
GreasedScotsman’s Boneworks Modding Development Series
Making Melon Vault and the Modding Tools To Power a Custom Boneworks Campaign

Dedication
The “shoulders of giants” quote definitely applies when I consider my involvement with Boneworks
modding. If there is any appreciation for the mods and custom content I have made for Boneworks,
please understand that what I created was only possible thanks to the Herculean efforts of several
community members, coders and hackers that put their talents to effective use well before I started
teaching myself C# or launching Unity for the first time.

In no particular order, I humbly thank: ​

●​ HerpDerpinstine and the rest of the Lava Gang, as MelonLoader was the key that unlocked
modding in the first place.

●​ Maranara, who primarily maintains and has vastly expanded the CustomMaps mod and the
CustomMapTemplate. The “Hall of Egress'' was the first custom map to show me a hint of what
was possible, and inspired me to create my own map/campaign. Mara also agreed to lend his
art talents to Melon Vault, helping to turn it from a ProBuilder boxy mess into a visual beacon of
custom environmental art.

●​ TabloidA, who spent countless hours dedicating himself to my crazy ideas and whose
unwavering quality and talent pushed the visual and musical bar for Melon Vault beyond
anything I could have imagined.

●​ SomeoneSomewhere for his early contributions with Herp to the CustomMaps mod.
●​ Trevtv, who’s ingenuity provided critical breakthroughs in the initial forays of spawning items in

maps from the editor and whose patience and understanding helped me grasp the mod creation
process, all while I stumbled through teaching myself a new coding language and Unity, itself.

●​ Gnonme and Chromium, for making what I consider to be the backbone of all Boneworks
mods, the CustomItemsFramework and BoneworksModdingToolkit (now known as
“ModThatIsNotMod”).

●​ Every mod author, weapon designer, model maker, play tester and community member who has
provided feedback or contributed to the Boneworks modding scene. If I’ve not given credit
where it is due, please contact me in Discord so I can correct the record.​

Origins
This guide contains SPOILERS for Melon Vault: Showdown. You have been warned. The beginning of
this document will be “blog-like,” as I think the context that describes the state of modding and the
people who helped shape the suite of tools we use today are worth knowing as it gives perspective on
the community’s collective accomplishments. Later sections will become more technical, with
screenshots and code snippets that will hopefully help readers understand how the
CustomMapInteractions and Custom Map Unity Tools work and how they can be improved or adopted.
I arrived relatively late to the Boneworks modding scene. I had paid keen attention to its progress as a
long-time modder for Doom, Quake and other titles, but knew once I dove into those waters, it would be
all I wanted to do, and also knew my Collectibles and Lore guide contributions to the community would
suffer in quality if I shifted my focus too soon.

Shortly after the Gun Range/[REDACTED] Chamber update hit in April, 2020, the modding community
made strides figuring out many of the essentials: MelonLoader released the same month and
experiments with custom weapons and items would follow shortly after. CustomMaps would release in
early May and the CustomItemsFramework entered the fray in early June1. At the time, items could
only be spawned with the Utility Gun. Arbitrary geometry from Unity could be added into a current
Boneworks scene, like Blank Box, and this geometry could have materials applied. Maps could be lit
with a mixture of baked and real-time lighting, and skyboxes became possible after it was discovered
that the lights and fog settings could be removed from the base map. By the time I got involved, a
number of mods had already been written that could alter how the game played, like giving the player
super strength or complete control over time. These mods were accomplished by building a separate
DLL that MelonLoader would recognize, allowing coders to inject custom classes into Boneworks at
runtime. This suite of tools opened the door for truly custom content.

When I began dipping my toe into this ocean of possibilities in July of 2020 after finishing various
guides for the Zombie Warehouse update, I noticed that the steep learning curve to getting involved in
the modding scene often caused artists and potential map designers to give up in frustration. Maranara
had made the Custom Map Template, a Unity project meshed with the CustomItems SDK, that allowed
one to compile geometry, lighting and materials into a Boneworks-compatible format. He had supplied
some basic documentation for it, but there were no tools or documentation that helped designers
sidestep a myriad of other technical hurdles. Instead, a very dedicated group of amazing volunteers
within the modding community stepped up every single day to help newcomers to the scene get
situated, but the inefficiency of this approach showed. While I was very grateful for the kindness and
openness evident throughout the community, I knew this wouldn’t be sustainable. Further, signs of
brain-drain were also at hand just 6 months after the game’s release. Some mod authors had moved
on to other projects or games, requiring others in the community to try to recreate or maintain their work
with each new Boneworks patch.

1 Thank you to gnonme for clarifying some of the key events in early Boneworks modding history

https://www.youtube.com/watch?v=eRzu8FkHoug

Setting aside the ease of getting involved, the biggest hurdle at the time to making worthwhile custom
content, in my view, was that there was no good way to get custom map information or custom
functions from the Unity editor into Boneworks. Custom Monobehaviours placed on GameObjects in
Unity were stripped at runtime so that only SLZ scripts and other native Unity scripts used in vanilla
Boneworks remained. Another roadblock that hindered designers being able to lean into their talents
was that only a few modders had access to a specialized Unity project that included intact classes and
variables of SLZ’s scripts. No one had access to the actual meat of any SLZ script functions. For
example, while this special “SLZ Script”-enabled version of the Unity project would allow a modder to
see the ConfigurableJoint values on the Dial that adjusts the Spotlight in Blank Box, the
CustomLightMachine script functions called LIGHT_ON_OFF and LIGHT_TARGET were completely
missing. Thankfully, much of the time, the classes and their variables were enough to get many
components working within Unity and in-game. However, there was no way to pass a custom
monobehaviour or arbitrary data directly from the Unity editor to the game.

The only way to call a SLZ script function and send it custom data that went beyond manipulating the
public variables exposed in Unity was to write a whole separate mod that would inject data at runtime.
Yet, custom mods only allowed you to inject custom data and functions that were part of the mod, so
there was still a wall of separation between this data injection and any attempt to write scripts in the
Unity editor. Figuring out the proper parameters for various API calls and functions was often trial and
error, done through inspecting DLLs through dnSpy (or similar) or trudging through cpp2il output of the
Assembly methods and trying to glean the requirements and outputs of various functions. The
community did not yet have access to some of the DLL and UnityExplorer-type tools that we enjoy
today.

