

DemocracyLab Contributor Guide

Links

Collaboration

Code

Testing

Branches

Environments

Production (Please do not create any test data here)

Pre-Production (Feel free to create test data here)

Design

Environment Setup

Option 1: Using Linux VM

Get VM Image file

Set up VirtualBox

Set up VM

Verify VM is working

Option 2: Using Docker

Install Docker

Windows (RECOMMENDED: Professional or other version supporting Hyper-V)

Windows (Home or other version not supporting Hyper-V)

Mac

Ubuntu

Run Docker

View Page

Required: Environment Variables file

Code Changes

After Python changes

After JS Changes

Running Commands within Docker container

Option 3: Setting up Environment On Local Box

Disclaimer

Clone Git Repository

Install Python

Install Node.js

Ubuntu

Install Yarn package manager

Windows

Ubuntu

Install PostgreSQL

Mac

Ubuntu

Windows

Configure PostgreSQL database

Set up other Environment Variables

Run Development Server

S3 Setup

Option 1: Use Test S3 Bucket

Option 2: Set up your own S3 Bucket

Create Bucket

Create IAM User

Set Environment Variables

Running the Site

Setting up Database

Building Static Assets

Running Development Server

Load Test Data

Admin Console

Admin Credentials

VM

Test Data

Git Steps

Set User Information

Sync Latest Changes on Branch (green text optional steps if you have changes in progress)

Update Dependencies

Python

Node.js

Merging Changes to Master

Test Frameworks

JavaScript Testing Framework

Django Testing Tools (docs)

Troubleshooting

Cache table not found

Front-end changes not showing up

Development Process

Working on a Feature

1. Sync master branch to bring in latest changes

2. Create a new feature branch

3. Implement feature and ensure it is working locally

4. Submit pull request

5. Merge any changes from master (if needed)

6. Merge feature into master

Style Guide

Structure

Third-party CSS

Best Practices

Technology Reference

Django

Overview

Models

Applying Database Changes

HTML Templates

Learning Django

Learning Python

React.js

Learning React

Flux

Flow

SASS

Prettier

Links
Collaboration
Join Slack Channel:
https://join.slack.com/t/democracylab-org/shared_invite/enQtMjY3OTQ1NDI2NzU1LWYzYzNjZDQ5OTQz
YzY1NjA1OTFmNjIxNzVhZjhhYjc0MDEzMzk2M2U4MTg0YjE1MmFhN2FkOTgxOTY1NzIwY2U

Slack Developers Channel: https://democracylab-org.slack.com/messages/C7BC3AM0C

Trello Board: Development and Feature Development

Google Calendar:
https://calendar.google.com/calendar?cid=cTI2dnQ1bm9sY3VwcGJkZmltc2puNHJ1NWtAZ3JvdXAuY2FsZ
W5kYXIuZ29vZ2xlLmNvbQ

Code
GitHub: https://github.com/DemocracyLab/CivicTechExchange

Testing
Test Cases: https://1drv.ms/x/s!Aqv8yA0KSEeLmxGKNAhgI9zxr5_F

https://join.slack.com/t/democracylab-org/shared_invite/enQtMjY3OTQ1NDI2NzU1LWYzYzNjZDQ5OTQzYzY1NjA1OTFmNjIxNzVhZjhhYjc0MDEzMzk2M2U4MTg0YjE1MmFhN2FkOTgxOTY1NzIwY2U
https://join.slack.com/t/democracylab-org/shared_invite/enQtMjY3OTQ1NDI2NzU1LWYzYzNjZDQ5OTQzYzY1NjA1OTFmNjIxNzVhZjhhYjc0MDEzMzk2M2U4MTg0YjE1MmFhN2FkOTgxOTY1NzIwY2U
https://democracylab-org.slack.com/messages/C7BC3AM0C
https://trello.com/b/h2V5QFsQ
https://trello.com/b/lRIPH9Yd/feature-development
https://calendar.google.com/calendar?cid=cTI2dnQ1bm9sY3VwcGJkZmltc2puNHJ1NWtAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ
https://calendar.google.com/calendar?cid=cTI2dnQ1bm9sY3VwcGJkZmltc2puNHJ1NWtAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ
https://github.com/DemocracyLab/CivicTechExchange/
https://1drv.ms/x/s!Aqv8yA0KSEeLmxGKNAhgI9zxr5_F

Branches
Working Branch: master

Environments
Production (Please do not create any test data here)
https://www.democracylab.org/ (Please do not create any test data here)

