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About Me:

I am a sophomore pursuing B.Tech. Electronics and Communication Engineering from the

National Institute of Technology Karnataka, India. When I started university, I was exposed

to signal processing and the applications of machine learning, in my engineering

curriculum, as well as in various technology clubs . I saw how models were planned and

built by observing my seniors working on signal classification projects. This helped me to

develop an interest in Signal Processing applications using Deep Learning models. I am

currently working in the fields of:

1. Deep Learning/Neural Networks

2. Signal and Image Processing

3. Computer Vision

4. Natural Language Processing
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Previous Development Experience:

I have worked on the following Signal Processing and Deep Learning projects:

1. Urban Planning and Landscape Prediction using Deep Learning, a project initiated by

the Indian Space Research Organization (ISRO) under the ISRO-NITK MoU, where I have

been selected to work under Prof Shyam Lal, Dept. of Electronics and Communication,

NITK. We have currently implemented a few IEEE research papers: Unsupervised Change

detection in satellite images using Principal Component Analysis and K-means clustering, and

Automatic analysis of Difference images for unsupervised change detection. We plan on finding

the most accurate model and using that to perform the landscape prediction in order to

optimize land usage for future generations. The technology used will be DCNN’s, RNN’s and

RCNN’s to determine which will be most efficient and accurate and will be further worked

upon. As of today, we are building the models using CNN.

2. Optical Character Recognition Module for the blind which works in real-time on video

using OpenCV’s EAST algorithm, a Deep Learning based text detection pipeline. The model

takes video input from a camera, extracts text and converts it into speech. I have finished

making the model and implementing it. This project’s code has been uploaded to Github

HERE: (https://github.com/atreyamaj/OCR-EAST).

Why am I interested in this project?

I wish to contribute to the conservation and sustainability effort to the best of my ability. I

strongly believe that the wielders of cutting edge technology can shape the future of not

only the tech-world, but also the planet as a whole by using technology in a constructive

manner in order to achieve an ecological balance with nature. The endangerment of Orca

whales is a growing concern. I wish to explore how we as a community can use Audio/Signal

Processing and Deep Learning in order to locate and protect them. We can create a more

sustainable world for not just our future generations, but the future generations of all

species on this planet.
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I always wanted to be part of the open source community but didn’t know where and how

to start contributing. Google Summer of Code is a great opportunity to enter and

participate in this amazing community. I hope that I can contribute to the open source

community to the best of my ability.

Abstract:

The Orca call database is fairly voluminous, therefore there are inevitable instances of label

noise being present. I plan on de-noising the original audio signal first, converting it to a

spectrogram, and training a detection model on the processed data. After this initial

training is done, I plan on further training the model with the same data but augmented

with noise. This is done in order to perform binary classification of Orca calls with

satisfactory accuracy even with fairly high levels of noise.

The aim of the project is to make an accurate model light enough to run on a personal

computer, and not just on a cloud computing platform. The model must be able to classify

the input audio signal as fast as possible. Thus it must be as optimized and as lightweight

as possible while simultaneously minimizing processing costs. In this project, I have

elaborated upon how we can do this and the various tools at our disposal that will aid us in

achieving the same.

Technical Details:
Required Packages and relevant work: We will be referring to OrcaCNN from ESIP.
Packages that will be used include Keras, Pandas, open-unmix-pytorch [3], OS, sys, io,
tensorflow/tfjs, numpy, Pydub, Librosa.

The steps I plan on following during the course of the project are:

1. Preparing the Audio Data: In this stage, I will be using the Open-unmix package in

order to separate noise (for example: ship sounds, other creatures, background

noise etc.) from the given audio signals and will store only the Orca sounds. This will
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then be used to compute spectrograms using the Librosa library for each signal

which will then be used to train the model.

We are using spectrograms instead of Fourier Transforms because the Fourier

Transform plots appear to be pitch black.

The code to compute the Fourier Transform Plot, spectrogram and Mel-spectrogram

for a 2 second J-Pod can be found at

https://github.com/atreyamaj/GSoC-Proposal-Orcasound-Project-2

A demonstration of what happens when a Fourier Transform plot is made for an audio recording of a 2 second J Pod

Orca call.

I used Librosa to generate this plot.
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Not much is visible as most sounds that humans can hear are concentrated in very

small frequency and amplitude ranges, which the Fourier Transform cannot handle.

A spectrogram defines a signal in terms of time, frequency and

intensity/magnitude. When the Y axis of a spectrogram is the Mel scale, the

spectrogram is called a Mel-spectrogram. Mel-spectrograms are used because the

Mel-frequency scale is a quasi-logarithmic spacing, which roughly resembles the

resolution of the human auditory system. We are converting the audio signals to

mel-spectrograms because the mel-spectrogram of an orca sound is visually unique

and distinctive.

