Published using Google Docs
Prof. Friz, Student Info
Updated automatically every 5 minutes

SS 25/26: Rough stochastic differential equations (2h)

Lecture will be given 4h/week in the first half of semester, opening into a student seminar with a related focus (there will be opportunities for BSc and MSc theses).

Times: Mo 12-14 (2h) und DO 13:00-14 (1h), Location: TUB (details TBA)

(WS 23/24, to be updated) https://moseskonto.tu-berlin.de/moses/verzeichnis/veranstaltungen/veranstaltung.html?veranstaltung=161491

(WS 25/26) https://isis.tu-berlin.de/course/view.php?id=44082

Perequisites: measure theory, continuous time processes and awareness of Itô stochastic differential equations (SDEs), as taught in FiMa2 (TU), WT3 (TU), or Stochastic Processes II (BMS).

Itô stochastic theory has a powerful analytic companion, the theory of rough paths, which has had a profound impact of modern stochastic analysis, see e.g. [1].

"Rough stochastic differential equations" (RSDEs) are a common generalisation of Itō SDEs and Lyons RDEs. Since their introduction in [2] they have emerged as a powerful tool in several areas of applied probability, including non-linear stochastic filtering, pathwise stochastic optimal control, volatility modelling in finance and mean-field analysis conditional on common noise. This lecture will offer an overview of motivating examples, including some classes of stochastic partial differential equations, before presenting the key ideas of the theory, starting with a primer on classical rough differential equations.

[1] Peter K. Friz and Martin Hairer (2020), A Course on Rough Paths With an introduction to regularity structures, Springer Universitext and https://www.hairer.org/notes/RoughPaths.pdf

[2] Peter K. Friz, Antoine Hocquet, Khoa Lê (2021), Rough stochastic differential equations, CPAM (2025 subj revision) and https://arxiv.org/abs/2106.10340

 

SS 24: WT3 (BMS Course Stochastic Processes II)

Prof. Friz and Dr. Hager, starts on 15-April

Lecture 22-Apr: ComplementLeGallChapter2_SS24

https://isis.tu-berlin.de/course/view.php?id=39045#section-0 

f

Mo.

We.

who?

what?

notes

F = Friz

15.04.2024

F1

Ch1

H = Hager

17.04.2024

F2

Ch1

UE = Exercise Class

22.04.2024

F3+4

Ch2

24.04.2024

UE

29.04.2024

F5+6

Ch3 / Ch4

01.05.2024

public holiday

06.05.2024

F7, UE

Ch3 / Ch4

08.05.2024

F8

Ch3 / Ch4

13.05.2024

H1, UE

Ch5

15.05.2024

H2

Ch5 (bis Itô)

20.05.2024

public holiday

22.05.2024

F9

Ch5

27.05.2024

F10, UE

Ch5

29.05.2024

F11

Ch5

03.06.2024

F12, UE

Ch5

05.06.2024

H3

Ch6

10.06.2024

H4, UE

Ch6

online (tbc)

12.06.2024

H5

Ch6

online (tbc)

17.06.2024

H6, UE

Ch8

19.06.2024

H7

Ch8

24.06.2024

H8, UE

Ch8

26.06.2024

H9

Ch8

01.07.2024

H10, UE

Ch8

03.07.2024

H11

Ch8

08.07.2024

F13

RPT1

10.07.2024

F14

RPT2

15.07.2024

H12, UE

tbc

17.07.2024

H13

tbc

SS 24: Student Seminar: Signatures and Data Science

https://moseskonto.tu-berlin.de/moses/verzeichnis/veranstaltungen/veranstaltung.html?veranstaltung=183841

WS 23/24:

https://moseskonto.tu-berlin.de/moses/verzeichnis/veranstaltungen/volltextsuche.html?query=Friz&search=true

VL Rough stochastic differential equations (2h)

This lecture is devoted to some fundamental recent progress in stochastic analysis, a hybrid theory which seamlessly combines the advantages of both Itô's stochastic - and Lyons' rough path theory. We rely in particular on a new stochastic variant of controlled rough paths spaces, inspired by Khoa Lê's celebrated stochastic sewing lemma.  There are many applications,  included robust filtering, pathwise stochastic control, conditional analysis of financial models, and the analysis of mean field SDEs with common noise, as well as related classes of non-linear stochastic partial differential equation. Time and audience permitting we shall discuss this in later parts of the lecture.