Pre-Production (Feel free to create test data here)
Staging (Automatically pulls from master branch): https://democracy-lab-staging.herokuapp.com
Production Mirror: https://democracy-lab-prod-mirror.herokuapp.com
Production Mirror #2: https://democracy-lab-dev.herokuapp.com

Design
UI Mockups:
https://www.figma.com/file/WADcmVjJh5ARVoZ09xlpfdFN/DemocracyLab?node-id=1876%3A1233
Feature Acceptance Criteria:
https://docs.google.com/document/d/1Sf6yUnvDZ7qN3RguX5CP1mlMPi7h9s67icrS-144oZE/edit?usp=s
haring

Environment Setup
Option 1: Using Linux VM
Get VM Image file

Download .ova image file from here

Set up VirtualBox
●​ Download Oracle VirtualBox for your platform here
●​ Install VirtualBox

Set up VM
●​ Open VirtualBox, click File -> Import Appliance
●​ Select .ova file and click ‘Next’
●​ In the setup page, adjust the amount of CPU(s)/RAM based on your machine specs
●​ Check ‘Reinitialize the MAC address of all network cards’

[I see a sector called MAC Address Policy with 3 choices,
1.​ Include only NAT network adapters MAC addresses,
2.​ Include all network adaptor MAC addresses,
3.​ Generate new MAC Addresses for all network adaptors

The default is 2 and I am trying that.]
●​ Click ‘Import’ Wait a bit for the import process to finish

Verify VM is working
●​ After the import finishes, you should see an entry in VirtualBox called ‘DemocracyLab-Image’
●​ Right-click on entry and click ‘Start’
●​ The VM should boot up to a login screen asking for the ‘dev-admin’ password.
●​ Enter Password: code4Gud!
●​ Open ‘CONTRIBUTOR README’ file and run the commands after ‘Open Shell:’ in the console

https://github.com/DemocracyLab/CivicTechExchange
https://www.democracylab.org/index/?section=FindProjects
https://democracy-lab-staging.herokuapp.com
https://democracy-lab-prod-mirror.herokuapp.com
https://democracy-lab-dev.herokuapp.com
https://www.figma.com/file/WADcmVjJh5ARVoZ09xlpfdFN/DemocracyLab?node-id=1876%3A1233
https://docs.google.com/document/d/1Sf6yUnvDZ7qN3RguX5CP1mlMPi7h9s67icrS-144oZE/edit?usp=sharing
https://docs.google.com/document/d/1Sf6yUnvDZ7qN3RguX5CP1mlMPi7h9s67icrS-144oZE/edit?usp=sharing
https://1drv.ms/f/s!Aqv8yA0KSEeLly-yn9zNhmWnh9M4
https://www.virtualbox.org/wiki/Downloads

Option 2: Using Docker
Install Docker
Windows (RECOMMENDED: Professional or other version supporting Hyper-V)
https://hub.docker.com/editions/community/docker-ce-desktop-windows

Windows (Home or other version not supporting Hyper-V)
https://docs.docker.com/toolbox/toolbox_install_windows/

Mac
https://hub.docker.com/editions/community/docker-ce-desktop-mac

Ubuntu
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Run Docker
●​ If using VirtualBox, make sure VirtualBox is running
●​ Open docker terminal
●​ Navigate to DemocracyLab Folder (installed from git)
●​ ensure docker-compose is installed: https://docs.docker.com/compose/install/
●​ Add a file called .env if it does not exist by copying example.env to .env.
●​ run docker-compose build
●​ run docker-compose up

View Page
Check the Docker startup console to see where the site is hosted (make sure to append port :8000)

Required: Environment Variables file
Copy file ‘example.env’ to file ‘.env’ and set environment variables there

Code Changes
To push code changes up to docker image, run the following

After Python changes
Python changes are reflected automatically after .py files are saved.

After JS Changes
●​ docker-compose up

https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://docs.docker.com/toolbox/toolbox_install_windows/
https://hub.docker.com/editions/community/docker-ce-desktop-mac
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/

Running Commands within Docker container
Prefix command with “docker exec ID”, where ID can be gotten from:
docker ps --filter "name=civictechexchange-web" --format "{{.ID}}"

Option 3: Setting up Environment On Local Box
Disclaimer
We highly recommend going with the VM option or the Docker option if at all possible.