An early shot of Maranara’s “Hall of Egress” map that inspired me to undertake custom mapping

Still, enough collective hard work and ingenuity had been accomplished by the community that I could
very clearly see the foundations of a true modding toolset emerging. My first contribution was simple: I
wanted to be able to represent enemy NPC spawn points within Unity and have those enemies show
up in-game upon map launch without any extra work on the part of the map designer. When I began
working on this, the only way to get enemies into a custom map was to load the map, walk to the point

where you wanted an enemy to spawn, dig through custom in-game menus that drove the
EnemySpawners mod, place the spawn point in the world and configure its contents and spawn
frequency. Next, the spawner data could be saved into a JSON file using the SceneSaver mod. The
next time the map was loaded, the player could choose to load those saved EnemySpawner settings by
selecting the appropriate JSON from various menus. This was an extremely clunky process. Still,
investigating how this was done gave me insight to how NPCs worked and what parameters were
needed to make them function more appropriately.

Trevtv made the CustomItemSpawner mod, which would become a game-changer generally and serve
as my entrypoint to the modding scene. At runtime, the mod would search a custom map for any
GameObject empties that used the name of a NPC (i.e. Crablet) and replace them with an instantiated
copy of the corresponding NPC. The enemies were brain dead unless you injured them and the
performance was horrendous if you spawned more than a few enemies, but it was solid progress and
streamlined getting items and NPCs into maps considerably.

Getting Started
Trevtv’s mod paved the way for my first offering, as I knew mappers would be very lost trying to keep
track of a bunch of empty GameObject NPC spawns unless they had visual representations of them
within the Unity editor. A Blender modeling neophyte (my modeling experience dated to old versions of
Maya and 3D Studio Max from the early 2000s), I enlisted Maranara to help me put together a series of
low-poly decimated models that would represent each NPC. I learned how to make custom inspectors
and gizmos in Unity and used them to replace the empty placeholder GameObjects in the editor with
mesh-based gizmos that showed low-poly representations of each NPC. I added representations for
their field of view and investigation range and began some preliminary work on color coding gizmos and
providing placeholders for all other spawnable game items.

However, I knew usability was key, and instead of having to carefully type in item and NPC names for
each GameObject name (which often differed from their well-known names, i.e. FordEarlyExit),
mappers needed simple menus so they could quickly select what they wanted to spawn from an
in-editor list and didn’t have to worry about typos or juggling spreadsheets that mapped common NPC
names to their in-game spawn codenames, which the CustomItemSpawner required. I made prefabs
for items and NPCs that had all of the custom inspectors and gizmos pre-applied so that adding those
entities became a truly drag-and-drop affair.

Behind the scenes, I began writing my first mod, which was an attempt to get custom data directly from
Unity into Boneworks at runtime. Trev’s mod used the GameObject name as a way to specify what
NPC should spawn on map load. It gave me the idea to make the first child of that NPC GameObject
an empty whose name would be a long-assed JSON string containing all of the NPC’s custom settings
like FOV, activation range and whether a Null Body had the thow attack ability. This prototype worked,
but it was extremely clunky, ham-fisted and full of map design assumptions.

Early version of GreasedScotsman’s Custom Map Unity Tools and Custom Inspectors, August, 2020

Thankfully, Trevtv improved his CustomItemSpawner mod and began using the LocalizedText
component as a way to pass in a text string of data. LocalizedText is a simple Unity component that
has a public text string variable that saw very little to no use in vanilla Boneworks, but, most importantly,
was not stripped out at runtime. Furthermore, Trev and I started playing with all of the parameters on
the BehaviourPowerLegs script. As we mapped out each item’s use, I tried to document our findings
in-editor in the custom Unity Inspectors and gizmos that I packaged as the Custom Map Unity Tools.
We found that we could set the values in Unity using a BehaviourPowerLegs component attached to
the typical CustomItemSpawner empty. This and the LocalizedText key would serve as placeholders
that could be accessed at runtime, allowing us to apply the settings to the instantiated NPC spawned by
trev’s mod. I was so new to scripting in Unity at this point that I piggy-backed off of the
CustomItemSpawner mod to help provide this NPC customization.

This was a great start, but I wanted to go much farther in exploiting the LocalizedText key and started
tinkering with other ways I could use it as a conduit to get data directly from the Unity editor into the
game at runtime. My first pass at this was to encode and parse settings as JSON strings, but modders
at the time thought the requirement to include a JSON parser with my mod would be too cumbersome,
so I dropped the idea and wrote a simple homegrown string parsing function that would allow me to
pass parameters from Unity into Boneworks consistently.

My NPCSettings project was growing in scope and I was worried I was straying beyond Trev’s intent
with the CustomItemSpawner mod. I chose to split off my work into its own project with still only a
nascent understanding of C#, Unity and modding in general. Beyond customizing NPCs, my next
challenge was to provide mappers with the tools to easily drag-and-drop entities that would trigger
events and cause the player’s actions to impact the level, as custom maps at the time were just spaces
to walk in and occasionally shoot enemies that stood still until you damaged them. I turned to learning
about Unity Triggers and Events.

Past modding experience had ingrained an appreciation for triggers as ways to help bring life into a
game world. I also knew they would solve one of my biggest frustrations with Boneworks combat: Ford
could approach almost every combat situation from a safe distance, well before any enemies could

become a threat. Moreover, enemies rarely seemed to react to what you were doing (unless you
damaged them directly) and were fairly stagnant until shot or hit.

I did not yet have access to the “SLZ Script”-enabled version of the Boneworks Unity project, so I
began developing my own trigger event solution called CustomMapInteractions. I would later facepalm
my head through my desk once I did get access to SLZ’s scripts, as a chunk of what I spent hours
creating could be achieved by the simple, straight-forward use of the TriggerPlayer or TriggerLasers
SLZ scripts. However, by the time I finally gained access to these crucial scripts, I was well into the
development of Melon Vault and, more importantly, the system I had put in place actually gave me
some crucial advantages and access to details of the triggered events that weren’t readily accessible
using the SLZ’s trigger scripts.

One of the largest issues (at the time) was that injected code couldn’t examine any details about the
OnTriggerEnter/Exit listings of the Unity or SLZ trigger components and also could not benefit from the
native collision Filter settings. This meant that the ways one could use a SLZ trigger would be limited to
changing common, global parameters about a GameObject, like whether it was active, if an
AudioSource’s clip should play, and so on. In short, SLZ trigger components could be used, but a mod
would still be required to attach a custom class to hold and execute any custom OnTriggerEnter/Exit
code. However, I worried that using a trigger script commonly used by SLZ might run into compatibility
issues or somehow collide with their normal use in-game. To avoid any headaches, I settled on using
Unity’s Generic Trigger and the LocalizedText components. CustomMapInteractions would use these
as markers to affix my custom CMITrigger class. From there, the first parameter in delimited
LocalizedText keys specified which trigger action should be taken and the remaining parameters listed
the relevant values that the trigger needed to function, like the magnitude, direction and type of force to
apply when launching the player with a Jump Pad trigger.