This is followed by feeding the model the original data which has background noise.

Spectrogram of an Orca’s call

Source:

https://www.researchgate.net/publication/319527386_Vocal_repertoires_of_two_matrilineal_social_whale_species_Long-finne

d_Pilot_whales_Globicephala_melas_Killer_whales_Orcinus_orca_in_northern_Norway/figures?lo=1
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’

What a Mel-spectrogram of a 2 second J-Pod Orca call audio clip looks like.

I used Librosa to generate the mel-spectrogram.
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A basic Flowchart describing the workflow of the first stage of the project

2. Building the Orca Call Binary Classification Model: In this stage, we will follow the

following steps:

A. First, we will train the model from OrcaCNN and note the results/accuracy

on our modified dataset. The parameters governing the accuracy of the

model are: Pitch, duration, intensity, audio quality and SNR (Signal to Noise

Ratio). Each of these factors contribute to the change in the spectrogram of

a signal. I am doing this in order to compare the results with that of the CNN I

am building.

B. Then, we will proceed to make our own model using a Convolutional Neural

Network (CNN). I am not using a pre-trained model because I want to

augment the dataset with various levels of noise and have a new and larger

synthesized dataset before training the model. This will ensure that the

model can still work with a significant amount of background noise and

classify the signal in no time.
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C. I am choosing to work with a CNN because:

1. CNNs work well on image classification problems due to their feature

extraction and classification.

2. Spectrograms have time as the horizontal axis while the vertical axis

corresponds to frequency. This means that a spectrogram is just a

time series of frequency measurements. Keeping this in mind,

convolution seems to be an appropriate choice to extract the patterns

made by Orca calls.

3. I will be using 2D Conv for my CNN with RELU activation. Since

spectrograms define signals using 3 quantities: time, frequency and

magnitude, but have two directions, it would be better to implement

2D convolution. 1D convolution is usually used if we intend on using

audio signals as direct input for the model.

As of this moment, I plan on implementing my CNN architecture in the following

manner:

1. Convolution layer with kernel size 3x3

2. Convolution layer with kernel size 3x3

3. Max-pooling layer with pool size 2x2

4. Dropout layer

5. Flattening layer

6. 2 Dense layered neural networks at the end.

Stacking two smaller convolution layers is better than having a larger convolution layer.

This is because even though the original throughput remains constant, it results in a lighter

number of parameters, therefore a lesser number of weights are required, and the

stacking of layers results in a deeper network. Thus, instead of a regular 5x5 kernel size, I

will be stacking two 3x3 convolution layers. The output from the stacked layers is then

taken as input for the next layer, which is the max-pooling layer.
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The Max-pooling layer gives us some measure of translational invariance. More

importantly, pooling is faster to compute than convolutions, thus we increase the learning

rate of the model by adding a Max-pooling layer. A standard pool size of 2x2 is good for

this. The output of the pooling layer is then taken as input for the dropout layer.

To prevent overfitting, we use a dropout layer. A dropout layer works by randomly setting

the outgoing edges of hidden layer neurons to 0 at each update of the training phase. An

alternative to this is using multiple neural networks with different model configurations

together. However, this is not recommended as this method requires the additional

computation expense of training and maintaining multiple models. Therefore, the use of a

dropout layer is a better option.

The flattening layer is the layer between the convolutional layers and the final dense/fully

connected layer. It ‘flattens’ the output of the convolutional layers by converting the data

into a single 1-dimensional long feature vector.

A fully connected layer is also known as a dense layer. In a dense layer each neuron

receives input from all the neurons in the previous layer, making the neural network

densely connected. This layer produces the final binary output after taking input from the

long feature vector that was the output of the flattening layer.
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A flowchart showing the implementation of the proposed CNN model.

D. The input we will be giving to the model will be a spectrogram of fixed length.

An image showing the working of a general CNN

Image reference:https://missinglink.ai/guides/keras/keras-conv2d-working-cnn-2d-convolutions-keras/

3. Optimization of the Model: After training the model on the GPU (the GPU I am

using is Nvidia 960M) using the large modified dataset, we will start optimizing it.

The community can replicate this by using the GPU in their personal computers or

by using a cloud GPU.

I will try to avoid using gradient descent and its variants to optimize, due to the

presence of a few drawbacks such as:
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a) Difficulty in choosing learning rate. If the rate is too small, the convergence is

very slow. Parallelly, if the rate is too large the convergence is hindered and

the loss function starts fluctuating.

b) The same learning rate applies to all parameter updates.

c) It is possible to get stuck at the saddle points since they are usually

surrounded by the same error, making the gradient close to zero in all

dimensions.