Prerequisites: measure theory, awareness of Itô's stochastic differential equations, as taught in FiMa2 (TU), WT3 (TU), or Stochastic Processes II (BMS)

Time + location: information available on https://page.math.tu-berlin.de/~friz/ (Link Student Info)

Zeit 10:00 - 12:00, Mi., Ort E-N 189 ( Charlottenburg )

Mi. 18.10.23, Mi. 25.10.23,  Mi. 01.11.23, Mi. 08.11.23, Mi. 15.11.23, Mi. 22.11.23, Mi. 29.11.23,

Mi. 06.12.23, Mi. 13.12.23, Mi. 20.12.23, Mi. 10.01.24, Mi. 17.01.24, Mi. 24.01.24, Mi. 31.01.24, Mi. 07.02.24, Mi. 14.02.24

Substitute Lectures

Mi. 25.10.23  ⇒ L2 on Friday 27.10.23, 8:30 - 10:00 online (zoom)

Mi. 01.11.23⇒ L3 on Friday 3.11..23,  8:30 - 10:00 online (zoom)

 Mi. 29.11.23⇒ L6 on Thursday, 30.11.23, 8:30 - 10:00  E-N 189

Mi. 20.12.233⇒ L8 on Thursday, 21.12..23, 8:30 - 10:00 online (zoom)

(Extra) Makeup Lecture on  Thursday, 1.2.24, 8:30 - 10:00 online (zoom)

Mi. 07.02.24, regular time, 10:15 - 11:45, Lecture online (zoom)

 

Notes: L1, 18-Oct, L2, 27-Oct L3, 3-Nov L4, 8-Nov Exercise Class at 15-Nov

           L5, 22-Nov Discussion Class on 29-Nov, L6, 6-Dec, L7-to be posted, L8, 21-Dec

 

SE Optimal Transport and Mean Field Games (2h)

Optimal Transport and Mean Field Games are two interconnected mathematical frameworks with wide-ranging applications in economics, physics, and machine learning. Optimal Transport, pioneered by mathematician Leonid Kantorovich, addresses the problem of efficiently transporting goods from one location to another, minimizing the associated cost. It has applications in logistics, image processing, and even neuroscience.

Mean Field Games, developed by Jean-Michel Lasry and Pierre-Louis Lions, extend this concept to dynamic systems with a large number of agents. It models the strategic interactions of individuals in a society or economy, seeking to find equilibrium solutions. This approach has profound implications in economics, where it can model market behavior, traffic flow, and pricing strategies.

Together, these fields merge to tackle complex problems involving the collective behavior of agents and the optimal allocation of resources. They find applications in diverse areas, from urban planning and traffic management to understanding the dynamics of financial markets and the behavior of particles in physics. As research continues to advance, Optimal Transport and Mean Field Games promise innovative solutions to real-world challenges.

Time + location: information available on https://page.math.tu-berlin.de/~friz/ (Link Student Info)

Prerequisites: measure theory, analysis, probability theory (at least at the level of WT2, TUB)

First meeting Thu,. 19.10.23, 14:15 Raum FH 316,

Attention, meeting on Thu, 2.11.23, 8:30-10:00  (zoom)

Attention, meeting on Thu, 30.11.23, canceled due to sickness

Attention, meeting on Thu, 8.2.24, canceled.