Super early Melon Vault boss area playtesting, 2nd puzzle

Triggering Violence - [Trigger-Target]
The very first Trigger I imagined any mapper would need would be the full control of how and when
enemies engaged with the player. Part of the immersion of any video game arises when enemies react
to things that the player is doing. Target triggers would also allow level designers to determine when
enemies might engage with the player using distances that make sense for the environment and the
area’s lines of sight.

At the time, one of the problems with the native “range-only” activation of Boneworks NPCs was that
enemies could agro you through walls and other obstacles. This was largely because I hadn’t yet
figured out Scene Zones, which served as the backbone for enemy AI sensors. For example, in Melon
Vault’s opening encounter with a Null Body, the player climbed out of a vent and watched as the Null
Body killed themselves in red lasers, letting the player know “Lasers = Bad.” However, if the second
Null enemy relied on range-only activation, they might become active well before the player
approached them, since the level designer would have to set the range of the NPC large enough to
accommodate it activating at various hallway widths.

CustomMapInteractions: Trigger-Target - NPCTarget() Method

The CustomMapInteractions Trigger-Target allowed map designers to place a trigger volume in the map
that could be activated by other enemies, the player or any GameObject with a Rigidbody, like a
cardboard box. This meant map makers could now structure combat scenarios so that enemies
agro’ed to the player in sensible and more immersive ways. They might respond as the player disabled
a protective barrier or ambush the player after they passed a certain point. Most importantly, it meant
that level designers could lead the player to areas where the geometry was fashioned around combat,
with options for cover, sight line height differences, varied angles of attack, and so on.

Timing is Everything
Unity’s OnTriggerEnter() event occured pretty much every frame. If a map dev wanted an enemy to
attack the player through code, their agro’ed MentalState only needed to be set once. Yet, since our
NPCs were really just empty GameObjects with some gizmos, the SLZ trigger scripts could not be used
to apply a MentalState to that NPC without modding.
I set out to create a suite of generic trigger events and Inspectors that map designers could arrange
and combine to generate chains of events that brought dynamism to their maps. Further, I knew I

wanted much greater control over how, when and what could activate a triggered event. Finer trigger
permissions were needed so I could control whether a trigger could be activated by only the player, just
an enemy, both, or perhaps just the player’s hands but not their feet. Since mods relied on injecting
code into the game at runtime and because Boneworks is a IL2CPP game, certain aspects of Unity or
Boneworks would remain inaccessible. One of these areas centered on the Filtering system that came
with Unity’s Generic Trigger interface. Another was that anything listed in the OnTriggerEnterEvent()
section was completely hidden at runtime from Boneworks mods.

In the meantime, I turned to controlling how often a trigger could be activated.
CustomMapInteractions’s Trigger Repeat Settings property had three options: Always, which would
constantly trigger, Never ensured the trigger fired only once, and a Custom Repeat option that took an
integer value that decreased with each trigger activation until reaching zero, causing the trigger to
become inert. Along with this repetition functionality, I implemented a repeat delay so that level
designers could control the frequency of each trigger’s repetition. So, if one wanted a trigger to always
repeat, but only fire every 5 seconds, that would be possible.

CustomMapInteractions: Trigger-Waypoint Custom Inspector, Custom Map Unity Tools

Whose Child Is This?
Through some experimentation, I think I found that all NPCs, weapons and items, whether Instantiated
through Trev’s CustomItemSpawner or (eventually) through ZoneSpawners, were children of the root
hierarchy in Unity. In other words, any relationship they had with the GameObject hierarchy in Unity or
the trigger that they were interacting with was lost as they spawned. This meant that if, say, I wanted
an entire group of NPCs to target the player if the player stepped into a Trigger-Target volume, there
would be no way at runtime to distinguish if spawned Null Body [5] was part of the group of Null Bodies
that should be set to Agro by the trigger or if Null Body [5] was just standing around a few rooms over
and was just waiting for the player’s arrival.

In short, I needed a way to structure where spawned enemies appeared in the hierarchy so that I could
ensure trigger(s) relevant to them acted up on them. Much later in the modding development process, I
would figure out how SceneZones worked and then gain access to the ZoneSpawner’s “spawns” List,
providing another, much cleaner way to solve this NPC tracking problem.

My solution at the time was to structure each Trigger with TRIGGER_HOLDER and
TRIGGER_TARGETS empties. Trigger volumes that were relevant to a NPC would be placed into
TRIGGER_HOLDER. TRIGGER_TARGETS would include the list of NPCs or items that would be
affected by the activation of any of the trigger volumes in TRIGGER_HOLDER. This allowed me to
check if any NPC colliding with a trigger was a child of that Trigger’s TRIGGER_TARGETS hierarchy. If
not, that NPC’s parentage was modified. This meant individual NPCs or groups of NPCs would only be
affected by the triggers with which they collided or intended to be activated.

CustomMapInteractions: Trigger-Waypoint Hierarchy, Custom Map Unity Tools

She Told Me to Walk This Way - [Trigger-Waypoint]
Another notable concern I had about Boneworks NPCs was the lack of enemy movement or interaction
prior to them noticing the player or taking damage. Enemies that walked, patrolled, conversed or were
seen in the distance performing some sort of task before they became aware of the player convey the
idea that they were in a functioning game world. Boneworks NPCs did have the ability to Roam, but
their movement would be random and only occurred from time to time. Figuring out how to get NPCs
patrolling on set paths was my next endeavor.

Thankfully, Boneworks NPCs followed typical Unity Nav Agent navigation around the NavMesh, so
creating the CustomMapInteractions Trigger-Waypoint was fairly straightforward. This interaction had a
few stages: A series of Trigger-Waypoint volumes would be placed down by the level designer and the
NPC would be positioned in the first Waypoint so that they would touch it upon spawning into the map.
Alternatively, their movement could be triggered by the player, an object or even another enemy at an
appropriate time. As the NPC collided with a Waypoint trigger, CustomMapInteractions would feed it
the next destination in the chain. Waypoints went through a few iterations, but the release
implementation had the Waypoint GameObjects as children of a TRIGGER_HOLDER object. As a
NPC hit one of the Trigger-Waypoints, the next sibling Waypoint GameObject would be computed and
set as the enemy’s destination.

I doubt anyone reads these caption things. I shall reclaim time and space.

With the Waypoint route handled, the last step was to actually get the NPC moving along its path.
Thankfully, an unfinished AI state called Investigate that apparently wasn’t used in vanilla Boneworks
helps sidestep an interesting bug. Without being set to Investigate, NPCs would path to each waypoint
just fine. However, if they spotted the player or took damage while in the Roam or Rest MentalStates,
they would hilariously play their Agroed sound, but then continue along their path as if they had never
seen the player. This wasn’t the intended behavior, and thankfully, the Investigate state correctly
caused NPCs to leave their Waypoint path and attack the player if they took damage or if the player
entered their Investigation Range. CMI’s MoveToTarget() function simply forced a NPC’s Investigate
MentalState and fed the native BW navigation SetPath() method the Vector3 position determined by
CMI’s GetWaypoint() method.