However, I will also try to implement SGD (Stochastic Gradient Descent)+Nesterov

Momentum as according to a research paper by UC Berkeley, SGD has better

generalization than adaptive optimizers when the dataset is not that big.

Since I aim to make a light model in order to minimize processing costs, a

fast-learning model without saddle point errors is preferred. Thus I am leaning towards

implementing adaptive learning optimization algorithms.

I intend on primarily using Adaptive Moment Estimation, or Adam in short. It is an

adaptive learning rate optimization algorithm that has been specifically designed for

training deep neural networks by leveraging the power of adaptive learning rates to

find individual learning rates for each parameter. Adam works well in practice and

the speed of learning of the model is fast. This is because ADAM not only stores an

exponentially decaying average of past square gradients, it also keeps an

exponentially decaying average of past gradients M(t), much like Momentum.
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Image source: https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/

Adam is more efficient and is a better algorithm to optimize with compared to

others:

1. It converges very fast, due to which the log function does not fluctuate.

2. Increases the learning speed of the model.

3. Does not have a vanishing learning rate.

Since I will have a decently sized dataset and quite a few parameters to work with,

Adam is a better choice than SGD as generalization will not be a concern due to the

size of the dataset. Adam is also good for optimizing networks that work with noisy

inputs. This will help us train our network better with the noise-augmented Orca call

signals in the synthesized dataset. The computational efficiency, low memory

requirements and invariancy to diagonal rescale of the gradient makes Adam a good
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choice for the network so that it can be light and can produce an output as fast as

possible, which is needed to classify Real time Orca calls in No Time .

Other algorithms that I will be implementing and comparing with Adam include SGD,

AdaGrad and RMSprop.

4. End Result:We have a binary classifier that has been optimized with Adam to have

a fast learning rate, due to which we can train and test on a personal computer. It

can detect Orca call sounds in the presence of quite a bit of noise and works with

good accuracy. I will be splitting the larger synthesized dataset in a 4:1 ratio for

training and testing respectively to ensure that we have a large enough set for both

training and testing.

5. Deploying the Model: I will be deploying the model as an API with Flask on a

suitable cloud computing platform such as Google Compute Engine. Furthermore, I

will try to decide which cloud computing platform to use after consulting with the

community during the community bonding period. I will productionize the Flask API

and get it ready for deployment using Docker.

I will be splitting the larger synthesized dataset in a 80:20 ratio for training the

model and testing it post deployment respectively.

Flask Restful is an extension for Flask that adds support for quickly building REST

APIs. It is a lightweight abstraction that works with my existing libraries. It requires

minimal setup and thus is a good choice for deployment.
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For the production server, I will be using NGINX, which is a free open-source high

performance HTTP server. It is known for its high performance, stability, rich feature

set, simple configuration and low resource consumption.

Image taken and modified from: https://cloudxlab.com/blog/deploying-machine-learning-model-in-production/

Deliverables:

Phase 1:

● Development and training of a binary Orca whale call classifier that can work

with significant noise in the background.

● Comprehensive documentation and blog posts on the Orcasound blog for

the same along with the preprocessing phase for the dataset.

Phase 2:

● Deployment of the model to the cloud using Flask Restful API.

● Subsequent testing of the aforementioned model.

● Documentation and blog post on the Orcasound Blog for the same.
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Final submission:

● Final model fully deployed and working.

● Testing on real time data streams coming in from the hydrophones.

● Blog posts on the Orcasound Blog about my progress, the model and my

experience with the organization.

Timeline:

Community
Bonding

Week 1- 5th to 11th May, Start interacting with the
Orcasound community,
start reading the
documentations for the
aforementioned packages
and install all necessary
softwares.

Week 2- 11th to 17th May Continue to do the same
and also go through all
necessary packages and
patchnotes once to avoid
issues in the future.

Week 3- 18th to 24th May Discuss and map my plan of
action and write blog posts
on the Orcasound blog
about the techniques and
architecture used, decide
which cloud computing
service to use.

Week 4- 25th to 31st May Confirm the roadmap and
the plan of action with the
mentors and get ready to
start coding, finish any
leftover installations.

Phase 1 Week 5- 1st June to 7th June Preprocess the audio data,
convert it into spectrograms
and start building the basic
model in tandem. Try to see
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if other architectures might
be better suited to the task
at hand.

Week 6- 9th to 15th June Develop the model and
test/train it on the
preprocessed audio data
converted to spectrograms.