Clone Git Repository
In the directory you want to work in:
git clone https://github.com/DemocracyLab/CivicTechExchange.git

Install Python
https://www.python.org/downloads/
Required Python version: 3.6.9
pip install -r requirements.txt (only need to ‘sudo’ if not using virtual environment)

Install Node.js
Ubuntu
curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -
sudo apt-get install nodejs

Install Yarn package manager
Windows
https://yarnpkg.com/lang/en/docs/install/#windows-stable

Ubuntu
curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update && sudo apt-get install yarn

Install PostgreSQL
Mac

Ubuntu
<TBD>

Windows
https://www.postgresql.org/download/windows/

Configure PostgreSQL database
1.​ Create Database for DemocracyLab
2.​ Create Admin user
3.​ Set the following environment variable:

 DL_DATABASE= “{'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': ‘<database name>’,
 'USER': ‘<admin user name>',
 'PASSWORD': '<admin user password>’',
 'HOST': '127.0.0.1',
 'PORT': '<5432 unless configured differently>',
 }}”

https://github.com/DemocracyLab/CivicTechExchange.git
https://www.python.org/downloads/
https://deb.nodesource.com/setup_8.x
https://yarnpkg.com/lang/en/docs/install/#windows-stable
https://dl.yarnpkg.com/debian/pubkey.gpg
https://dl.yarnpkg.com/debian/
https://www.postgresql.org/download/windows/

Set up other Environment Variables
For list, see democracylab_environment_variables.sh (Note: It’s not advised to use this file directly for
your environment setup, but instead make a copy you can customize for your environment outside of
your git repository folder so any sensitive info doesn’t get checked in accidentally)

Run Development Server
Run
python manage.py runserver
Navigate to http://127.0.0.1:8000/, and if you see the site, you’re ready to go!

S3 Setup
Option 1: Use Test S3 Bucket
Ask Marlon for credentials.
NOTE: Please do not share or check in these credentials. Besides the security concerns, AWS will disable
the key if it detects the key in GitHub, forcing everyone to get new credentials.
​

Option 2: Set up your own S3 Bucket
​ Create Bucket

1.​ Create a bucket in S3
2.​ Add bucket policy

a.​ Navigate to Bucket, click Permissions -> Bucket Policy
b.​ Enter the following:

{
 "Version": "2012-10-17",
 "Id": "Policy1508265135508",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::<your bucket name>"
 },
 {
 "Sid": "Stmt1508265128414",
 "Effect": "Allow",
 "Principal": "*",
 "Action": [
 "s3:PutObject",
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::<your bucket name>/*"
 }
]
}

3.​ Add CORS configuration

https://github.com/DemocracyLab/CivicTechExchange/blob/master/democracylab_environment_variables.sh
http://127.0.0.1:8000/

a.​ Navigate to Bucket, click Permissions -> CORS configuration
b.​ Enter the following

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="https://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
 <AllowedMethod>POST</AllowedMethod>
 <MaxAgeSeconds>3000</MaxAgeSeconds>
 <AllowedHeader>*</AllowedHeader>
</CORSRule>
</CORSConfiguration>

​ Create IAM User
1.​ Navigate to ‘My Security Credentials’ -> ‘Get Started with IAM Users’ -> Click ‘Add user’
2.​ Name user(something like ‘democracyLab_app’ and check ‘Programmatic access’. click

‘Next’
3.​ Click ‘Attach existing policies directly’ -> Create Policy -> Create Your Own Policy
4.​ Policy Name: user_s3_access

​ ​ Description: This lets the democracylab account access S3
​ ​ Policy Document:
​ ​ {

​ "Version": "2012-10-17",
​ "Statement": [
 ​ {
 ​ "Effect": "Allow",
 ​ "Action": "s3:*",
 ​ "Resource": "*"
 ​ }
​]
}

5.​ Click ‘Validate Policy’ to verify you pasted it right, then ‘Create Policy’
6.​ On the IAM user page, click the ‘Security credentials’ tab and ‘Create access key’
7.​ A key will be generated with a secret access key THAT YOU CAN ONLY SEE THIS ONCE.