Not All At Once
While it was useful to finally have NPCs that could path a patrol and engage with the player in a more
interesting manner, a problem was introduced: If more than one NPC was to follow along the same set
of waypoints and were all members of TRIGGER_TARGETS, each time any NPC hit any of the
Waypoint triggers, all NPCs got that same signal and moved to the same position. This meant that
eventually, all NPCs would be crowded together and moving in unison to the same Waypoint.​

​
To solve this and still keep the improvements that ensured NPCs and objects could be tracked and
were only impacted by their relevant trigger volumes, I created a “colliderOnly” property for all CMI
triggers. If this option was checked in Unity, only the specific NPC that touched the trigger volume
would get activated. This meant that you could have a group of Null Bodies using the same Waypoint
loop, but they could all be pathing on their own segment of the waypoint chain and their SetPath() calls
would be their own.

I eventually added a Trigger Delay property, which would simply Invoke the Trigger’s action some
configurable time later rather than instantly. This worked nicely with Waypoints, as it gave the
impression that Nulls might stop and survey the area before continuing along their patrols. One of the
last additions to basic trigger functionality was the Percent Chance to Trigger parameter that could be
used to provide some randomness and variety to any trigger activation.

Scotsman’s Log, Vault Date 20200921
After Waypoints and Target triggers, I turned to making grabbable, holster-able, pausable Audio Logs
that I named Void Echoes. Melon Vault would tell most of its story with the visuals, events and action
that the player experienced throughout, but the details that tried to explain why the player was
infiltrating this huge building or how they came to be chased down by giant electrified balls of death as
they hunted for power cells in the dark… that story would be conveyed by these Void Echoes. Without
access to any SLZ scripts yet, I was unaware of the GripEvents component, so I fashioned my own
trigger-based system that would respond to the player and check to see if they were touching an Echo.
If so, then audio playback would begin. If the player grabbed the Echo and held down the
PrimaryInteractionButton, a timer would start and, if its time limit was reached, the audio playback
would pause. It was a simple system and served its purpose at the time, though later (unreleased)
versions of CustomMapInteractions revamp this feature.

“I plan to kill the player… repeatedly.” --GreasedScotsman [Trigger-Checkpoint]
Melon Vault would be huge compared to the myriad of custom maps that were available on
BoneTome.com at the time. Checkpoints were needed. Thankfully, Maranara had already done all of
the hard work for this trigger, which simply moves the spawn point to a new position and lets the
CustomMaps player respawn code do the heavy lifting. These spawn point changes do not survive a
close of the game session, but for Melon Vault, I could now construct deadly scenarios without worrying
that the player would be frustrated by being forced all the way back to the start of the map upon death.

Beam Me Up, Mara [Trigger-TeleportObjectToTarget and Trigger-TeleportPlayerToTarget]
While not shown in the first “Melon Vault Reveal” video, I had the map’s opening “Swing from the
rooftops” encounter mapped out in a test area. However, because the player could fail to let go at the
right time and fall to their deaths, I needed a way to reset the moving pieces so the leap could be
attempted again. Teleporting objects with triggers seemed like a simple solution to this problem.

Rifling through the respawn code in CustomMaps mod, I learned how Mara teleported the player from
Blank Box to the custom map’s spawn point. I yoinked the key parts of the process into a CMI trigger.

This crude but effective method of yanking the entire player chain through the map has since been
replaced by the far more elegant and native BW Teleport() function that ModThatIsNotMod’s easy
access to the RigManager exposes:

However, trigger-based teleportation meant that I could also provide a way for map designers to
reference and move items like the Ammo Dispenser, Health Machine and JukeBox anywhere within
their custom maps. I handled this by instructing mappers to make GO empty placeholders with specific
names (i.e. AMMODISPENSER_PLACEHOLDER) and swapped those out with the actual Ammo
Dispenser from Blank Box upon trigger activation. Mara would eventually cache and provide
references to these objects in later versions of Custom Maps, streamlining this process further.

Show Me Some Identification [Trigger-RigidbodyTarget and Trigger-RigidbodySocket]
Melon Vault needed to have doors and barriers for which the player needed an item to open. However,
I did not want to just borrow the Boneworks key system. Instead, I liked the physicality of an ID keycard
swipe, and set out to make a trigger that required a unique object for activation.

My first pass at this, Trigger-RigidbodyTarget, thankfully has since hit the cutting room floor as it was
overly convoluted. It involved a sequence of overlapping triggers, and, while functional, I realized that I
could simply check the uniqueness of an object before handling the triggered action and bail early if the
incorrect object was supplied.

Power Cells in Melon Vault used the Trigger-RigidbodySocket, which was my own take on the
Boneworks battery system. I wanted players to have to hunt for unique power cells during the stealth
section of the map, but Boneworks batteries were both interchangeable and removable. I needed items
that would only work in their specific stealth section and only activate their intended receptacle.

The CMI scripts included in the upcoming CMaps Template release have unique object activation for
almost all triggers and don’t require any of these RigidbodyTarget/Socket shenanigans. Hilariously, I
would later learn that SLZ’s scripts included a component called “TriggerLasers” that already had a
unique object parameter built into it. Cue the facepalm through the desk. Reinvent the wheel, indeed.

Some Dead Ends Lead to Amazing Places
I am a huge fan of stealth action games. Dig deep enough into the history of my YouTube channel, and
you will find my “Zero Takedown Ghost” full walkthrough of Deus Ex Human Revolution, meaning the
game was completed without knocking out or killing anyone (except for when the game forced you to
do so >:() and with no trace left of my passing. Lost to the memory hole are my even older ghost-style
playthroughs of the Splinter Cell series.

I was curious (and hellbent) on seeing if I could introduce serviceable stealth gameplay to Boneworks.
To that end, I spent about 3 weeks trying to ham-fist modifications to Boneworks NPCs to adjust their
detection behaviour, field of vision, movement speed and agro routines. While I had some success, the
solution was not truly viable and the endeavor ended with very little to show for the time spent. Still, I
learned in some detail how Boneworks NPCs worked and what many of their limitations were.

Two additional extremely critical things happened along the way. First, Maranara had, in passing,
talked to me about something called SceneZones but he hadn’t quite figured them out. Modifications
had been made to a beta version of CustomMaps so that they were mostly functional and he knew they
were the way SLZ spawned their enemies. Most importantly, they provided huge performance gains
compared to the current CustomItemSpawner method of just Instantiating the enemy in a brain-dead,
deaf state. The goal was to figure out how to get them working to the point that map developers could
just drop Scene Zone and enemy prefabs into the map as desired. I had toyed with directly accessing
the collection of Pooled enemies through script, but knew following the “SLZ way” would be ideal.

