
Vanadium Proxy Protocol
suharshs@google.com
March 2, 2016

Abstract
Overview

Definitions
Encapsulated Flows

Protocol

Abstract
Vanadium assumes an environment composed of various networks, e.g. public internet, private
intranets, NFC, bluetooth, etc. Communication between endpoints within a single network can
always be initiated, but this is not true for endpoints in different networks. Vanadium solves this
issue with Proxies.
Servers can make connections to proxies that live outside of the Server’s network. The Proxy
will route incoming connections from Clients to the Server, making the Server accessible outside
of its network. Proxies enable end-to-end connections between Servers and Clients while
keeping the data incomprehensible to the proxy.
There are cases where we want to have multiple Proxies between a dialing and accepting
process (i.e. to traverse multiple network/protocol boundaries).
This doc describes the implementation of the Vanadium proxy which addresses the following
issues:

● Secure end-to-end connections between servers and clients, where malicious proxies
cannot “spy” on RPCs.

● Support for multiple proxy hops.
● Rendezvous listening: as proxies gain and lose new endpoints (due to connectivity

issues, etc.), they communicate these changes to the server, or intermediate proxies, so
that the server can mount up to date endpoints.

Overview

Definitions
A Conn is a bidirectional byte stream between two processes.
Flows are encrypted, authenticated byte streams between two Vanadium processes. Flows are
multiplexed on Conns.
Flow Managers that manage the creations of Conns and Flows. Each Vanadium process has a
Flow Manager with a globally unique id. This id is called a RoutingID.

mailto:suharshs@google.com


RoutingIDs are self-selected by Flow Managers. Nothing prevents two Flow Managers from
using the same RoutingID. In the case that this happens, the security model will prevent
information leaks.
A local route is a local routing key used between intermediate proxies.
And endpoint contains all the information needed to connect to a peer (plus some security
information, which we will ignore in this doc). It has the form
host:port@route0...routeN@RoutingID.
Code

Encapsulated Flows
The proxy protocol is implemented by encapsulating Flows on other Flows. See below:

In the image above there are four processes: Client C, Server S, and Proxies PA and PB. C
wants to create a Flow to S, but S is only accessible through both proxies PA and PB. Flows are
created between adjacent processes, (C,PA), (PA,PB), (PBS). The proxies copy bytes from
incoming flows to outgoing connections.

Protocol

Messages
The proxy protocol consist of the following three messages sent on Flows.

// ProxyServerRequest is sent when a server wants to listen through a proxy.
type ProxyServerRequest struct{}

// MultiProxyRequest is sent when a proxy wants to accept connections from
another proxy.
type MultiProxyRequest struct{}

// ProxyResponse is sent by a proxy in response to a ProxyServerRequest or
// MultiProxyRequest. It notifies the server of the endpoints it should publish
// or notifies a requesting proxy of the endpoints it accepts connections from.
// Subsequent ProxyResponse messages are sent as changes to the endpoints occur
type ProxyResponse struct {

Endpoints []naming.Endpoint

https://vanadium.googlesource.com/release.go.v23/+/master/flow/model.go


}

Code

Servers listening through proxies.

In the image above S wants to be proxied through P. This is what takes place:
1. S dials a Flow to P. P and S are authorized here. S sends a ProxyServerRequest to P on

this Flow.
2. P’s Flow Manager stores the Conn from S in its cache, keyed by the RoutingID of S.

Note that we don’t use a local route in the endpoint here.
3. P sends S the a ProxyResponse with encoded endpoint for S on the Flow. If P is also

proxied, this will be of the form hostX:portX@...routeP@RoutingIDS. Otherwise the
endpoint will be of the form hostP:portP@@RoutingIDS.

4. S can now publish its Client accessible endpoint.
5. S will continue to listen on the dialed Flow for any new ProxyResponse messages and

update its published endpoints accordingly.

Proxies listening through proxies

In the image above PB wants to be proxied through PA. This is what takes place:
1. PB dials a Flow to PA. PA and PB are authorized here. PB sends a MultipleProxyRequest

on this Flow.
2. PA’s Flow Manager stores the Conn from PB in its cache, keyed by the RoutingID of PB.

PA allocates a local route to identity PB. The RoutingID of PB is now stored in a map in PA

keyed by local route. This local route is much smaller than the global ID, to reduce the
size of the resulting Server endpoint.

https://vanadium.googlesource.com/release.go.v23/+/master/flow/message/message.go


3. PA sends a Proxy Response to PB with the encoded endpoint for PB on the Flow. If PA is
also proxied, this will be of the form hostX:portX@...routeArouteB. Otherwise the endpoint
will be of the form hostA:portA@routeB.

4. Now PB can handle any proxy requests it has.
5. PB will continue to listen on the dialed Flow for any new ProxyResponse message from

PA and send ProxyResponse update messages to any proxied Servers accordingly. This
allows Proxies to start up in any order and the server to eventually get all of its
accessible endpoints.

Clients connecting through a proxy
Client connects to Proxy.

In the image above, C wants to connect to a Server that is proxied through P. This is what takes
place between C and P:

1. C has to dial a Server with endpoint hostP:portP@routex,...,routez@RoutingIDS. It
connects to hostP:portP, creating a Flow to P. P is authorized by C here. C sends a Setup
message to the end server on the Flow just established.

2. Now, both sides turn off C/P encryption/decryption on the Flow. This is because all data
messages sent and read by C after this point will be encrypted between C and S.

3. P handles the situation in the two cases below.

Proxy connects to Proxy.
If P needs to connect to another Proxy to access S (i.e. if there are local routes in the endpoint).

In the image above, PA receives message that needs to be routed to PB. This is how it happens:
1. PA receives an incoming Setup message (see above) on the incoming Flow.
2. PA reads the destination endpoint hostX:portX@routeB…@RoutingIDS from the Setup

message. Since there is are routes in the endpoint, PA looks up the first route, routeB in
its local route cache. It finds global RoutingIDB.



3. PA uses RoutingIDB to dial a Flow to PB on the Conn cached by the Flow Manager on PA.

4. PA alters the Setup message by remote its routeB from the endpoint and sends the new
Setup message to PB on the Flow it just created.

5. Both sides turn off A/B encryption/decryption on the Flow. PA now starts two loops that
copy bytes between the incoming Flow to the Flow to PB.

6. PB either repeats these steps if forwarding to another proxy, or follows the steps below.

Proxy connects to Server.
If P can directly access S (i.e. There are no routes in the endpoint, just a RoutingID)

In the image above, P receives a message that needs to be routed to end-server S. This is how
it happens:

1. P receives an incoming Setup message (see above).
2. P reads the destination endpoint hostX:portX@@RoutingIDS from the Setup message.

Since there are no routes in the endpoint, P reads the RoutingIDS from the endpoint.
3. P uses RoutingIDs to dial a Flow to S on the Conn cached by the Flow Manager on P.
4. P forwards the Setup message as-is to S on the Flow just created.
5. Both sides turn off P/S encryption/decryption on the Flow. P now starts two loops that

copy bytes between the incoming Flow to the outgoing Flow to S.

At this point, the Client and Server have a unencrypted bytes stream connecting them that
spans multiple proxies. The client proceeds to send a Setup message intended for S on this
byte stream. The Flow creation process now just follows as usually.
Additionally since the Server’s RoutingID is in the endpoint that the Client used to dial it, the
Client can use the RoutingID to cache and reuse this Conn.

Implementation
The implementation of the proxy can be found here.

https://vanadium.googlesource.com/release.go.x.ref/+/master/services/xproxy/xproxy/