As discussed in class on 1.2.24, make up sessions will be scheduled later in February. (Times tbd)

  Fraunhoferstraße 33-36, 10587 Berlin

References:

https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf

Oberseminar Rough Paths, SPDEs and Related Topics (2h)

(Wie im Vorjahr)

Time: Thursday 11:00,

more information available on https://page.math.tu-berlin.de/~friz/ (Link Student Info)

Stochastik und Finanzmathematik / Anleitung wiss. Arbeiten (1h)

(Wie im Vorjahr)

SS22: Stochastic processes II (BMS), WT 3

Update June-23: As announced in class, the regular classes next week Mon/Wed will not take place.

Instead, we will have two zoom lectures on Friday mornings (also recorded)

Jun 24, 2022 08:00 AM  / Jul 1, 2022 08:00 AM /  (tbc Jul 8, 2022 08:00 AM)

https://tu-berlin.zoom.us/j/66245759670?pwd=WkFPS1YxRjdONzZnemowZkphaEV2Zz09

------------------------------------------------------------------

Additional notes for 9-May Lecture: Example Sheet

https://drive.google.com/file/d/1Y2HLCJeBpL922uA2WSY3b2ZefSWScHfW/view?usp=sharing

Example Sheets: Sheet 1 (tbd on 2-May)

(see also ISIS)

------------------------------------------------------------------

Title: Stochastic processes II: continuous time - Wahrscheinlichkeitstheorie III

Lecturer: Friz, TU

This is a BMS basic course, hence held in English

https://www.math-berlin.de/index.php/academics/courses/basic-courses

Lectures

Location: MA 141 and MA 751Time: MO 14-16 and WED 14-16 (First lecture, MO 25-April 2022, at 14:15 - 15:45, MA 651)

Exercise Session MO 16-18 in room MA 750 (start on MO 2-May 2022)

The lectures will be held in presence.

Literature

We will follow closely the book Le Gall - Brownian Motion, Martingales and Stochastic Calculus, which is available as e-book in the online catalogue of TUB, get it here.

You may also find useful this set of notes by James Norris: http://www.statslab.cam.ac.uk/~james/Lectures/ap.pdf

To  look up bits and pieces of (functional) analysis, real and complex analysis, measure theory, Fourier analysis, etc. try

https://mathweb.ucsd.edu/~bdriver/DRIVER/Book/anal.pdf

(written by the former editor of the Journal of Functional Analysis)).

 

First lecture, MO 25-April 2022, at 14:15 - 15:45, MA 742

SS21:  

Einladungslink

 https://tu-berlin.zoom.us/j/65911167984?pwd=L1JDdGF2bDlVbDAyU2RUYngvSlZIdz09

SS 20:

                

 Rough Stochastic Analysis I         

 

Topic: VO Rough Stochastic Analysis I (Friz)

                      Apr 24, 2020 10:15 AM     (-> recorded video)

                     May 15, 2020 10:15 AM

                     May 22, 2020 09:30 AM

            May 29, 2020 09:30 AM

            Jun 5, 2020 09:30 AM

            Jun 12 + 19, 2020 09:30 AM

                Jun 26, 2020 09:30 AM

            Jul 3, 2020 09:30 AM

            Jul 10, 2020 09:30 AM

            Jul 17, 2020 09:30 AM

Exercise Sheet 1 (TBD on Jun 12, 11:00 AM immediately after class by Yizheng Yuan <yuan@math.tu-berlin.de>)

Exercise Sheet 2 (TBD on Jul 17, time TBC)

Join Zoom Meeting

https://tu-berlin.zoom.us/j/94580874299?pwd=eFN5MVRNVGFMZDl0bHh0Q0liMThzQT09

Meeting ID: 945 8087 4299

Password: 918394

References: https://math.ethz.ch/fim/activities/nachdiplom-lectures/peter-friz.html

Friz-Hairer, A course on rough paths, Springer (2020)

Oberseminar Rough Paths, Stochastic Partial Differential Equations and Related Topics

Thursdays 11:00 - 12:00 AM

Please contact antoine.hocquet@tu-berlin.de to get on the mailing list.

