orthogonal Vectors: n^1.99, 
1.4999-approximation of Diameter in n^1.999 time for sparse graphs (E=O(V)). Basic 
requirenents: all formulations, at least one reductions; advanced: at least 2 reductions, 
including Independent Set. [Platypus 14.5 + scanned notes] 
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