Week 7 - 17th June to 22nd
June

Solidify the model and start
working on uploading the
model to a suitable cloud
computing platform using
Flask API.

Week 8 - 23rd June to 29th
June +30th June

Keep working on uploading
the model to the cloud
computing platform.

Phase 1 Evaluations 1rst- 3rd July

Phase 2 Week 8- 4th July to 10th July Documentation, buffer
week.

Week 9- 11th July to 17th
July

Finish uploading the model
to the chosen cloud
computing platform and
use cloud GPU’s to make it
run.

Week 10- 8th July to 14th
July

Work on implementing
feedback from evaluations
and solidifying the model
more.

Week 11- 15th July to 21st
July

Start optimizing the model
by using ADAM, try
minimizing cost.

Week 12- 22nd July to 26th
July

Keep working on optimizing
the model, make changes if
necessary.

Phase 2 Evaluations 27th to 31st July

Week 13- 1st to 4th August Start writing the blog,
finishing optimizing the
model and start working on
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deploying the model online
using Docker

Week 14- 4th August to 10th
August

Keep working on online
deployment so that users
can detect Orca calls, write
blog posts

Week 15- 14th August to
20th August

Finish deployment using
Docker. Work on
troubleshooting any bugs or
errors that may occur.

Final
Submission

21st to 31st August Documentation and Mentor
Suggestions, Submission

Final Evaluation 31st August to September
7th

I can work 4 hours on weekdays and 8 hours on weekends. These hours are flexible and

can be changed according to the availability of the mentors, time constraints of the project

and any unforeseen developments.

I will be on my summer break till June 1st and will be following the weekend work schedule

mentioned above for all the days of the week.

From 1st to 28th June, university classes will resume, therefore I will be following the

timings mentioned above for weekdays and weekends.

Due to COVID-19, I will be having my examinations at this time and will be unavailable to

work from June 29 to July 13. I will still keep working on the project but I will not be able to

follow a strict work schedule for this duration. I will compensate for the time lost during

holidays and weekends.

I will be having end semester vacations from 13th to 29th July and will be able to work 8

hours a day.
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From 29th July, the new semester will begin and I will be working 5 hours on weekdays and

8 hours on weekends, as mentioned above.

References:

1. Coursera- Deep Learning and Neural Networks by deeplearning.ai

2. https://github.com/sigsep/open-unmix-pytorch

3. https://github.com/axiom-data-science/OrcaCNN

4. https://towardsdatascience.com/deploying-a-custom-ml-prediction-service-on-googl

e-cloud-ae3be7e6d38f

5. https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-ne

tworks-and-ways-to-optimize-gradient-95ae5d39529f

6. https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-exa

mple-f9cbd272269e

7. https://towardsdatascience.com/deploying-machine-learning-models-with-docker-5

d22a4dacb5

8. https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/

9. https://www.sicara.ai/blog/2019-10-31-convolutional-layer-convolution-kernel

10. https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6

be9a291375c

11. https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9

d0

12. https://www.kaggle.com/michael422/spectrogram-convolution

13. https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-network

s/

14. https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-exp

lained-8c9f6dc4c9ab

15. https://missinglink.ai/guides/keras/using-keras-flatten-operation-cnn-models-code-e

xamples/

18

https://www.coursera.org/learn/neural-networks-deep-learning
https://github.com/sigsep/open-unmix-pytorch
https://github.com/axiom-data-science/OrcaCNN
https://towardsdatascience.com/deploying-a-custom-ml-prediction-service-on-google-cloud-ae3be7e6d38f
https://towardsdatascience.com/deploying-a-custom-ml-prediction-service-on-google-cloud-ae3be7e6d38f
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-example-f9cbd272269e
https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-example-f9cbd272269e
https://towardsdatascience.com/deploying-machine-learning-models-with-docker-5d22a4dacb5
https://towardsdatascience.com/deploying-machine-learning-models-with-docker-5d22a4dacb5
https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/
https://www.sicara.ai/blog/2019-10-31-convolutional-layer-convolution-kernel
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0
https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0
https://www.kaggle.com/michael422/spectrogram-convolution
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab
https://missinglink.ai/guides/keras/using-keras-flatten-operation-cnn-models-code-examples/
https://missinglink.ai/guides/keras/using-keras-flatten-operation-cnn-models-code-examples/


16. The Orca call sound used to demonstrate why the Fourier Transform doesn’t work

was taken from: https://www.youtube.com/watch?v=JTEvEE6fq6k

17. https://arxiv.org/abs/1705.08292

19

https://www.youtube.com/watch?v=JTEvEE6fq6k
https://arxiv.org/abs/1705.08292