Either copy and paste it somewhere safe, or download .csv file.
​ ​

​ Set Environment Variables
​ In the environment where you run the django server, set the following environment variables:

AWS_ACCESS_KEY_ID=<IAM user’s Access key ID>
AWS_SECRET_ACCESS_KEY=<IAM user’s secret access key>
S3_BUCKET=<The name of your S3 bucket>

Running the Site
Setting up Database
Run:


``` 
$ python manage.py createcachetable 
$ python manage.py makemigrations  
$ python manage.py migrate 
``` 

Building Static Assets
Run:
npm run build
For a faster build:
npm run dev

Running Development Server
Run:
python manage.py runserver

Load Test Data
Delete Data first:
python manage.py flush --noinput
Load Test Data:
python manage.py loaddata testdata.json

Admin Console
http://127.0.0.1:8000/admin/

Admin Credentials
VM
username: dev-admin
Password: code4Gud!

Test Data
See
https://github.com/DemocracyLab/CivicTechExchange/blob/511540374580491965e2541f23edb55f7e63
9a37/common/fixtures/testdata%20readme.txt#L14

Git Steps

Set User Information
git config --global user.name "<Your Name>"
git config --global user.email "<Your Email>"

Sync Latest Changes on Branch (green text optional steps if you have changes in
progress)
git stash save
git checkout <branchname>
git fetch
git reset --hard origin/<branchname>
git stash pop
--Fix Conflicts--

http://127.0.0.1:8000/admin/
https://github.com/DemocracyLab/CivicTechExchange/blob/511540374580491965e2541f23edb55f7e639a37/common/fixtures/testdata%20readme.txt#L14
https://github.com/DemocracyLab/CivicTechExchange/blob/511540374580491965e2541f23edb55f7e639a37/common/fixtures/testdata%20readme.txt#L14

Update Dependencies
Python
pip install -r requirements.txt

Node.js
yarn install

Merging Changes to Master
git checkout master
git pull
git checkout <feature branch>
git merge master
-- Test to make sure your changes play nicely with the changes from master, fix any conflicts--
git push origin <feature branch>

Test Frameworks

JavaScript Testing Framework

Jest is Facebook’s testing framework, based on Jasmine.

To run the suite of tests, use the command npm test or simply npm t

The test runner will run all files that end in .test.js

API calls can be mocked using jest-fetch-mock.

Snapshot testing is possible using react-test-renderer.

It can render React components to pure JavaScript objects, without depending on the DOM.

Django Testing Tools (docs)

Running tests

To run the suite of tests, use the command python manage.py test

The test runner runs all files named like test*.py

Placing tags on tests facilitates running only a particular subset.

Database fixtures can be automatically generated using django-autofixture.

Troubleshooting
Cache table not found
Run python manage.py createcachetable

Front-end changes not showing up
Make sure you have

●​ npm run build or npm run dev
●​ Not edited SCSS files inside the staticfiles directory, which gets overwritten after every build
●​ Hard refreshed in the browser (or cleared browser cache as a last resort)

Development Process

Working on a Feature
1. Sync master branch to bring in latest changes
Commands:
 git checkout master
 git pull

2. Create a new feature branch
Run Commands:
 git checkout -b <insert new branch name> master

https://jestjs.io/docs/en/api
https://www.npmjs.com/package/jest-fetch-mock
https://www.npmjs.com/package/react-test-renderer
https://docs.djangoproject.com/en/1.11/topics/testing/tools
https://docs.djangoproject.com/en/1.11/topics/testing/tools
https://docs.djangoproject.com/en/1.11/topics/testing/overview/
https://docs.djangoproject.com/en/1.11/topics/testing/tools/#tagging-tests
https://pypi.org/project/django-autofixture/#using-autofixtures-as-a-tool-for-unittests

Note: When choosing a name for the branch, it’s helpful to pick one that describes the feature or
changes to be made
Note#2: Generally we recommend working from DemocracyLab/CivicTechExchange rather than from a
fork, as it simplifies test deployments. We generally try to give write access during the onboarding
process, but please reach out if we haven’t added you.

3. Implement feature and ensure it is working locally
1.​ Make code changes
2.​ Deploy them locally and test to make sure they work
3.​ Commit code changes. Use commit names descriptive of the change. (‘git commit -m “Changed

feature X”’)

4. Submit pull request
Run command:
 git push origin <your branch name>
Navigate to https://github.com/DemocracyLab/CivicTechExchange/pulls
Click ‘New Pull Request’
Select your branch in the field ‘Compare: ‘, then click ‘Create pull request’
On the next page, fill out summary of your changes, and click ‘Create pull request’

-​ In the body of the changes, add in ‘closes #XXX’ where XXX is the id of any issue(s) you’re
working on.