Second, a SLZ Script-enabled version of the Unity project became available to me for the first time. In
retrospect, I view most of my modding endeavors up to that point as just blindly stabbing in the dark,
potentially reinventing wheels and just trying to find solutions to problems as I encountered them
without any real understanding of how the underlying systems of the game worked. Gaining access to
the scripts changed much, and most importantly, gave me insight into how SceneZones worked.

Setting the Scene(Zone) [Trigger-EnableZoneSpawner, Trigger-SetZoneSpawner,
Trigger-ZoneSpawnerPerformanceSettings, Trigger-ZoneSpawnerCombatSettings, Trigger-HideSceneZoneItemsInChildren]

As my understanding solidified, I realized how important these changes were, and I decided to
completely scrap or refactor nearly all of the custom Unity inspectors I had made, despite them being a
huge chunk of my CustomMapUnityTools project. One of the biggest realizations was that the contents
of the prefabs within the ScriptableObjects for NPCs and items in the Unity editor were irrelevant. I
could use fake versions of prefabs that had no dependency ties, no artwork, scripts, sounds, etc. It
seemed (guesswork) the game only cared about the ScriptableObject’s unique ID at runtime and would
use that to reference the actual NPC/weapon prefab and spawn the relevant enemy or item. With this,
SceneZones not only functioned, but they worked in a way that we could release to the public without
worry of infringing on SLZ’s intellectual property.

Frantically, I worked to revamp the suite of custom inspectors in CustomMapUnityTools to
accommodate Scene Zones, made prefabs for items, NPCs and SceneZones themselves so getting
them functional with all of the proper components would be a drag-and-drop affair. I also made some
helper scripts that would update the ZoneAISettings fields depending on which NPC was chosen by the
CMUnityTools menus and an Auto-Connection script that would ensure any children ZoneItems or
ZoneSpawners under a SceneZone GameObject were correctly tied to the Zone. In testing, I had
found that any gaps in the array of ZoneItems would cause the entire SceneZone (and sometimes all
subsequent Zones in the map) to malfunction. I also tinkered with SceneZone linking and, at the end of
September 2020, mentioned a portion of what I learned in my “Boneworks Modding - Major Update,
Melon Vault Sneak Peek'' video. I chuckle in hindsight considering the line in that video that Melon
Vault would contain “at least 30-40 minutes of gameplay,” since playtesters often clocked in the final
version of the map at 2 to 3 hours. In the following weeks, I completed my rework of the
CustomMapUnityTools and released two tutorial videos, one that focused on Getting Started with
custom map-making and the other that detailed everything I had learned about SceneZones. Maranara
and I worked tirelessly to get all these changes into CustomMapTemplate 2.0 and pushed it and a
CustomMapInteractions release out to the public.

Over time, I made several more tools that gave map designers control over ZoneSpawners. The
functionality of many of these triggers could also be achieved using SLZ’s PlayerTrigger or
TriggerLasers scripts, as ZoneSpawners often simply required one-time activation and didn’t need extra
custom code to operate. This meant the Unity editor’s native OnTriggerEnter events interface would
suffice. However, I developed my own set of tools in order to have fuller control over trigger repetitions
and sequences of trigger activations for Melon Vault. I also wanted to provide options for players to
dynamically control the frequency or activation of certain SceneZones based on their in-game actions.
Trigger-ZoneSpawnerCombatSettings would allow one to adjust the difficulty of combat and

Trigger-ZoneSpawnerPerformanceSettings could provide some performance improvements for
lower-end systems by adjusting Zones that spawned several NPCs in non-combat scenarios.

As I fleshed out Melon Vault’s Armory room, I wanted to feature several custom weapons made by
community members and therefore needed to be able to spawn them using SceneZones. However,
this posed a problem, because the only method of spawning custom items involved the
CustomItemsFramework dynamically generating a custom item’s ScriptableObject on launch of the
game and using the Utility Gun to place the object in the world.

To get around this, I used faithful Apollo as a stand-in ZoneItem so that the ZoneSpawner component
would function properly (Unity or BW would complain about ZS’s that had missing info), then wrote a
special SpawnPoolItem function that specifically looked for a CUSTOMITEM:customItemName
parameter in the LocalizedText key. Using this, I could then search the pooled objects at runtime during
MapLoad for the customItemName item and, if a match was found, replace the Apollo
SpawnableObject with the custom item’s dynamically-generated SpawnableObject.

I then added Unity editor tools that, given the proper path to the map designer’s CustomItems .melon
files, would populate a drop-down menu for use in the CustomMapCustomItemToZoneItem prefab I
created for ZoneSpawning custom items. This meant mappers could select custom items easily from a
list rather than try to type (or sometimes outright guess) the name of a custom item, as the internal
name of an item and its filename were often not the same.

It Puts the Lotion On Its (Custom) Skin - [Trigger-ChangePlayerModel]
I followed suit with Mara’s PlayerModels mod, reading in the .body files and providing a menu
drop-down so mappers could easily select which model they wanted to apply to the player when hitting
a Trigger-ChangePlayerModel volume. This trigger simply reflects into Mara’s PlayerModels mod and
executes the swap. I’d say where and when in Melon Vault this is used, but it’s pretty obvious for those
who have played through the campaign and will remain a nice surprise for those who have not yet had
the chance.

It’s About Time - [OverridePlayerTimeControl and Trigger-TimeControl]
With all of the excitement and work that came with the CustomMapTemplate release behind me, I
turned back to Melon Vault’s development. One of the coolest features in Boneworks was the ability to
slow time. However, without mods or rebinding inputs, the player usually lost the ability to maneuver for
the duration since the left thumb couldn’t control movement while also holding down the Slow-Mo
button. I also never liked how easy the game became since the player could slow time at will and for as
long as they wanted. My next goal was to harness the power of time control for the map designer so it
could be used as a game mechanic in hopefully interesting ways, rather than an at-will easy-mode
crutch (insert old man speech about video games being difficult “back in my day…”).

The ConfigureOverridePlayerTimeControl trigger was a “configuration” trigger that only needed to fire
once and was typically used at the map’s spawn location. This configuration was applied through
triggers as a way to circumvent not having access to the Player Rig within the Unity
editor--modifications to the player could only happen at runtime and after the player existed in the map.

This trigger grabbed references to the Control_GlobalTime component and its AccelTime and
DecelTime audio clips from the Player’s DataManager, and the HeadSFX AudioSource from the
RigManager. It then copied these values into a separate version of the Control_GlobalTime component
that resided on the ConfigureOverridePlayerTimeControl trigger itself. This trigger object also
contained its own AudioSource with Spatial Separation set to 2D so that audio played from it could be
heard regardless of the player’s position in the map. Copying these values to some non-player object
like the ConfigureOverridePlayerTimeControl object was necessary because access to the components
that resided on the Player Rig became null or inaccessible once the ability to slow time was disabled.