SS 19: Maß- und Integrationstheorie:

  1. MT Exam: 30 min, 3 Fragen aus verschiedenen Kapiteln

Um Ihnen bei der Vorbereitung zu helfen, anbei eine Liste von typischen Fragen! link

  1. Termine: 11. und 12. Juli

  1. Ergaenzungen zum Skriptum:

 7.3. Wiener Maß

11 P-Variation, Young Integration (Final 28. Juni)

 

 

---------------------------------------------------------------------------------------------------------------------

Yizheng Yuan (UE)  <yuan@math.tu-berlin.de>  Sprechstunde: Mittwoch, 16:00 - 17:00

Michele Coghi (VO) <coghi@wias-berlin.de> Sprechstunde: Donnerstags, 15:00 - 16:00

Peter Friz (VO) <friz@math.tu-berlin.de> Sprechstunde: nach Vereinbarung

Aktuelles: 15.4.2019: “einmalige Brückenkurs VO” statt UE um 08:00

Aenderung: Mo-VO ab 29.4.2019 in  H 1012. Fr-VO weiterhin in MA 005.

Vorlesung: Maß- und Integrationstheorie

Prüfung: Schriftlich am Fr 13.07, 10:00 - 12:00; weiterer Termin ist zu Beginn WS19/20. Voraussetzung ist bestandene Übung (s.u.)

Übung: 

*** Aktuelle Übungsblätter hier! ****

Anmeldung: Email bis zum 15.04.2019 an Herrn Yuan, Subject: MT SS19 / Anmeldung UE

Scheinkriterien: Es gibt Anwesenheitspflicht. Für jede Übungsstunde werden 5-10 Aufgaben gestellt. Jeder/Jede Studierende entscheidet selber, wieviele er/sie rechnet. Bis einige Minuten vor der Übung sind diejenigen Beispiele in einer Liste anzukreuzen, die vorbereitet wurden. Die genauen Modalitäten, wo, wann, wie anzukreuzen ist, erfahren Sie vom Übungsleiter in der ersten Übung.

Zu den angekreuzten Beispielen kann der/die Studierende dann in der Übung an die Tafel zum Vorrechnen geholt werden. Dieses Vorrechnen beinhaltet auch Fragen zum Stoff rund um das Beispiel, und wird bewertet.

Achtung: Am Ende des Semesters muss man zwei Drittel der aufgegebenen Beispiele angekreuzt haben, um einen Schein zu erhalten. Daneben muss die Gesamtbeurteilung der Tafelleistung ebenfalls positiv ausfallen.

Skriptum:

MT Skriptum, Sie koennen kommentieren!

https://www3.math.tu-berlin.de/Vorlesungen/SS09/MaI/skript_mass_int.pdf

(TUB Skriptum, J. Gaernter)


Zusätzliche Literatur:

http://www.statslab.cam.ac.uk/~james/Lectures/pm.pdf

(Cambridge University Lecture notes, J. Norris)

http://www.math.ucsd.edu/~bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf

(Part III Lebesgue Integration Theory, B. Driver)

https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf

https://www.springer.com/de/book/9781461411345

________________________________________________

WS  18/19 : Rough Volatility

Exam dates:   Mo, 8-April 2019, 2pm+ ///  

2-13 Sep 2019 (TBC)

Mo.

10:10 bis 11:50

wöchentl

15.10.2018 bis

11.02.2019

Mathematikgebäude - MA 645

Friz/Bayer

Fr.

10:00 bis 12:00

wöchentl

19.10.2018 bis

15.02.2019

Mathematikgebäude - MA 143

Bayer/Friz

NB: Lecture times 10:07 - 11:52 to make up for some cancelled lectures (* below)

Some reading/watching (updated as we go)

Overview:

Jim Gatheral video lecture on rough vol 

Lectures 1 & 2

Refresher on Ito semimartingales (very optional background reading) 

FiMa2 type material (background reading), Frey’s lectures

Guyon & Henry-Labordere (introduction as background reading)

Lectures 3

Abstract Gaussian measures, Cameron-Martin spaces, large deviation

Theory and Applications of Fractional Differential Equations, Volume 204, A.A. Kilbas H. M. Srivastava J.J. Trujillo, 2006.