Notify team in slack #developer channel
Wait for someone to review
If any changes are needed, committing and pushing those changes should update the PR automatically.

5. Merge any changes from master (if needed)
Run commands:
 git checkout master
 git pull

6. Merge feature into master
This is something the engineering lead currently takes care of.

Style Guide

This guide will explain how DemocracyLab CSS is structured and how to write a new stylesheet, how to
manage third-party CSS, and offer some best practice suggestions. DemocracyLab uses SASS to compile
many partial files (.scss) into one minified stylesheet which is served to the end user. We have one partial
per React component so our component structure is mirrored by our style structure.

Structure
DemocracyLab's style structure consists of three main parts:

●​ a partials directory, where all the DemocracyLab written CSS resides
●​ a vendors directory, where all third-party CSS resides, such as Bootstrap.
●​ styles.scss which is the root file for the SASS compiler - any CSS you write must be referred to in

styles.scss or else SASS won't make use of it.

https://github.com/DemocracyLab/CivicTechExchange/pulls

To add a new SASS partial, and using the example of a React component named SiteSearch.jsx. First,
create a new file named _SiteSearch.scss in the /partials/ directory and put your CSS rules here. Note the
filename should match the React component name with the addition of a leading underscore. Next,
import your partial in styles.scss - in this example, add @import 'partials/SiteSearch'; Note the leading
underscore and file extension are not required in the import statement. Finally, npm run build and the
new stylesheet will be compiled as part of the build process.

Third-party CSS
All third-party CSS should reside in the /vendor/ directory, to keep a clear distinction between what
DemocracyLab uses that someone else wrote and what we've written.

DemocracyLab uses Bootstrap 4 as the foundation for the DemocracyLab site style, especially for layout
and responsive breakpoints. We have the entire Bootstrap 4 style available but only load the parts we
currently need. If you find a Bootstrap class isn't working properly, check styles.scss to make sure the
correct Bootstrap partial is being loaded. For further information, see Bootstrap's documentation:
https://getbootstrap.com/docs/4.0/getting-started/introduction/

Best Practices
Generally, whatever approach works for you and the site is fine, but for style consistency with your
fellow developers, these are some guidelines that might help if you're unsure:

●​ Unit declarations: Consistent units like px are preferred; but relative units like percent should be
used if needed.

●​ Class naming: Semantic class names following the format of ComponentName-className are
preferred. For example .SiteSearch-searchButton would style the search button inside the
SiteSearch component.

●​ Variables: Please note the semantic distinctions; even if $color-text-light and
$color-background-light are both #ffffff, only use the text variable for text and the background
for background. If you find yourself reusing the same declaration repeatedly, and it’s likely to be
defined across multiple components, consider defining it as a variable.

●​ Responsive Breakpoints: See
https://getbootstrap.com/docs/4.0/layout/overview/#responsive-breakpoints for breakpoint
mixins if your component needs them.

Technology Reference
Django
Overview
Django is a python framework for rendering web pages on the server. We are currently transitioning
away from rendering the web pages on the server, and in the future will only use it to power the API that
serves the raw data used by the frontend.

Models
​ https://docs.djangoproject.com/en/1.11/topics/db/models/

https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/layout/overview/#responsive-breakpoints
https://docs.djangoproject.com/en/1.11/topics/db/models/

Applying Database Changes
​ First try:

python manage.py makemigrations
python manage.py migrate

​
​ If that fails, your best bet is probably to just erase the database (which also necessitates
re-creating the superuser):
​ Python manage.py flush

Python manage.py createsuperuser --username dev-admin --email <your email>

HTML Templates
​ In-Depth Overview:
https://docs.djangoproject.com/en/1.11/topics/templates/#the-django-template-language

Tag Reference:
https://docs.djangoproject.com/en/1.11/ref/templates/builtins/#ref-templates-builtins-tags

Learning Django
https://www.djangoproject.com/

Learning Python

React.js

React is a declarative client-side framework for single-page applications. With React, the developer
constructs a component tree, wherein every component has access to `props` (information which it
receives from its parent) and `state` (information which it manages itself.) Each React component is
represented as a JavaScript class, and has at minimum a `render` method, which declaratively describes
how the component renders itself using its `props` and `state`.

Feel free to reach out to Lowell for any questions.