Overlapping the ConfigureOverridePlayerTimeControl trigger was the OverridePlayerControls trigger,
which allowed the map designer to configure everything from a player’s ability to locomote, jump or use
the radial menu. Most importantly, the BodyVitals component included a way to disable the Slow Time
button, and with the player’s time control powers removed, the only remaining way to slow time was
through triggers laid down by the map designer. Note that when applying any BodyVitals changes via
code, one had to perform a soft propagation of any modified values before they took effect.

Creating Custom NPCs - Stealth Hunting “Security Seekers”
After spending weeks toying with Boneworks NPCs and being unable to get the behaviours I needed
from them, I decided to create my own stealth hunter NPC. The key features required were as follows:​

●​ When out of combat, the NPC would continually patrol a specified route, stopping at each
waypoint and performing some sort of idle action, like looking around. ​

●​ The NPC needed to be able to spot the player but not agro to them immediately. Players
needed to have a visual and audible warning with a small window of time within which they
could react and hide before being attacked.​

●​ Once agro’ed onto the player, the NPC needed to be able to navigate the map with ease. I
would become well-versed with the Nav Mesh by the end of this process.​

●​ If the player broke line of sight, the NPC would lose agro but rush to the player’s last-known
position and enter an Investigation mode to try to reacquire the target. This mode widened the
NPC’s FOV and checked all directions, making it very risky for the player to stay anywhere near
the Stealth Hunter.​

●​ If the NPC failed to find the player after the Investigation mode completed, it would return to its
patrol loop.

Stealth in VR had limitations that flat-screen games rarely needed to consider. Most stealth action
games positioned the game camera above the player’s shoulder, which allowed them to see around
corners and get an overview of the area they were traversing. Boneworks is necessarily first-person,
so care was taken to provide visual and audio cues to the player that would allow them to sneak past
these enemies successfully, while paying a high price if they tried to rush past them haphazardly.

Aesthetically, I wanted this entire section to place the player in darkness. The FOV of the NPC would
be visualized by the arc of a Realtime spotlight. This would afford the player a way to track the NPCs
even if they were around a corner and, based on the light’s direction, know whether it was safe to poke
out from behind cover. I also chose to make the NPCs impossible to destroy because I wanted the
player to feel vulnerable and lean into the need to be sneaky.

The Greenhouse is the most “hot” or “cold” section of the map for players based on feedback. They
either love it or hate it… though I suppose the same could be said for flat-screen stealth gameplay. I
am happy to accept that some players simply do not like having to stealth.

However, to my great joy and satisfaction, I have multiple recordings from playtesters and others who
have tried the map since its Beta 2 release in which some players become literally terrified during this
section. You can watch their VR view shake as they tremble around corners, mutter with dread as they
hide after nearly being spotted and scream at the top of their lungs whenever they get caught. Hearing
from these folks that they found this section of the map to be one of the most intense and fun VR
experiences they’ve had in the medium easily made the hours spent developing the gameplay and
custom NPC for it well beyond worth it.

The validation ensures an expansion on these ideas, with lofty goals of maps with fully-destructible
lights and proper low-light-to-bright-light and noise-based detection systems for enemy NPCs, all within
Boneworks… a boy can dream.

Creating Custom NPCs - Plasma Turrets
One of my favorite features about Boneworks was how seamlessly it handled destructible objects. The
Plasma Turret NPC in Melon Vault was my ode to destruction. I will say that the gameplay idea I had in
my head wasn’t quite realized, but it worked well enough that, from it, I’ve taken in several lessons and
will be applying them to future custom NPC enemies.

The vision was to have a very physics-based weapon… in this case, a high velocity, heavy as hell
cannonball rigidbody wrapped in a plasma-looking particle that would smash through destructible cover
whenever you were spotted. The goal was to change the layout and safe zones of the combat arena in
a very dynamic way. At the end of the initial encounter with the turret, the intention was to have it go
haywire and force the player to make a mad-dash to escape its rapid-fire onslaught and reckless
destruction of every last bit of cover.

While these events did take place in the North section of the Melon Vault boss room, I found in
playtesting that if I ramped up the damage of the Plasma Turret too high, the player would die so often
that they would become frustrated. I lessened the damage so that the turret would still plow through
crates and dynamically change the cover available, but would merely push the player around and
cause recoverable damage to them. Perhaps one day, I’ll release a “hard mode” that ramps this
damage back to its original values.

The Turret had a two different modes: ​

●​ The default Scanning mode would sweep back and forth looking for the player in an arc and
period of time defined by the map designer.​

●​ The Auto-Fire mode would continually fire projectiles and did not track the player.​

The NPC’s FOV, rate of fire, projectile mass, force at which the projectile was launched, how long a
plasma ball lived before being destroyed and whether it should be affected by gravity were all
configurable options. The modes could be swapped with triggers by the map designer, allowing the
turret to hunt the player during one sequence or enter a clear-the-room style bombardment of plasma
balls the next, based on player activity or progress. An added Powerable_DamageVolume component
to the Plasma shots caused pulsing fire damage to the player if they lingered near them.

In the Boss room, the Turret’s plasma cannonballs were considered unique objects for the
Trigger-Rigidbody puzzles and had to be used to complete the first two areas. In both cases, the player
had to coax the turret to fire in their direction while they stood near an exhaust-port-like target that could
only be activated by the plasma turret’s weapons. The second puzzle required the player to power up a
barrier by completing a zipline and target shooting challenge, then action-hero grab an enormous plug
that was hanging aloft in the area. The player’s body weight was required to lower it into its receptacle,
which activated a mobile barrier that could be moved along a track. Finally, the player needed to use it
to reflect incoming fire from the turret at the correct angle in order to hit a plasma-ball-only target.
Completing this sequence would drop the final barrier to the Boss combat encounter.

Blowin’ In the Wind - [CMIRigidbodyMover and CMIRigidbodySwinger]

One of the sections of Melon Vault that consistently received praise by playtesters was the Fan Room.
While fans that were fully rotating in this section were handled by simple animations, the fans that
swung back and forth were driven by an early Coroutine experiment I made well before I knew what I
was doing. Throughout development, I always intended to update those routines to ConfigurableJoints,
but never got around to it. The simple Sin(Time.time * swingSpeed) somehow still powered their
rotation upon release. Fortunately, Mara and I intend to include a far more physics-friendly ConfigJoint
version of these swinging fans when we push the next update to the CustomMapTemplate.