Fraction Brownian motion (ICM Talk 2006)

UCV/UT:

Kurtz Slides

Large Deviations:

Large Deviations and Applications (short notes by Peter Moerters)         

VO Grosse Abweichungen (W. Koenig)

A 2-page note on Varadhan Lemma

Plan (draft)

1

Mon, October 15,

PF1

Overview

2

Fri, October 19,

PF2

StochVol Generalities (uncertain, Heston ...)

3

Mon, October 22,

PF3

Fractional Brownian motion(s)

4

Fri, October 26,

CB1

From emperical evidence (time series) to RoughVol

5

Mon, October 29,

CB2

cont'd

Fri, November 2,

*

-

6

Mon, November 5,

CB3

From emperical evidence (option data) to RoughBergomi

Fri, November 9,

*

-

7

Mon, November 12,

CB4

cont'd

8

Fri, November 16,

PF4

Primer on Hawkes Processes

9

Mon, November 19,

PF5

Microstructural foundations of RoughVol

10

Fri, November 23,

PF6

Primer on Fractional Calculus

11

Mon, November 26,

PF7

Rough Heston

12

Fri, November 30,

CB5

From rough heston to affine rough models

13

Mon, December 3,

CB6

Affine Rough models

14

Fri, December 7,

PF8

Affine Rough models

Mon, December 10,

*

-

Fri, December 14,

*

-

15

Mon, December 17,

PF9

Review Session

16

Fri, December 21,

CB7

Review Session

Mon, December 24,

-

-

Fri, December 28,

-

-

Mon, December 31,

-

-

Fri, January 4,

-

-

17

Mon, January 7,

PF10

Primer on Hedging in StochVol

18

Fri, January 11,

CB8

Hedging

19

Mon, January 14,

CB9

Hedging

20

Fri, January 18,

CB10

Hedging

21

Mon, January 21,

PF11

Primer on CLT and LDP

22

Fri, January 25,

PF12

Asymptotic Pricing

23

Mon, January 28,

PF13

Asymptotic Pricing

24

Fri, February 1,

PF14

Asymptotic Pricing

25

Mon, February 4,

CB11

Simulation

26

Fri, February 8,

CB12

Simulation

27

Mon, February 11,

CB13

Simulation

28

Fri, February 15,

CB14

Simulation / Conclusion

SS  18 : Seminar: "Quantitative Finance"  

Attention: new time/location:

08:30 - 10:00 on Mondays, MA 742 or 721

First meeting: Mon, 16-Apr-2018, focus: Asymptotic option pricing

Additional reading on Large Deviations: Lectures (Robertson), VO (König)

Large Deviations in Finance (Pham), Wentzell–Freidlin theory (Gentz)

Partial material for 7-May: Primer on Rough Paths

Future meetings (always Mondays), 23-Apr / 30-Apr / 7-May / 14-May (TBC)

28-May / 4-Jun (TBC) / 11-Jun / 18-Jun / 25-Jun / 2-Jul (TBC) & blocked talks (dates TBC)

Talks distribution

WS  17 / 18 : Seminar: "Rough Analysis and Quantitative Finance"   Mondays 12:00 - 14:00, MA 742

First meeting: Monday, 23-Oct-2017

If interested, fill out the Seminar participation form and send between 11-Oct and 25-Oct

as 1-Page PDF to Frau Downes, downes@math.tu-berlin.de

Some topics found here:

https://docs.google.com/document/d/136FeGICoeP7jp0ASlVdCDqhYrtOYZ81Jh-Y78SVMkn4/edit?usp=sharing