Reference: https://reactjs.org/

Learning React

Flux
Flux is a framework for managing application state. It implements the observer pattern; objects can send
updates to a Flux store, as well as subscribe to updates from a Flux store. Flux can be useful to a React
application because it simplifies passing state from components that are not nearby each other in the
component tree. For example, if our component tree has a root R with overall structure: C <- B <- A <- R
-> D -> E -> F, it becomes tedious to have component F pass information to component C in the standard
React data flow. However, with Flux, component C can subscribe to a Flux store, and component F can
send updates to the same store, significantly simplifying an otherwise tedious component-by-component
passing of state.

https://docs.djangoproject.com/en/1.11/topics/templates/#the-django-template-language
https://docs.djangoproject.com/en/1.11/ref/templates/builtins/#ref-templates-builtins-tags
https://www.djangoproject.com/
https://reactjs.org/

Feel free to reach out to Lowell for any questions.

Reference: https://facebook.github.io/flux/

Flow
Flow is a static type checker for JavaScript. On its own, there is absolutely no type checking in JavaScript
-- errors are thus often encountered at runtime. With Flow, it is most common to only type the
parameters and return types for functions, although individual variables can also be explicitly typed. It is
also straightforward in Flow to define your own types, such as Enums and Objects.

Feel free to reach out to Lowell for any questions.

Reference: https://flow.org/

SASS
SASS is a CSS extension framework, where you can write regular CSS but additionally take advantage of
features such as variables, mixins, nested syntax, functions to compute style rules, and more.
Additionally, the SASS partial structure allows the per-component stylesheet files to be separated and
easy to work with for developers without impacting end user performance.

Feel free to reach out to Peter Breen on Slack for any questions.

●​ Reference: https://sass-lang.com/
●​ Documentation: https://sass-lang.com/documentation/file.SASS_REFERENCE.html

Prettier
Prettier is an opinionated javascript code formatter that we’ve adopted to help standardize our js code
formatting with a minimum of effort. The easiest way to use it is to install a plugin for your preferred
IDE.

https://facebook.github.io/flux/
https://flow.org/
https://sass-lang.com/
https://sass-lang.com/documentation/file.SASS_REFERENCE.html
https://prettier.io/
https://prettier.io/docs/en/editors.html
https://prettier.io/docs/en/editors.html

	Links
	Collaboration
	Code
	Testing
	Branches

	Environments
	Production (Please do not create any test data here)
	
	Pre-Production (Feel free to create test data here)

	Design

	
	Environment Setup
	Option 1: Using Linux VM
	Get VM Image file
	Set up VirtualBox
	Set up VM
	Verify VM is working

	
	Option 2: Using Docker
	Install Docker
	Windows (RECOMMENDED: Professional or other version supporting Hyper-V)
	Windows (Home or other version not supporting Hyper-V)
	Mac
	Ubuntu

	Run Docker
	View Page
	Required: Environment Variables file
	Code Changes
	After Python changes
	After JS Changes

	Running Commands within Docker container

	
	Option 3: Setting up Environment On Local Box
	Disclaimer
	Clone Git Repository
	Install Python
	Install Node.js
	Ubuntu

	Install Yarn package manager
	Windows
	Ubuntu

	Install PostgreSQL
	Mac
	Ubuntu
	Windows

	Configure PostgreSQL database
	Set up other Environment Variables
	Run Development Server

	S3 Setup
	Option 1: Use Test S3 Bucket
	Option 2: Set up your own S3 Bucket
	​Create Bucket
	​Create IAM User
	​Set Environment Variables

	Running the Site
	Setting up Database
	Building Static Assets
	Running Development Server
	Load Test Data
	Admin Console
	Admin Credentials
	VM
	Test Data

	Git Steps
	Set User Information
	Sync Latest Changes on Branch (green text optional steps if you have changes in progress)
	Update Dependencies
	Python
	Node.js

	Merging Changes to Master

	
	Test Frameworks
	JavaScript Testing Framework
	Django Testing Tools (docs)

	Troubleshooting
	Cache table not found
	Front-end changes not showing up

	Development Process
	Working on a Feature
	1. Sync master branch to bring in latest changes
	
	2. Create a new feature branch
	
	3. Implement feature and ensure it is working locally
	4. Submit pull request
	5. Merge any changes from master (if needed)
	6. Merge feature into master

	Style Guide
	Structure
	Third-party CSS
	Best Practices

	Technology Reference
	Django
	Overview
	
	Models
	Applying Database Changes
	HTML Templates
	Learning Django
	Learning Python

	React.js
	Learning React

	Flux
	Flow
	SASS
	Prettier