Null Thicc Bodies [NPC Scaling]
One of my favorite features that CMI provided fairly late in Melon Vault’s development was the scaling
of NPCs. As often as I had mowed down Null Bodies when making my video guides and various
playthroughs, I wanted to see if I could modify the Boneworks NPCs to introduce the player to new and
unexpected challenges. While some playtesters simply viewed the scaled-up NPCs as being
bullet-spongy, they often overlooked how the scaling of those NPCs forced a change in sightlines and
aiming priorities and motivated players to score headshots to offset the (optionally) increased health. ​

NPC scaling had been done by others through mods in the past, but they simply changed the scale of
the prefab that spawned the enemy, meaning NPCs would often just fall over in a big mess, unable to
move, react or be any sort of danger to the player. These enemies were also only spawnable by the
Utility Gun or Easy/BoneMenu, and couldn’t be a native spawn within a custom map.

My attempt to solve these issues went through several iterations, but the version that made it into
Melon Vault merely required the map designer to set the scale on the ZoneSpawner GameObject in
Unity. That’s it. CustomMapInteractions handled everything else, like dynamically creating the scaled
up NPC’s ScriptableObject, adjusting the muscle springs/weights/dampers in the appropriate
ConfigurableJoints and rigidbody mass values so that the enemies wouldn’t collapse under their own
weight and, finally, caching those changes into a corresponding prefab. Subsequent NPCs of the same
scale would reuse this cached Prefab. This solution was crude and still had limits, but it worked well
enough for most enemies to provide interesting gameplay.

Melon Combat
Combining the Trigger-Targets, Trigger-Waypoints and various SceneZone triggers together powered
almost all of the combat interactions in Melon Vault. The opening half of the map purposefully gave the
player very little firepower (unless they went secret-hunting) so that once they reached the Armory and
geared up, that sense of vulnerability was jettisoned and the player could unleash a torrent of bullets
using whatever loadout they desired.

On paper, each combat section had a goal to introduce the player to a new facet of combat, though if
this purpose was realized, it was unclear from playtesting, as most people just shot shit or died trying:

●​ The hallway just past Armory’s blue barrier provided level sight lines and plenty of cover, with
enemies being funneled into a door chokepoint. ​
​

​

●​ Turning the corner, the player now faced several enemies and uphill fights, as the Corrupted
Nulls with throw attacks had upper ground and a bit of cover. The player was forced to expose
themselves in order to place headshots. The high rate of fire from the Corrupted Nulls was
intentional, with the goal to either push the player to stay mobile or fight from behind cover.
Given that “cover” was often offered in the form of a destructible crate, it did not last long against
an onslaught of throw attacks.​
​

​

●​ Entering the Tiers room, the player now had a playground of jump pads to use as they tackled
this multi-leveled combat scenario. The player started at the mid level of the arena and could
choose to take a high path along the edges of the room or a low path through the room’s center.
A grabbable set of cargo crates moved along the ceiling of the map and could be reached at
high risk using jump pads on the lower level. Corrupted Nulls with throw attacks were scattered
around the room to encourage the player to keep moving. ​
​

​

●​ A few moments of quiet greeted the player past the Tiers room. A Void Echo explained that
GreasedScotsman was going to try “something” with the Nulls up ahead. This “something” was
an explanation for a custom enemy fizzler I created to avoid NPC mobility problems that arose
when Null Body corpses piled up on the ground. By default, Boneworks eventually removed
dead NPCs from the scene as a matter of maintaining hardware performance. In my case, I
needed NPCs to be immediately removed on death so that the remaining Null Bodies trying to
attack the player would not trip over their fallen brethren, removing all hints of challenge or
combat pressure whenever they did. ​
​
The goal of this combat scenario was to thrust the player into close-quarters-combat, fully
surrounded and in low-light conditions, and then offer them map elements like Void Pools and
“Voidfalls” into which they could push the crowd of Nulls, if desired. Scaled-up Nulls abounded
in this section as a way to force different aiming sightlines on a flat combat arena. ​
​

​
​
The final section of CQC combat closed the walls in even further, leaving the player very little
wiggle room around a constant rush of Null Bodies. Further, Nulls now dropped from pipes in
the ceiling and moved much faster than normal. An unsuspecting player could find themselves
surrounded, often backing into a corner where they were forced to aim well, holding what little
ground they had left. I tweaked the faster Nulls such that, if they reached their top movement
speed on approach, they would actually dart past the player and then smack them in the back of
the head. This meant the player often had to twist and turn, and could not rely on being able to
keep all targets ahead of them.

That was the intent of the encounter, anyway. Sometimes, players just whacked Null Bodies
with the frying pan until nothing was left but orange jelly… which was, is and always will be the
beauty of Boneworks gameplay. There’s never a “right way” to play the game.​

●​ The Mailroom was the final combat section before the boss. This area was all about the player
having a badass Hollywood-esque slow-motion-slide-past-enemies-as-you-blew-them away
type of experience. It served as a (hopefully) thrilling capstone before a forced lull in combat
provided by the Reactor Room’s Golf Puzzle.​
​

Powering Puzzles and Dropping the Lever
The earlier Lever “puzzles” in the Greenhouse Stealth sections were achieved by simply modifying the
ConfigurableJoint on the Lever so that it would drop under the influence of gravity. Players had to come
up with creative ways to keep the lever aloft so they could simultaneously reach a nearby button
normally blocked by a barrier that only dissipated when the lever was in its highest position.

What may not be obvious, however, was that all of the button, slider and lever actions in the map did
not use SLZ’s native electricity/power system. At the time of Melon Vault’s development, there was no
way to inject custom events into the various OnPress and PowerLever actions that these items typically
activated. Sure, one could drive a ConfigJoint value or toggle an object on or off, but anything more
complex that required custom code to function was inaccessible. To get around this problem, all of the
CMI versions of buttons, dials, levers and sliders actually contained small triggers and hidden unique
activator colliders that were used to fire off the desired CMI events.

The Golf Room was the map’s main puzzle, and brought a number of triggers into play: Jump pads
launched the “golf” balls and the player across the Void to each new area. A series of buttons on each
platform enabled the corresponding jump pads. The TeleportObject triggers provided ways to recover
any golf balls that were lost to the Void. A RigidbodySocket trigger only accepted the correct golf ball
into its hole and locked it into place. A series of custom toggle triggers fired when each golf ball
reached its target and enabled the particle effects and monitor screens that indicated the player’s
progress. A set of colored exit barriers dropped as each golf ball was seated into its hole.

Finally, The Boss Fight - A Stage by Stage Breakdown
Melon Vault: Showdown’s main Boss was a 6x scaled-up Omni with far superior aiming capabilities
than a normal Omni Projector, had a butt-load of health and was safely tucked away behind a shield
that blocked all ranged weaponry. The fight was split up into multiple stages, successful only if the
player did the following:

1.​ Survived the initial Omni Projector Ambush.​

2.​ Navigated to the Blue Power Reactor only reachable using the player’s jumping momentum and
a series of jump pads.​

3.​ Smashed the safety glass of the Blue Reactor and raised the slider lever to begin an overload
sequence. This overload also opened the path to the Yellow Power Reactor.​

4.​ As the Blue Reactor detonated, a wave of Omni Projectors appeared and several got blown off
of the Blue Power Reactor platform.​

5.​ The Blue Reactor’s explosion temporarily dropped the shield surrounding the boss, providing a
limited window to shoot them. The player was incentivized to dispatch the reinforcement wave
of Omnis quickly to maximize direct boss damage. However, with the barrier dropped, the player
had to take into account the Boss’s firepower.​

6.​ After a minute, the shield was restored and another wave of Omnis appeared.​

7.​ The path to the Yellow Power Reactor was a mobile platforming and jump pad challenge.​

8.​ Detonating the Reactor was accomplished in the same way as with the Blue Reactor, which
would cause the Boss’s shields to drop, and a wave of reinforcements to spawn.​

9.​ After a minute, the Boss’s shield was restored once more and yet another Omni wave was
spawned.​

10.​Destruction of the Yellow Reactor opened the path to the final Red Power Reactor and
teleported the Ammo Dispenser into the Red section so there was never a way for the player to
run out of ammo.​

11.​A small ladder climb, a huge jump pad launch, and an extremely long zipline slide formed the
path to the Red Power Reactor. Along the way, the player would see droves of Null Bodies
throwing themselves at the boss to little effect thanks to a battery of Plasma Turrets. These
would detonate as the player approached the huge jump pad launch to the Red platform.​

12.​Overloading this final Red Reactor would keep the Boss’s shields down for good. As it
detonated, the final wave of Omni reinforcements would spawn.

Fingering the Pulse [Trigger-MonitorZoneSpawner]
The boss’s health was tracked by the CMI [Trigger-MonitorZoneSpawner] trigger. This particular
behaviour could better be handled with subscribed events, but I didn’t yet have a clear idea of how I
could provide such monitoring events as a Unity tool that map developers could easily apply.

At certain milestones of health, the boss would utter voice lines indicating the damage the player had
inflicted. When the boss fell below 30% health, Null Bodies and Corrupted Nulls started spawning from
above and would assist the player in killing their shared enemy. Upon death, the music would stop and
a now-familiar Void Fissure would appear. Touching it caused the Finale dialog to trigger, where
GreasedScotsman thanked the player and explained the real purpose behind his reasons for bringing
the player to Melon Vault. After a final portal animation played, if the player stepped through, they
would be teleported to the Thank You/Credits sequence video.

If You Can’t See It, Is It There?
Partway through Melon Vault’s development, I hired TabloidA and Maranara as environmental artists
because I lacked the modeling skill and artistic eye to provide the amazingly detailed vistas that the
final version of the campaign showcased. (My nascent art, texture and modeling prowess is featured in
the entirety of the Golf Room, most of the Greenhouse and the “Boss Slide n’ Climb” sections). As the
team went to work replacing my probuilder box placeholders and the geometric complexity of the level
increased, we noticed a drop in performance as if Unity’s occlusion wasn’t working as intended.

Occlusion was definitely happening, as forgetting to bake Occlusion was glaringly obvious and even
more performance-sapping. However, some parts of the map, no matter how hidden, even according
to Unity’s various occlusion visualizers, still seemed to drag on performance. After tons of testing and
working at the problem and absolutely refusing to compromise on the incredible visual quality that
Tabloid and Maranara were producing, I came up with an idea for trigger-based occlusion.

When the player first spawned into Melon Vault, almost every section of the map that they could not see
from the spawn Apartment’s vantage point had a HideOnAwake component. As they progressed, these
hidden sections became enabled. Similarly, as points of no return were passed, like jumping out the
window onto a set of I-beams near the Crane, entire sections of the map that would not be visited again
got removed. By the end of Melon Vault, pretty much only the boss room remained active. This system
utilized carefully-placed SLZ PlayerTriggers that showed and hid each section at the appropriate point
of progress. The performance gains were quite noticeable, and if later versions of Unity exhibit this
strange not-quite-providing-occlusion behavior, I intend to flesh out this system and make it available in
future CustomMapTemplate updates.

Holy Hell, You Made It!
Thank you for your interest in learning how the Melon Vault sausage was made. I will eventually have a
full Custom Map development video series that tackles teaching folks all of the new tools that Maranara
and I have been creating for the upcoming CustomMapTemplate release. I started on this endeavor but
quickly realized we were about to paradigm shift the tools, like so:

I’m happy to report that amazing work by gnonme, trevtv and Maranara have brought the ability to write
and apply custom Monobehaviours directly in the Unity editor, apply them to objects throughout your
custom map, and Boneworks will not strip them away. Mappers can finally author custom code directly
in Unity without the need for it to be handled by additional mods. All of the tools that make up
CustomMapInteractions will now be integrated into the Template and available as custom
Monobehaviours. As a bonus for making it this far into the document, I offer a sneak peek at the
upcoming template and tools. We can’t wait to see what mappers and artists can do with these tools
once we get them released!

-- End of Line --

	GreasedScotsman’s Boneworks Modding Development Series
	Dedication
	Origins
	Getting Started
	Triggering Violence - [Trigger-Target]
	Timing is Everything
	Whose Child Is This?

	She Told Me to Walk This Way - [Trigger-Waypoint]
	
	Not All At Once
	Scotsman’s Log, Vault Date 20200921
	“I plan to kill the player… repeatedly.” --GreasedScotsman [Trigger-Checkpoint]
	Beam Me Up, Mara [Trigger-TeleportObjectToTarget and Trigger-TeleportPlayerToTarget]
	Show Me Some Identification [Trigger-RigidbodyTarget and Trigger-RigidbodySocket]
	Some Dead Ends Lead to Amazing Places
	Setting the Scene(Zone) [Trigger-EnableZoneSpawner, Trigger-SetZoneSpawner, Trigger-ZoneSpawnerPerformanceSettings, Trigger-ZoneSpawnerCombatSettings, Trigger-HideSceneZoneItemsInChildren]
	It Puts the Lotion On Its (Custom) Skin - [Trigger-ChangePlayerModel]
	It’s About Time - [OverridePlayerTimeControl and Trigger-TimeControl]
	Creating Custom NPCs - Stealth Hunting “Security Seekers”
	
	Creating Custom NPCs - Plasma Turrets
	Blowin’ In the Wind - [CMIRigidbodyMover and CMIRigidbodySwinger]
	Null Thicc Bodies [NPC Scaling]
	Melon Combat
	Powering Puzzles and Dropping the Lever
	Finally, The Boss Fight - A Stage by Stage Breakdown
	Fingering the Pulse [Trigger-MonitorZoneSpawner]
	If You Can’t See It, Is It There?
	Holy Hell, You Made It!

